Detailed Atlas of Kekulé Structures of the Buckminsterfullerene

  • Damir Vukičević
  • Milan Randić
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 4)


Buckminsterfullerene has 12500 Kekulé structures grouped in 158 isomorphic classes. In this paper we reproduce the results of paper (Vukičević et al. Croatica Chemica Acta 78: 223, 2005) with some extensions. Namely, for each Kekulé structure we provide: number of structures isomorphic to it, the average number of π-electrons that belong to hexagon, the average number of π-electrons that belong to pentagon, the number of conjugated cycles of lengths 6, 10 and 14, the number of all conjugated cycles, degree of freedom, maximum number of independent conjugate cycles and maximum number of independent conjugated hexagons.


Double Bond Additional Parameter Resonance Energy Isomorphic Classis Single Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The partial support of Croatian Ministry of Science, Education and Sport (grants no. 177-0000000-0884 and 037-0000000-2779) is gratefully acknowledged.


  1. Balaban AT, Randić M (2004a) J Chem Comput Sci 44:50Google Scholar
  2. Balaban AT, Randić M (2004b) Polycyclic Arom Comp 24:173CrossRefGoogle Scholar
  3. El-Basil S (2000) J Mol Struc – Theochem 531:9CrossRefGoogle Scholar
  4. Fowler PW (1986) Chem Phys Lett 131:444CrossRefGoogle Scholar
  5. Fowler PW, Manolopoulos DE (1995) An atlas of fullerenes. Clarendon Press, OxfordGoogle Scholar
  6. Fries K (1927) J Liebigs Ann Chem 454:121CrossRefGoogle Scholar
  7. Fries K, Walter R, Schilling K (1935) J Liebigs Ann Chem 516:248CrossRefGoogle Scholar
  8. Klein DJ, Randić M (1987) J Comput Chem 8:516CrossRefGoogle Scholar
  9. Klein DJ, Schmalz TG, Hite GE, Steitz WA (1986) J Am Chem Soc 108:1301CrossRefGoogle Scholar
  10. Kroto HW, Heath JR, O’Brian SC, Curl RF, Smalley R (1985) Nature 318:162CrossRefGoogle Scholar
  11. Manolopulos DE, Woodal DR, Fowler PW (1992) J Chem Soc Faraday Trans 88:2427CrossRefGoogle Scholar
  12. Randić M (2003) Chem Rev 103:3449CrossRefGoogle Scholar
  13. Randić M, Kroto H, Vukičević D (2007) J Chem Inf Model 47:897CrossRefGoogle Scholar
  14. Vukičević D, Kroto HW, Randić M (2005) Croatica Chemica Acta 78:223Google Scholar
  15. Vukičević D, Randić M (2005) Chem Phys Lett 401:446CrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of SplitSplitCroatia
  2. 2.National Institute of ChemistryLjubljanaSlovenia

Personalised recommendations