The Topological Background of Schwarzite Physics

  • Giorgio Benedek
  • Marco Bernasconi
  • Eugenio Cinquanta
  • Luca D’Alessio
  • Marzio De Corato
Chapter
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 4)

Abstract

About 10 years ago the synthesis of random carbon schwarzites by supersonic cluster beam deposition has endowed the rich sp2 carbon family with its three-dimensional member. Its reluctance to grow as a three-periodic minimal surface according to topological and physical predictions still prevents schwarzites from being a hot topic, although spongy carbon is already having countless applications. Understanding the links between topology and quantum structure, possibly with the help of large-scale quantum molecular dynamics simulations should trace the route to the synthesis of periodic schwarzites. In this perspective, after a brief account on the growth and characterization of spongy carbon, we review the elementary topology of schwarzites, their stability and growth conditions as derived from pure topological arguments, the electronic structure and the electron-phonon interaction of the smallest periodic schwarzites and what can be learnt by the topological monitoring of quantum molecular dynamics.

Keywords

Minimal Surface Graphene Sheet Cyclic Boundary Condition Negative Gauss Curvature Periodic Minimal Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

One of us (GB) gratefully acknowledges the Ikerbasque Foundation for support within the project ABSIDES. We acknowledge many stimulating discussions with Prof. Paolo Milani (University of Milano).

References

  1. Achida Y, Fowler PW, Mitchell D, Zerbetto F (1998) J Phys Chem A 102:6835CrossRefGoogle Scholar
  2. Agarwal S, Zhou X, Ye F, He Q, Chen GCK, Soo J, Boey F, Zhang H, Chen P (2010) Langmuir Lett 26:2244CrossRefGoogle Scholar
  3. Aoki H, Koshino M, Takeda D, Morise H, Kuroki K (2001) Phys Rev B 65, 035102Google Scholar
  4. Arčon D, Jagličič Z, Zorko A, Rode AV, Christy AG, Madsen NR, Gamaly EG, Luther-Davies B (2006) Phys Rev B 74:014438CrossRefGoogle Scholar
  5. Barabàsi A-L, Stanley HE (1995) Fractal concepts in surface growth. Cambridge University, CambridgeCrossRefGoogle Scholar
  6. Barborini E, Piseri P, Milani P (1999) J Phys D 32: L105CrossRefGoogle Scholar
  7. Barborini E, Piseri P, Milani P, Benedek G, Ducati C, Robertson J (2002a) Appl Phys Lett 81:3359; see also E. Gerstner, Nature materials update (2002), http://www.nature.com/materials/news/news/021107/portal/m021107-1.html CrossRefGoogle Scholar
  8. Barborini E, Siviero F, Vinati S, Lenardi C, Piseri P, Milani P (2002b) Rev Sci Instrum 73:2060CrossRefGoogle Scholar
  9. Benedek G, Bernasconi M (2004) Encyclopaedia of nanoscience and nanotechnology. Marcel Dekker, New York, NY, p 1235Google Scholar
  10. Benedek G, Bernasconi M, Donadio D, Colombo L (2001b) In: Benedek G, Milani P, Ralchenko VG (eds) Nanostructured carbon for advanced applications. Kluwer, Dordrecht, p 89Google Scholar
  11. Benedek G, Colombo L, Gaito S, Galvani E, Serra S (1997a) J Chem Phys 106:2311CrossRefGoogle Scholar
  12. Benedek G, Colombo L, Gaito S, Serra S (1997b) In: Paoletti A, Tucciarone A (eds) The physics of diamond. IOS, Amsterdam pp 575–598Google Scholar
  13. Benedek G, Colombo L, Spadoni S, Gaito S, Milani P (1998) In: Turchi PEA, Gonis A, Colombo L (eds) Tight-binding approach to computational materials science. MRS Symposium Proceedings vol 491. MRS, Warrendale, p 529Google Scholar
  14. Benedek G, Milani P, Ralchenko VG (eds) (2001a) Nanostructured carbon for advanced applications. Kluwer, Dordrecht.and papers thereinGoogle Scholar
  15. Benedek G, Onida G (1993) Phys Rev B 47:16471CrossRefGoogle Scholar
  16. Benedek G, Onida G, Righetti M, Sanguinetti S (1993) Nuovo Cim 15D:565; see also In: Bortignon PF, Broglia RA, Schrieffer JR (eds) (1994) Perspectives in many-particle physics. North-Holland, AmsterdamGoogle Scholar
  17. Benedek G, Vahedi-Tafreshi H, Barborini E, Piseri P, Milani P, Ducati C, Robertson J (2003) Diamond Rel Mater 12:768CrossRefGoogle Scholar
  18. Benedek G, Vahedi-Tafreshi H, Milani P, Podestà A (2005) In: Beck C et al (ed) Complexity, metastability and non-extensivity. World Scientific, Singapore, pp 146–155Google Scholar
  19. Blase X, Benedek G, Bernasconi M (2010) In: Colombo L, Fasolino AL (eds) Computer-based modeling of novel carbon systems and their properties, carbon materials: chemistry and physics 3, Fasolino. Springer, Berlin Heidelberg, chapter 6Google Scholar
  20. Bogana M, Colombo (2007) L Appl Phys A 86:275Google Scholar
  21. Bogana M, Donadio D, Benedek G. Colombo L (2001) Europhys Lett 54:72CrossRefGoogle Scholar
  22. Bongiorno G, Lenardi C, Ducati C, Agostino RG, Caruso T, Amati M, Blomqvist M, Barborini E, Piseri P, La Rosa S, Colavita E, Milani P, Nanosci J (2005) Nanotechnol 10:1Google Scholar
  23. Boscolo I, Milani P, Parisotto M, Benedek G, Tazzioli F (2000) J Appl Phys 87:4005CrossRefGoogle Scholar
  24. Buzio R, Gnecco E, Boragno C, Valbusa U, Piseri P, Barborini E, Milani P (2000) Surf. Sci. 444: L1Google Scholar
  25. Cadelano E, Palla PL,Giordano S, Colombo L (2009) Phys Rev Lett 102:235502CrossRefGoogle Scholar
  26. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109CrossRefGoogle Scholar
  27. Cocco G, Cadelano E, Colombo L (2010) Phys Rev B 81:241412 (R)CrossRefGoogle Scholar
  28. Colombo L (2005) Riv Nuovo Cimento 28:1Google Scholar
  29. Coté M, Grossman JC, Cohen ML, Louie SG (1998) Phys Rev B 58:664CrossRefGoogle Scholar
  30. D’Alessio (2007) Thesis, Univ. Milano-Bicocca (unpublished)Google Scholar
  31. Diederich L, Barborini E, Piseri P, Podestà A, Milani P, Scheuwli A, Gallay R (1999) Appl Phys Lett 75:2662CrossRefGoogle Scholar
  32. Diudea MV (2005) J Chem Inf Model 451002; see also Vizitiu AE, Diudea MV, chapter 3 of the present volumeGoogle Scholar
  33. Donadio D, Colombo L, Milani P, Benedek G (1999) Phys Rev Lett 84:776CrossRefGoogle Scholar
  34. Ferrari AC, Satyanarayana BS, Robertson J, Milne WI, Barborini E, Piseri P, Milani P (1999) Europhys Lett 46:245CrossRefGoogle Scholar
  35. Fowler PW, Manolopoulos DE, Orlandi G, Zerbetto F (1995) J Chem Soc Faraday Trans 91:1421CrossRefGoogle Scholar
  36. Gaito S, Colombo L, Benedek G (1998) Euro Phys Lett 44:525; erratum: 81:559 (2001)CrossRefGoogle Scholar
  37. Geim AK, Novoselov KS (2007) Nat Mater 6:183CrossRefGoogle Scholar
  38. Helfrich W (1973) Z Naturforsch 28:768Google Scholar
  39. Hilbert D, Cohn-Vossen S (1932) Anschauliche Geometrie. Springer, BerlinGoogle Scholar
  40. Hoffman D (1996) Nature 384:28CrossRefGoogle Scholar
  41. Horton GK, Maradudin AA (1975) Dynamical properties of solids – vol 2: crystalline solids. North Holland, Nort-Holland Amsterdam p33Google Scholar
  42. Hyde ST (1999) In: Sadoc JF, Rivier N (eds) Foams and emulsions. Kluwer, Dordrecht, p 437Google Scholar
  43. Iijima S (1991) Nature 324:56CrossRefGoogle Scholar
  44. Jin C, Lan H, Peng L, Suenaga K, Iijima S (2009) Phys Rev Lett 102:205501CrossRefGoogle Scholar
  45. Kajii H, Kawagishi Y, Take H, Yoshino K, Zakhidov AA, Baughman RH (2000) J Appl Phys 88:758CrossRefGoogle Scholar
  46. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162CrossRefGoogle Scholar
  47. Kudin KN, Scuseria GE, Yakobson BI (2001) Phys Rev B 64:235406CrossRefGoogle Scholar
  48. Kyotani T (2001) Carbon 38:269CrossRefGoogle Scholar
  49. Làszlò I, Rassat A, Fowler PW, Graovac A (2001) Chem Phys Lett 342:369CrossRefGoogle Scholar
  50. Lenardi C, Piseri P, Briois V, Li Bassi A, Bottani CE, Milani PJ(1999) J Appl Phys 85:7159CrossRefGoogle Scholar
  51. Lenosky T, Gonze X, Teter M, Elser V (1992) Nature 355:333CrossRefGoogle Scholar
  52. Li G, Luican A, Lopes des Santos JMB, Castro Neto AH, Reina A, Kong J, Andrei EY (2010) Nat Phys 6:109CrossRefGoogle Scholar
  53. Lu Q, Arroyo M, Huang R (2009) J Phys D Appl Phys 42:102002CrossRefGoogle Scholar
  54. Lu W, Chung DDL (1997) Carbon 35:427CrossRefGoogle Scholar
  55. Manolopoulos DE, Fowler PW (1992) J Chem Phys 96:7603CrossRefGoogle Scholar
  56. Manolopoulos DE, Fowler PW (1997) J Chem Soc Faraday Trans 93:3289CrossRefGoogle Scholar
  57. Manolopoulos DE, May JC, Down SE (1991) Chem Phys Lett 181:105CrossRefGoogle Scholar
  58. Meija J (2006) Analytic Bioanalytic Chem 386:4Google Scholar
  59. McKay AL, Terrones H (1991) Nature 352:762CrossRefGoogle Scholar
  60. Milani P, Barborini E, Piseri P, Bottani CE, Li Bassi A (1999) Eur Phys J D 9:63CrossRefGoogle Scholar
  61. Milani P, Ferretti M, Piseri P, Bottani CE, Ferrari A, Li Bassi A, Guizzetti G, Patrini MJ (1997) Appl Phys 82:5793CrossRefGoogle Scholar
  62. Milani PE, Iannotta S (1999) Cluster beam synthesis of nanostructured materials. Springer, BerlinCrossRefGoogle Scholar
  63. Niu C, Sichel EK, Hoch R, Moy D, Tennent H (1997) Appl Phys Lett 70:1480CrossRefGoogle Scholar
  64. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 30:666CrossRefGoogle Scholar
  65. Novoselov AK, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov A (2005a) Nature 438:197CrossRefGoogle Scholar
  66. Novoselov KS, Jiang D, Booth T, Khotkevich VV, Morozov SM, Geim AK (2005b) Proc Natl Acad Sci USA 102:10451CrossRefGoogle Scholar
  67. Oguey C (1999) In: Sadoc JF, Rivier N (eds) Foams and emulsions. Kluwer, Dordrecht, p 417Google Scholar
  68. O’Keeffe M, Adams GB, Sankey OF (1992) Phys Rev Lett 68:2325CrossRefGoogle Scholar
  69. Osserman R (1986) A survey of minimal surfaces. Dover, New York, NYGoogle Scholar
  70. Piseri P, Podestà A, Berborini E, Milani P (2001) Rev Sci Instrum 72:2261CrossRefGoogle Scholar
  71. Rao AM, Dresselhaus MS (2001) In: Benedek G, Milani P, Ralchenko VG (eds) Nanostructured carbon for advanced applications, NATO science series II, vol 24. Kluwer, Dordrecht, p 3Google Scholar
  72. Ravagnan L, Manini N, Cinquanta E, Onida G, Sangalli D, Motta C,Devetta M, Bordoni A, Piseri P, Milani P (2009) Phys Rev Lett 102:245502CrossRefGoogle Scholar
  73. Ravagnan L, Piseri P, Bruzzi M, Miglio S, Bongiorno G, Baserga A, Casari CS, Li Bassi A, Lenardi C, Yamaguchi Y, Wakabayashi T, Bottani CE, Milani P (2007) Phys Rev Lett 98:216103CrossRefGoogle Scholar
  74. Ravagnan L, Siviero F, Lenardi C, Piseri P, Barborini E, Milani P, Casari CS, Li Bassi A, Bottani CE (2002) Phys Rev Lett 89:285506CrossRefGoogle Scholar
  75. Rode AV, Gamaly EG, Christy AG, Fitz Gerald JG, Hyde ST, Elliman RG, Luther-Davies B, Veinger AI, Androulakis J, Giapintzakis J (2004) Phys Rev B 70:054407; highlighted by R. F. Service, Science 304:42CrossRefGoogle Scholar
  76. Rosato V, Celino M, Benedek G, Gaito S (1999) Phys Rev B 60:16928CrossRefGoogle Scholar
  77. RosatoV, Celino M, Gaito S, Benedek G (2001) Comp Mater Sci 20:387CrossRefGoogle Scholar
  78. Rotter LD, Schlesinger Z, McCauley JP, Coustel N, Fisher JE, Smith AB (1992) Nature 355:532CrossRefGoogle Scholar
  79. Ryoo P, Joo SH, Kruk M, Jaroniek M (2001) Adv Mater 13:677CrossRefGoogle Scholar
  80. Sadoc JF (1997) In: Sadoc JF, Rivier N (eds) Foams and emulsions. Kluwer, Dordrecht, p 511Google Scholar
  81. Schwarz KHA (1890) Gesammelte mathematische abhandlungen. Springer, BerlinCrossRefGoogle Scholar
  82. Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff RS, Shi L (2010) Science 328:231CrossRefGoogle Scholar
  83. Spadoni S, Colombo L, Milani P, Benedek G (1997) Eur phys Lett 39:269CrossRefGoogle Scholar
  84. Spagnolatti I, Bernasconi M, Benedek G (2003) Eur Phys J B 32:181CrossRefGoogle Scholar
  85. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano lett 8:3498CrossRefGoogle Scholar
  86. Sullivan JM (1999) In: Sadoc JF, Rivier N (eds) Foams and emulsions. Kluwer, Dordrecht p 379Google Scholar
  87. Terrones H, McKay AL (1993) In: Kroto HW, Fisher JE, Cox JE (eds) The fullerenes. Pergamon Press, Oxford, p 113Google Scholar
  88. Townsend SJ, Lenosky T, Muller DA, Nichols CS, Elser V (1992) Phys Rev Lett 69:921CrossRefGoogle Scholar
  89. Vanderbilt D, Tersoff J (1992) Phys Rev Lett 68:511CrossRefGoogle Scholar
  90. Wang H, Setlur AA, Lauerhaas JM, Dai JW, Seelig EW, Chang RPH (1998) Appl Phys Lett 72:2912CrossRefGoogle Scholar
  91. White CT et al (1993) In: Billups WE, Ciufolini MA (eds) Buckminsterfullerenes. VCH, New York, NY, p 125Google Scholar
  92. Yamaguchi Y, Colombo L, Piseri P, Ravagnan L, Milani P (2007) Phys Rev B 76:134119CrossRefGoogle Scholar
  93. Yoshida M, Fowler PW, (1992) J Chem Phys 96:7603CrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  • Giorgio Benedek
    • 1
    • 2
  • Marco Bernasconi
    • 2
  • Eugenio Cinquanta
    • 2
  • Luca D’Alessio
    • 2
    • 3
  • Marzio De Corato
    • 2
  1. 1.Donostia International Physics Centre (DIPC)Donostia-San SebastiánSpain
  2. 2.Dipartimento di Scienza dei MaterialiUniversitá di Milano-BicoccaMilanoItaly
  3. 3.Department of PhysicsBoston UniversityBostonUSA

Personalised recommendations