Advertisement

Abstract

Americium, element 95, was discovered in 1944–45 by Seaborg et al. (1950) at the Metallurgical Laboratory of the University of Chicago as a product of the irradiation of plutonium with neutrons:
$${239}{\text{Pu}}\left( {{\text{n}},\gamma} \right)^{{240}} {\text{Pu}}\left( {{\text{n}},\gamma } \right)^{{241}} {\text{Pu }}\xrightarrow{{ - {\beta }^ - }}^{{241}}{\text{Am}}$$
This reaction is still the best method for the production of pure 241Am. In post-World War II work at the University of Chicago, Cunningham isolated Am(OH)3 and measured the first absorption spectrum of the Am3+ aquo ion (Cunningham, 1948). By the 1950s, the major center for americium chemistry research in the world was at Los Alamos. Since the 1970s, the majority of publications on americium have come from researchers in the former USSR and West Germany. Extensive reviews of americium chemistry can be found in Freeman and Keller (1985), Gmelin (1979), Penneman and Asprey (1955), and Schulz (1976).

Keywords

Purex Process Trivalent Actinide Aqueous Solution Chemistry Principal Isotope Talspeak Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Abe, M. and Tsujii, M. (1983) Chem. Lett., 1561.Google Scholar
  2. Abe, M., Chitrakar, R., Tsujii, M., and Fukumoto, K. (1985) Solvent Extr. Ion Exch., 3, 149.Google Scholar
  3. Adair, H. L. (1970) J. Inorg. Nucl. Chem., 32, 1170.Google Scholar
  4. Agnew, S. F., Boyer, J., Corbin, R. A., Duran, T. B., Fitzpatrick, J. R., Jurgensen, K. A., Ortiz, T. P., and Young, B. L. (1997) Hanford Tank Chemical and Radionuclide Inventories: HDW Model Rev. 4, Los Alamos National Laboratory.Google Scholar
  5. Akatsu, J. and Kimura, T. (1990) J. Radioanal. Nucl. Chem., 140, 195.Google Scholar
  6. Akella, J., Johnson, Q., and Schock, R. N. (1980) J. Geophys. Res., 85, 7056–8.Google Scholar
  7. Akimoto, Y. (1967) J. Inorg. Nucl. Chem., 29, 2650–2.Google Scholar
  8. Al Rifai, S. (1970) Complex Formation between Trivalent Transuranium Elements and Ligand which Contain the Pyridinie or Quinoline Ring. German Report IRCH-10/70-2.Google Scholar
  9. Aldred, A. T., Dunlap, B. D., Lam, D. J., and Shenoy, G. K. Transplutonium 1975, Proc. 4th Int. Symp., Baden-Baden, Germany 1975; Ed. by W. Muller and R. Lindner, North-Holland, Amsterdam; p. 191–5.Google Scholar
  10. Ali, S. (1968) Chelatbildung der Dreiwertigen Transplutoniumelemente mit Nitrilotriessig- saeure und Ihren Derivaten.Google Scholar
  11. Allen, P. G., Bucher, J. J., Shuh, D. K., Edelstein, N. M., and Craig, I. (2000) Inorg. Chem., 39, 505–601.Google Scholar
  12. Anan'ev, A. V. and Krot, N. N. (1985) Sov. Radiochem. (Engl. Transl.), 26(6), 716–9.Google Scholar
  13. Anan'ev, A. V. and Shilov, V. P. (1985) Sov. Radiochem. (Engl. Transl.), 26(6), 768–70.Google Scholar
  14. ANS (1993) Int. Conf. and Tech. Exposition on Future Nuclear Systems: Emerging Fuel Cycles and Waste Disposal Options, Global'93. Seattle, WA. 1993; Amer. Nucl. Soc., La Grange Park, IL. ISBN 0894481827.Google Scholar
  15. Asprey, L. B., Stephanou, S. E., and Penneman, R. A. (1950) J. Am. Chem. Soc., 72, 1425–6.Google Scholar
  16. Asprey, L. B., Stephanou, S. E., and Penneman, R. A. (1951) J. Am. Chem. Soc., 73, 5715–7.Google Scholar
  17. Asprey, L. B. (1954) J. Am. Chem. Soc., 76, 2019–20.Google Scholar
  18. Asprey, L. B., Ellinger, F. H., and Zachariasen, W. H. (1954a) J. Am. Chem. Soc., 76, 5235–7.Google Scholar
  19. Asprey, L. B., Stephanou, S. E., and Penneman, R. A.: patent number 2681 923. US, (1954).Google Scholar
  20. Asprey, L. B. and Keenan, T. K. (1958) J. Inorg. Nucl. Chem., 7, 27–31.Google Scholar
  21. Asprey, L. B. and Penneman, R. A. (1961) J. Am. Chem. Soc., 83, 2200.Google Scholar
  22. Asprey, L. B. and Penneman, R. A. (1962) Inorg. Chem., 1, 134–6.Google Scholar
  23. Asprey, L. B., Keenan, T. K., and Kruse, F. H. (1964) Inorg. Chem., 3, 1137–40.Google Scholar
  24. Asprey, L. B., Keenan, T. K., and Kruse, F. H. (1965) Inorg. Chem., 4, 985–6.Google Scholar
  25. Aziz, A. and Lyle, S. J. (1971) J. Inorg. Nucl. Chem., 33, 3407.Google Scholar
  26. Backer, W. and Keller, C. (1973) J. Inorg. Nucl. Chem., 35, 2945.Google Scholar
  27. Bagnall, K. W., Laidler, J. B., and Stewart, M. A. A. (1967) Chem. Commun., 1, 24–5.Google Scholar
  28. Bagnall, K. W., Laidler, J. B., and Stewart, M. A. A. (1968) J. Chem. Soc. A, 133–6.Google Scholar
  29. Bagnall, K. W. (1972) The Actinide Elements, Elsevier, New York.Google Scholar
  30. Baisden, P. A., Choppin, G. R., and Kinard, W. K. (1972) J. Inorg. Nucl. Chem., 34, 2029.Google Scholar
  31. Barbanel, Y. A., Chudnovskaya, G. P., Dushin, R. B., Kolin, V. V., Kotlin, V. P., Nekhoroshkov, S. N., and Pen'kin, M. V. (1997) Radiochim. Acta, 78, 69–72.Google Scholar
  32. Barbanel, Y. A., Chudnovskaya, G. P., Dushin, R. B., Kolin, V. V., Kotlin, V. P., Nekhoroshkov, S. N., and Penkin, M. V. (1998) J. Alloys Compd., 277, 295–300.Google Scholar
  33. Barbanel, Y. A., Dushin, R. B., Kolin, V. V., Kotlin, V. P., and Nekhoroshkov, S. N. (2001) Radiochemistry, 43, 118–23.Google Scholar
  34. Barney, G. S. and Cowan, R. G. (1992) Separation of actinide ions from radioactive waste solutions using extraction chromatography, American Chemical Society Nation- al Meeting, San Francisco, CA, USA, April 5–10, p. 77.Google Scholar
  35. Barthelemy, P. and Choppin, G. R. (1989) Inorg. Chem., 28, 3354–7.Google Scholar
  36. Basile, L. J., Sullivan, J. C., Ferrarro, J. R., and La Bonville, P. (1974) Appl. Spectrosc., 28, 142–5.Google Scholar
  37. Basile, L. J., Ferrarro, J. R., Mitchell, M. L., and Sullivan, J. C. (1978) Appl. Spectrosc., 32, 535–7.Google Scholar
  38. Baudin, G., Lefevre, J., Prunier, C., and Salvatore, M. (1993) IAEA Report TECDOC- 783, p. 37.Google Scholar
  39. Baumgärtner, F., Fischer, E. O., and Kanellakopulos, B. (1966a) Angew. Chem. Int. Edn., 5(1), 134–5.Google Scholar
  40. Baumgärtner, F., Fisher, E. O., Kanellakopulos, B., and Laubereau, P. G. (1966b) Angew. Chem. Int. Edn., 78, 112–3.Google Scholar
  41. Baumgärtner, F., Fisher, E. O., Kanellakopulos, B., and Laubereau, P. G. (1977) J. Inorg. Nucl. Chem., 39, 87–9.Google Scholar
  42. Bayat, I. (1970) Über Komplexe dreiwertiger Transurane mit Aminopolykarbonsäuren, German Report, KFK-1291Google Scholar
  43. Bayat, I. and Moattar, F. (1982) Radiochem. Radioanal. Lett., 51(3), 171–9.Google Scholar
  44. Baybarz, R. D. (1960) Preparation of Americium Dioxide by Thermal Decomposition of Americium Oxalate in Air, Oak Ridge National Laboratory.Google Scholar
  45. Baybarz, R. D. (1965) J. Inorg. Nucl. Chem., 27, 1831.Google Scholar
  46. Baybarz, R. D. (1966) J. Inorg. Nucl. Chem., 28, 1055.Google Scholar
  47. Baybarz, R. D. (1970) At. Energy Rev., 8, 327–60.Google Scholar
  48. Baybarz, R. D. and Asprey, L. B. (1972) J. Inorg. Nucl. Chem., 34, 3427–31.Google Scholar
  49. Baybarz, R. D. (1973a) J. Inorg. Nucl. Chem., 35, 4149–58.Google Scholar
  50. Baybarz, R. D. (1973b) J. Inorg. Nucl. Chem., 35, 483–7.Google Scholar
  51. Bean, A.C., Scott, B.L., Albrecht- Schmitt, T., and Runde,W.(2003) Plutonium Futures – the Science, Third Topical Conference on Plutonium and Actinides, pp. 233–5.Google Scholar
  52. Bearden, J. A. (1967) Rev. Mod. Phys., 39, 78.Google Scholar
  53. Bearden, J. A. and Burr, A. F. (1967) Rev. Mod. Phys., 39, 125–42.Google Scholar
  54. Beitz, J. V., Jursich, G., and Sullivan, J. C. (1989) Fluorescence studies of Am3+ in aqueous solution, in Rare Earth 1988 (eds. L. R. M. H. B. Silber and L. E. Delony), Elsevier Sequoia, Amsterdam.Google Scholar
  55. Beitz, J. V. (1994) J. Alloys Compd., 207/208, 41–50.Google Scholar
  56. Bell, J. T. (1969) J. Inorg. Nucl. Chem., 31, 703–10.Google Scholar
  57. Benedict, U., Bujis, K., Dufour, S., and Toussaint, J. C. (1975) J. Less Common Metals, 42, 345–54.Google Scholar
  58. Benedict, U. and Dufour, C. (1980) Physica, 102B, 303–7.Google Scholar
  59. Benedict, U., Itïe, J. P., Dufour, C., Dubos, S., and Spirlet, J. C. (1985) in Americium and Curium Chemistry and Technology (eds. N. Edelstein, J. Navratil, and W. Schulz), D. Reidel, The Netherlands.Google Scholar
  60. Benedict, U., Itïe, J. P., Dufour, C., Dubos, S., and Spirlet, J. C. (1986) Physica, B&C, 139, 284.Google Scholar
  61. Berger, P., Blanc, P., and Bourges, J. (1988) Radiochim. Acta, 43, 217–22.Google Scholar
  62. Berndt, U., Tanamas, R., Maier, D., and Keller, C. (1974) Inorg. Nucl. Chem. Lett., 10, 315–21.Google Scholar
  63. Bernkopf, M. F. and Kim, J. I. (1984) Hydrolydsereaktionen und Karbonatkomplexierung von dreiwertigem Americium in natürlichen aquatischen Systemen, Technische Universität München.Google Scholar
  64. Berry, J. W., Knoghton, J. B., and Nannie, C. A. (1982) Vacuum Distillation of Americium Metal, US Department of Energy.Google Scholar
  65. Bertha, E. I. and Choppin, G. R. (1978) J. Inorg. Nucl. Chem., 40, 655–8.Google Scholar
  66. Bhanushali, R. D., Pius, I. C., Muherjee, S. K., and Vaidya, V. N. (1999) J. Radioanal. Nucl. Chem., 240, 977–9.Google Scholar
  67. Bierman, S. R. and Clayton, E. D. (1969) Trans. Am. Nucl. Soc., 12, 887–8.Google Scholar
  68. Bigelow, J. E., Collins, E. d., and King, L. J. (1980) The Cleanex Process: A Versatile Solvent-Extraction Process for Recovery and Purification of Lanthanides, Americium, and Curium, Amer. Chem. Soc. pp. 147–55.Google Scholar
  69. Blokhin, N. B., Ermakov, V. A., and Rykov, A. G. (1973) Radiokhimiya, 16, 189–92.Google Scholar
  70. Blokhin, N. B., Ermakov, V. A., and Rykov, A. G. (1974) Radiokhimiya, 16, 551–3.Google Scholar
  71. Bode, D. D., Wild, J. F., and Hulet, E. K. (1976) J. Inorg. Nucl. Chem., 38, 1291–7.Google Scholar
  72. Boldt, A. L. and Ritter, G. L. (1969) Recovery of Am, Cm, and Pm from Shipping Port Reactor Fuel Reprocessing Wastes by Successive TBP and D2EHPA Extractions, Atlantic Richfield Hanford Company.Google Scholar
  73. Bond, E. M., Engelhardt, U., Deere, T. P., Rapko, B. M., Paine, R. T., and FitzPatrick, J. R. (1997) Solvent Extr. Ion Exch., 15, 381.Google Scholar
  74. Bond, E. M., Engelhardt, U., Deere, T. P., Rapko, B. M., Paine, R. T., and Fitz Patrick, J. R. (1998) Solvent Extr. Ion Exch., 16, 967.Google Scholar
  75. Borisov, M. S., Elesin, A. A., Lebedev, I. A., Piskunov, E. M., Filimonof, V. T., and Yakovlev, G. N. (1967) Radiokhimiya, 9, 166.Google Scholar
  76. Bouhlassa, S. (1983) Chem. Abstr., 98, 82730.Google Scholar
  77. Bouhlassa, S. and Guillaumont, R. (1984) J. Less Common Metals, 99(1), 157–71.Google Scholar
  78. Bouissières, G. and Legoux, Y. (1965) Bull. Soc. Chim. Fr., 2, 386.Google Scholar
  79. Bourges, J. Y., Guillaume, B., Koehly, G., Hobart, D. E., and Peterson, J. R. (1983) Inorg. Chem., 22, 1179–84.Google Scholar
  80. Boyd, T. E., Cusick, M. J., and Navratil, J. D. (1986) Recent Developments in Separation Science, CRC Press, Boca Raton, FL.Google Scholar
  81. Boyd, T. E. and Kochen, R. L. (1993) Ferrite Treatment of Actinide Waste Solutions: Continuous Processing of Rocky Flats Process Waste, Rockwell International, Golden, CO.Google Scholar
  82. Brachet, G. and Vasseur, C. (1969) Reduction of Americium Oxide by Beryllium for Neutron-Source Production, CEA, France.Google Scholar
  83. Brandau, E. (1971) Inorg. Nucl. Chem. Lett., 7, 1177.Google Scholar
  84. Bratsch, S. G. and Lagowski, J. J. (1986) J. Phys. Chem., 90, 307–12.Google Scholar
  85. Brown, D., Fletcher, S., and Holah, D. G. (1968) J. Chem. Soc. A, 1889–94.Google Scholar
  86. Brundage, R. T. (1994) J. Alloys Compd., 213, 199–206.Google Scholar
  87. Buckau, G., Kim, J. I., klenze, R., Rhee, D. S., and Wimmer, H. (1992) Radiochim. Acta, 57(2–3), 105–11.Google Scholar
  88. Buijs, K., Muller, W., Reul, J., and Toussaint, J. C. (1973) Separation and Purification of Americium on the Multigram Scale, Euratom.Google Scholar
  89. Burch, W. D. (1964) Transuranium Quarterly Progress Report for Period Ending February 29, 1963, Oak Ridge National Laboratory.Google Scholar
  90. Burnett, J. L. (1965) Trans. Am. Nucl. Soc., 8, 335.Google Scholar
  91. Burnett, J. L. (1966) J. Inorg. Nucl. Chem., 28, 2454–6.Google Scholar
  92. Burney, G. A. and Porter, J. A. (1967) Inorg. Nucl. Chem. Lett., 3, 79–85.Google Scholar
  93. Burney, G. A. (1968) Nucl. Appl., 4, 217–21.Google Scholar
  94. Burns, J. H. and Danford, M. D. (1969) Inorg. Chem., 8, 1780–4.Google Scholar
  95. Burns, J. H. and Peterson, J. R. (1970) Acta Crystallogr. B, 26, 1885–7.Google Scholar
  96. Burns, J. H. and Peterson, J. R. (1971) Inorg. Chem., 10, 147–51.Google Scholar
  97. Burns, J. H. and Baybarz, R. D. (1972) Inorg. Chem., 11, 2233–7.Google Scholar
  98. Burns, J. H. and Baldwin, W. H. (1976) Inorg. Chem., 16(2), 289–94.Google Scholar
  99. Burns, J. H. and Baldwin, W. H. (1977) Inorg. Chem., 16, 289–94.Google Scholar
  100. Burns, J. H., Damien, D., and Haire, R. G. (1979) Acta Crystallogr. B, 35, 143–4.Google Scholar
  101. Bursten, B. E., Rhodes, L. F., and Strittmatter, R. J. (1989) J. Less Common Metals, 149, 207–11.Google Scholar
  102. Caceci, M. and Choppin, G. (1983) Radiochim. Acta, 33(2/3), 101–4.Google Scholar
  103. Campbell, D. O. (1970) Ind. Eng. Chem. Process Des. Dev., 9, 95–9.Google Scholar
  104. Carlson, T. A., Nestor, C. W. J., Wasserman, N., and McDowell, J. D. (1970) Comprehensive Calculations of Ionization Potentials and Binding Energies for Multiply-Charged Ions, Oak Ridge National Laboratory.Google Scholar
  105. Carnall, W. T. and Wybourne, B. G. (1964) J. Chem. Phys., 40, 3428–33.Google Scholar
  106. Carnall, W. T., Fields, P. R., and Wybourne, B. G. (1964) J. Chem. Phys., 41, 2195–6.Google Scholar
  107. Carnall, W. T. and Fields, P. R. (1967) in Lanthanide/Actinide Chemistry (ed. R. F. Gould), American Chemical Society, Washington, DC, pp. 86–101.Google Scholar
  108. Carnall, W. T. (1979a) Emission Spectra, in Gmelins Handbuch der Anorganischen Chemie, Transurane, Teil A2, vol. 8, (ed. G. Koch), Verlag Chemie, Weinheim, Germany, p. 42.Google Scholar
  109. Carnall, W. T. (1979b) X-ray spectra, in Gmelins Handbuch der Anorganischen Chemie, Transurane, Teil A2, vol. 8, (ed. G. Koch), Verlag Chemie, Weinheim, p. 80.Google Scholar
  110. Carnall, W. T. (1989) J. Less Common Metals, 156, 221–35.Google Scholar
  111. Carniglia, S. C. and Cunningham, B. B. (1955) J. Am. Chem. Soc., 77, 1451–3.Google Scholar
  112. Casarci, M., Chiarizia, R., Gasparini, G. M., Puzzuoli, G., and Valeriani, G. (1988) in Proc. of ISEC '88, Moscow, USSR.Google Scholar
  113. Casarci, M., Gasparini, G. M., and Grossi, G. (1989) in Proc. of Actinides — 89, Tashkent, Russia.Google Scholar
  114. Cavellec, R., Hubert, S., and Simoni, E. (1997) J. Solid State Chem., 129, 189–95.Google Scholar
  115. Chamberlain, D. B., Conner, C., Hutter, J. C., Leonard, R. A., Wygmans, D. G., and Vandegrift, G. F. (1997) Sep. Sci. Technol., 32, 303.Google Scholar
  116. Charbonnel, M. C. and Musikas, C. (1988) Solvent Extr. Ion Exch., 6, 461.Google Scholar
  117. Chartier, D., Donnet, L., and Adnet, J. M. (1999) Radiochim. Acta, 85, 25–31.Google Scholar
  118. Charvillat, J. P., Benedict, U., Damien, D., de Novion, C., Wojakowski, A., and Muller, W. (1975a) in Transplutonium 1975, Proc. 4th Int. Symp., pp. 79–93.Google Scholar
  119. Charvillat, J. P., Benedict, U., Damien, D., and Muller, W. (1975b) Radiochem. Radioanal. Lett. 20, 371–381.Google Scholar
  120. Charvillat, J. P. and Damien, D. (1973) Inorg. Nucl. Chem. Lett., 9, 559–63.Google Scholar
  121. Charvillat, J. P. and Zachariasen, W. H. (1977) Inorg. Nucl. Chem. Lett., 13, 161–3.Google Scholar
  122. Charvillat, J. P., Benedict, U., Damien, D., de Novion, C., Wojakowski, A., and Muller, W. (1977) Rev. Chim. Minér., 14, 178–88.Google Scholar
  123. Chen, J., Jiao, R., and Zhu, Y. (1996) Solvent Extr. Ion Exch., 14, 555.Google Scholar
  124. Chiarizia, R. and Horwitz, E. P. (1986) Solvent Extr. Ion Exch., 4, 677.Google Scholar
  125. Chiarizia, R. and Horwitz, E. P. (1990) Solvent Extr. Ion Exch., 8, 907.Google Scholar
  126. Chiarizia, R., Horwitz, E. P., Alexandratos, S. D., and Gula, M. J. (1997) Separation Science and Technology, 32(1–4), 1–35.Google Scholar
  127. Chikalla, T. D. and Eyring, L. (1967) J. Inorg. Nucl. Chem., 29, 2281–93.Google Scholar
  128. Chikalla, T. D. and Eyring, L. (1968) J. Inorg. Nucl. Chem., 30, 133–45.Google Scholar
  129. Chikalla, T. D., McNeilly, C. E., Bates, J. L., and Rasmussen, J. J. (1973) in Proc. Int. Colloq. on High Temp. Phase Transform., CNRS Publ. No. 205, pp. 351–60.Google Scholar
  130. Chistyakov, V. M., Ermakov, V. A., and Rykov, A. G. (1974) Radiokhimiya, 16, 553–5.Google Scholar
  131. Chitnis, R. R., Wattal, P. K., Ramanujam, A., Dhami, P. S., Gopalakrishnan, V., Mathur, J. N., and Murali, M. S. (1998) Sep. Sci. Technol., 33, 1877.Google Scholar
  132. Chitnis, R. R., Wattal, P. K., Ramanujam, A., Dhami, P. S., Gopalalkrishnan, V., Bauri, A. K., and Bannerji, A. (1999) J. Radioanal. Nucl. Chem., 240, 721.Google Scholar
  133. Chmutova, M. K., Kochetkova, N. E., Koiro, O. E., Myasoedov, B. F., Medved, T. Y., Nesterova, N. P., and Kabachnik, M. I. (1983) J. Radioanal. Chem., 80, 63.Google Scholar
  134. Chmutova, M. K., Kochetkova, N. E., and Myasoedov, B. G. (1989) J. Inorg. Nucl. Chem., 42, 897.Google Scholar
  135. Choppin, G. R. (1965) Inorg. Chem., 4, 1250–4.Google Scholar
  136. Choppin, G. R. (1970) J. Inorg. Nucl. Chem., 32, 3283–8.Google Scholar
  137. Choppin, G. R. and Degischer, G. (1972) J. Inorg. Nucl. Chem., 34, 3473–7.Google Scholar
  138. Choppin, G. R. and Unrein, P. J. (1975) in Transplutonium 1975, Proc. 4th Int. Symp., Baden-Baden, Germany, Ed. by W. Muller and R. Lindner, North-Holland, Amsterdam, Netherlands, p. 97–107.Google Scholar
  139. Choppin, G. R. and Nash, K. L. (1977) Rev. Chim. Minér., 14, 230–6.Google Scholar
  140. Choppin, G. R. and Chen, J. F. (1996) Radiochim. Acta, 74, 105–10.Google Scholar
  141. Choppin, G. R. and Labonne-Wall, N. (1997) J. Radioanal. Nucl. Chem., 221(1–2), 67–71.Google Scholar
  142. Choppin, G. R. and Peterman, D. R. (1998) Coord. Chem. Rev., 174, 283–99.Google Scholar
  143. Chudinov, E. G. and Choporov, D. Y. (1970) At. Energy (USSR), 28, 62–4.Google Scholar
  144. Chuveleva, E. A., Peshkov, A. S., Kharitonov, O. V., and Firosova, L. A. (1999) Radiochemistry (Eng. Transl.), 41, 442–4, 445–7, and 465–7.Google Scholar
  145. Cilindro, L. G., Stadlbauer, E., and Keller, C. (1972) J. Inorg. Nucl. Chem., 34, 2577.Google Scholar
  146. Cilindro, L. G. and Keller, C. (1974) Radiochim. Acta, 21, 29–32.Google Scholar
  147. Clark, D. L., Conradson, S. D., Ekberg, S. A., Hess, N. J., Neu, M. P., Palmer, P. D., Runde, W., and Tait, C. D. (1996) J. Am. Chem. Soc., 118, 2089–90.Google Scholar
  148. Cohen, D. (1972) Inorg. Nucl. Chem., 8, 533–5.Google Scholar
  149. Cohen, K. P. (2000) Nucl. News, 43 (Nov), 45–6.Google Scholar
  150. Coleman, J. S., Armstrong, D. E., Asprey, L. B., Keenan, T. K., La Mar, L. E., and Penneman, R. A. (1955) Purification of Gram Amounts of Americium, Los Alamos Scientific Laboratory.Google Scholar
  151. Coleman, J. S., Armstrong, D. E., Asprey, L. B., Keenan, T. K., La Mar, L. E., and Penneman, R. A. (1957) J. Inorg. Nucl. Chem., 3, 327–8.Google Scholar
  152. Coleman, J. S. (1963) Inorg. Chem., 2, 53–7.Google Scholar
  153. Coleman, J. S., Keenan, T. K., Jones, L. H., Carnall, W. T., and Penneman, R. A. (1963) Inorg. Chem., 2, 58–61.Google Scholar
  154. Conner, W. V. (1971) J. Less Common Metals, 25, 379–84.Google Scholar
  155. Connor, W. V. (1982) Nucl. Instrum. Methods, 200, 55–66.Google Scholar
  156. Conway, J. G. (1963) University of California, Lawrence Laboratory.Google Scholar
  157. Conway, J. G. (1964) J. Chem. Phys., 40, 2504–7.Google Scholar
  158. Crandall, J. L. (1971) Applications of Transplutonium Elements, Savannah River Laboratory.Google Scholar
  159. Cuillerdier, C., Musikas, C., and Hoel, P. (1991a) in New Separations Technology for Radioactive Waste and Other Specific Applications (eds. L. Cecille, M. Cesarci, and L. Pietrelli), Elsevier Applied Science, p. 41.Google Scholar
  160. Cuillerdier, C., Musikas, C., Hoel, P., Nigond, L., and Vitart, X. (1991b) Sep. Sci. Technol., 26, 1229.Google Scholar
  161. Cuillerdier, C., Musikas, C., and Nigond, L. (1993) Sep. Sci. Technol., 28, 155.Google Scholar
  162. Cunningham, B. B. (1948) Isolation and Chemistry of Americium, Argonne National Laboratory.Google Scholar
  163. Cunningham, B. B. (1949) in The Transuranium Elements (eds. G. T. Seaborg and J. J. Katz), Natl. Nucl. En. Ser., Div. IV, 14B, McGraw-Hill, New York, pp. 1363–70.Google Scholar
  164. Damien, D. and Pages, M. (1969) in Rapport Semestriel du Department de Chimie No. 6, Juin 1968–Novembre1968, CEA, p. 407.Google Scholar
  165. Damien, D. and Pages, M. (1970) in Rapport Semestriel du Department de Chimie No. 8, Juin 1969–Novembre1969, CEA, p. 472.Google Scholar
  166. Damien, D. (1971) Inorg. Nucl Chem. Lett., 7, 291–7.Google Scholar
  167. Damien, D. and Jove, J. (1971) Inorg. Nucl. Chem. Lett., 7, 685–8.Google Scholar
  168. Damien, D. (1972) Inorg. Nucl Chem. Lett., 8, 501.Google Scholar
  169. Damien, D. and Charvillat, J. P. (1972) Inorg. Nucl. Chem. Lett., 8, 705–8.Google Scholar
  170. Damien, D., Jove, J., and Marcon, J. P. (1972) Inorg. Nucl. Chem. Lett., 8, 317–20.Google Scholar
  171. Damien, D., Marcon, J. P., and Jove, J. (1975) Radiochem. Radioanal. Lett., 23, 145–54.Google Scholar
  172. Damien, D., Marcon, J. P., and Jove, J. (1976) Bull. D'Inform. Sci. Tech. (fr.), 217, 67–76.Google Scholar
  173. Danford, M. D., Burns, J. H., Higgins, C. E., Stokeley, J. R. J., and Baldwin, W. H. (1970) Inorg. Chem., 9, 1953–5.Google Scholar
  174. David, F. and Bouisissiéres, G. (1968) Inorg. Nucl. Chem. Lett., 4, 153–9.Google Scholar
  175. David, F., Samhoun, K., Guillaumont, R., and Edelstein, N. (1978) J. Inorg. Nucl. Chem., 40, 69–74.Google Scholar
  176. David, F. (1986) J. Less Common Metals, 121, 27.Google Scholar
  177. Davydov, A. V., Myasoedov, B. F., and Travnikov, S. S. (1975) Dokl. Akad. Nauk SSSR, 225, 1075–8.Google Scholar
  178. Dedov, V. B., Lebedev, I. A., Ryzhov, M. N., Trakhlyaev, P. S., and Yakovlev, G. N. (1961) Radiokhimiya, 3, 701.Google Scholar
  179. Deissenberger, R., Kohler, S., Ames, F., Eberhardt, K., Erdmann, N., Funk, H., Herrmann, G., Kluge, H., Nunnemann, M., Passler, G., Riegel, J., Scheerer, F., Trautmann, N., and Urban, F. J. (1995) Angew. Chem. Int. Edn., 34, 814–5.Google Scholar
  180. Delle Site, A. and Baybarz, R. D. (1969) J. Inorg. Nucl. Chem., 31, 2201.Google Scholar
  181. Den Auwer, C., Charbonnel, M. C., Drew, M. G. B., Grigoriev, M., Hudson, M. J., Iveson, P. B., Madic, C., Nierlich, M., Presson, M. T., Revel, R., Russell, M. L., and Thuery, P. (2000) Inorg. Chem., 39, 1487–95.Google Scholar
  182. Deshingkar, D. S., Chitnis, R. R., Theyyunni, T. K., Wattal, P. K., Ramanujam, A., Dhami, P. S., Gopalakrishnan, V., Rao, M. K., Mathur, J. N., Murali, M. S., Iyer, R. H., Badheka, L. P., and Bannerji, A. (1993) Report BARC.Google Scholar
  183. Deshingkar, D. S., Chitnis, R. R., Wattal, P. K., Theyyunni, T. K., Nair, M. K. T., Ramanujam, A., Dhami, P. S., Gopalakrishnan, V., Rao, M. K., Mathur, J. N., Murali, M. S., Iyer, R. H., Badheka, L. P., and Bannerji, A. (1994) Report BARC.Google Scholar
  184. Drobyshevskii, I. V., Prusakov, V. N., Serik, V. F., and Sokolov, V. B. (1980) Radiokhimiya, 22(44), 591–4.Google Scholar
  185. Dunlap, B. D., Lam, D. J., Kalvius, G. M., and Shenoy, G. K. (1972) J. Appl. Phys., 42, 1419.Google Scholar
  186. Eberle, S. H. and Bayat, I. (1967) Radiochim. Acta, 7, 214.Google Scholar
  187. Eberle, S. H. and Ali, S. (1968) Z. Anorg. Allg. Chem., 361, 1.Google Scholar
  188. Eberle, S. H. and Bayat, I. (1969) Inorg. Nucl. Chem. Lett., 5, 229.Google Scholar
  189. Eberle, S. H. and Robel, W. (1970) Inorg. Nucl. Chem. Lett., 6, 359–65.Google Scholar
  190. Eberle, S. H. and Moattar, F. (1972) Inorg. Nucl. Chem. Lett., 8, 265.Google Scholar
  191. Eberle, S. H. and Sabau, C. S. (1972) Radiochem. Radioanal. Lett., 11, 77.Google Scholar
  192. Ebner, A. D., Ritter, J. A., Ploehn, H. J., Kochen, R. L., and Navratil, J. D. (1999) Sep. Sci. Technol., 34, 1277–300.Google Scholar
  193. Eick, H. A. and Mulford, R. N. R. (1969) J. Inorg. Nucl. Chem., 31, 371–5.Google Scholar
  194. Elesin, A. A. and Zaitsev, A. A. (1971a) Radiokhimiya, 13, 902.Google Scholar
  195. Elesin, A. A. and Zaitsev, A. A. (1971b) Radiokhimiya, 13, 775.Google Scholar
  196. Elesin, A. A. and Zaitsev, A. A. (1972) Radiokhimiya, 14, 370.Google Scholar
  197. Elesin, A. A., Zaitsev, A. A., Ivanovich, N. A., Karaseva, V. A., and Yakovlev, G. N. (1972a) Radiokhimiya, 14, 546.Google Scholar
  198. Elesin, A. A., Zaitsev, A. A., Karaseva, V. A., Nazarova, I. I., and Petukhova, I. V. (1972b) Radiokhimiya, 14, 374.Google Scholar
  199. Elesin, A. A., Zaitsev, A. A., Kazakova, S. S., and Yakovlev, G. N. (1972c) Radiokhimiya, 14, 541.Google Scholar
  200. Elesin, A. A., Zaitsev, A. A., Sergeev, G. M., and Nazarova, I. I. (1973) Radiokhimiya, 15, 64.Google Scholar
  201. Ellinger, F. H. and Zachariasen, W. H. (1954) J. Phys. Chem., 58, 405–8.Google Scholar
  202. Ellinger, F. H., Johnson, K. A., and Struebing, V. O. (1966) J. Nucl. Mater., 20, 83–6.Google Scholar
  203. Ensor, D. D., Jarvinen, G. D., and Smith, B. F. (1988) Solvent Extr. Ion Exch., 6, 439.Google Scholar
  204. Erdmann, B. (1971) Darstellung von Actiniden/Lanthaniden-Edelmetall (Pt, Pd, Ir, Rh)- Legierungsphasen durch gekoppelte Reduktion, Kernforschungszentrum karlsruhe.Google Scholar
  205. Erdmann, B. and Keller, C. (1971) Inorg. Nucl. Chem. Lett., 7, 675–83.Google Scholar
  206. Erdmann, B. and Keller, C. (1973) J. Solid State Chem., 7, 40–8.Google Scholar
  207. Eriksson, O. and Wills, J. M. (1992) Phys. Rev. B, 45, 3198–203.Google Scholar
  208. Eriksson, O., Soderland, J. M., Wills, J. M., and Boring, A. M. (1993) Physica B, 190, 5–11.Google Scholar
  209. Erin, E. A., Kopytov, V. V., Rykov, A. G., and Kosyakov, V. N. (1979) Radiokhimiya, 21, 63–7.Google Scholar
  210. Ermakov, V. A. and Star, I. (1967) Radiokhim., 9, 197.Google Scholar
  211. Ermakov, V. A., Rykov, A. G., Timofeev, G. A., and Yakovlev, G. N. (1971a) Radiokhimiya, 13, 826–32.Google Scholar
  212. Ermakov, V. A., Vorob'eva, V. V., Zaitsev, A. A., and Yakovlev, G. N. (1971b) Radiokhimiya, 13, 692.Google Scholar
  213. Ermakov, V. A., Vorob'eva, V. V., Zaitsev, A. A., and Yakovlev, G. N. (1971c) Radiokhimiya, 13, 840.Google Scholar
  214. Ermakov, V. A., Rykov, A. G., Timofeev, G. A., and Yakovlev, G. N. (1973) Radiokhimiya, 15, 380–5.Google Scholar
  215. Ermakov, V. A., Rykov, A. G., Timofeev, G. A., and Yakovlev, G. N. (1974) Radiokhimiya, 16, 810–17.Google Scholar
  216. Eyring, L., Lohr, H. R., and Cunningham, B. B. (1949) University of California Radiation Laboratory.Google Scholar
  217. Eyring, L., Lohr, H. R., and Cunningham, B. B. (1952) J. Am. Chem. Soc., 74, 1186–90.Google Scholar
  218. Fahey, J. A., Turcotte, R. P., and Chikalla, T. D. (1974) Inorg. Nucl. Chem. Lett., 10, 459–65.Google Scholar
  219. Fang, D. and Keller, C. (1969) Radiochim. Acta, 11, 123–7.Google Scholar
  220. Fargeas, M., Fremont- Lamouranne, R., Legoux, Y., and Morini, O. J. (1986) J. Less Common Metals, 121, 439.Google Scholar
  221. Fedoseev, A. M. and Perminov, V. F. (1983) Sov. Radiochem. (Engl. Transl.), 25, 522–3.Google Scholar
  222. Fedoseev, A. M. and Budentseva, N. A. (1989) Sov. Radiochem. (Engl. Transl.), 31, 525–37.Google Scholar
  223. Fedoseev, A. M. and Budantseva, N. A. (1990) Radiokhimiya, 32, 14–18 and 19–24.Google Scholar
  224. Fedoseev, A. M., Budantseva, N. A., Grigor'ev, M. S., and Perminov, V. P. (1991) Radiokhimiya, 33, 7–19.Google Scholar
  225. Ferris, L. M., Smith, F. J., Mailen, J. C., and Bell, M. J. (1972) J. Inorg. Nucl. Chem., 34, 2921–33.Google Scholar
  226. Freeman, A. J. and Keller, C. (1985) in Handbook on the Physics and Chemistry of Actinides, Elsevier Science Publishers.Google Scholar
  227. Freundlich, W. and Pages, M. (1969) C. R. Acad. Sci. Ser. C, 269, 392–4.Google Scholar
  228. Fried, S. (1951) J. Am. Chem. Soc., 73, 416–18.Google Scholar
  229. Fuger, J. (1958) J. Inorg. Nucl. Chem., 5, 332.Google Scholar
  230. Fuger, J. and Cunningham, B. B. (1963) J. Inorg. Nucl. Chem., 25, 1423–9.Google Scholar
  231. Fuger, J., Spirlet, J. C., and Muller, W. (1972) Inorg. Nucl. Chem. Lett., 8, 709–23.Google Scholar
  232. Fuger, J. and Oetting, F. L. (1976) The Chemical Thermodynamics of Actinide Elements and Compounds, part 2, The Actinide Aqueous Ions, IAEA, Vienna.Google Scholar
  233. Fuger, J., Khodakovsky, I. L., Serfeyeva, E. I., Medvedev, V. A., and Navratil, J. D. (1992) Part 12, The Actinide Aqueous Inorganic Complexes, IAEA, Vienna.Google Scholar
  234. Gatrone, R. C., Kaplan, L., and Horwitz, E. P. (1987) Solvent Extr. Ion Exch., 5, 1075.Google Scholar
  235. Gatrone, R. C. and Rickert, P. G. (1987) Solvent Extr. Ion Exch., 5, 1117.Google Scholar
  236. Gatrone, R. C., Horwitz, E. P., Rickert, P. G., and Diamond, H. (1989) Solvent Extr. Ion. Exch., 7, 793.Google Scholar
  237. Gedeonov, L. I., Lebedev, I. A., Stepanov, A. V., Shalinets, A. B., and Yakovlev, G. N. (1967) Chemistry of the Transuranium and Fission Elements, Izd. Nauka, p. 140.Google Scholar
  238. Gel'man, A. D., Moskvin, A. I., Zaitsev, L. M., and Medfod'eva, M. P. (1967) Complex Compounds of Transuranides (Engl. transl.), Israel Program for Scientific Translations, Jerusalem.Google Scholar
  239. Gerontopulos, P. T., Rigali, L., and Barbano, P. G. (1965) Radiochim Acta, 4, 75.Google Scholar
  240. Gibson, J. K. and Haire, R. G. (1992a) J. Nucl. Mater., 195, 156–65.Google Scholar
  241. Gibson, J. K. and Haire, R. G. (1992b) J. Alloys Compd., 181, 23–32.Google Scholar
  242. Gibson, J. K. (1998a) J. Phys. Chem. A, 102, 4501–8.Google Scholar
  243. Gibson, J. K. (1998b) Organometallics, 17, 2583–9.Google Scholar
  244. Gibson, J. K. (1999a) Inorg. Chem., 38, 165–73.Google Scholar
  245. Gibson, J. K. (1999b) J. Mass Spectrom., 34(11), 1166–77.Google Scholar
  246. Gibson, J. K. (2000) Int. J. Mass Spectrom., 202, 19–29.Google Scholar
  247. Giffaut, E. and Vitorge, P. (1993) Mat. Res. Soc. Symp. Proc., 294, 747–51.Google Scholar
  248. Gmelin (1973) in Gmelins Handbuch der Anorganischen Chemie, Suppl. Work, 8th edition, Verlag Chemie, Weinheim, Germany: Vol. 4, Transurane, Teil C Verbindungen (Compounds); Vol. 7a, Die Elemente (The Elements), Teil A1 (1973); Vol. 8, Teil A2, Die Elemente (The Elements) (1973).Google Scholar
  249. Gmelin (1979) in Gmelin Handbook of Inorganic Chemistry, vol. Transuranium, Parts A1, A2, B1–3, C, D1, D2, Verlag Chemie, Weinheim.Google Scholar
  250. Goffart, J. and Kuyckaerts, G. (1969) Anal. Chim. Acta., 43, 99.Google Scholar
  251. Gopalakrishnan, V., Dhami, P. S., Ramanujam, A., Balaramarkishna, M. V., Murali, M. S., Mathur, J. N., Iyer, R. H., Bauri, A. K., and Bannerji, A. (1995) J. Radioanal. Nucl. Chem. Art., 191, 279.Google Scholar
  252. Gourisse, D. (1966) Cinetique des Reactions D'Oxydo-Reduction des Elements Transur-aniens en Solution, CEA.Google Scholar
  253. Graus Odenheimer, B. and Choppin, G. R. (1956) Stability Constants of Alpha hydro-xyisobutyric Acid Complexes with Actinide Elements, University of California Radiation Laboratory, Berkeley.Google Scholar
  254. Grebenshchikova, V. I. and Babrova, V. N. (1958) Zhur. Neorg. Khim., 3, 400.Google Scholar
  255. Grebenshschikova, V. I. and Babrova, V. N. (1961) Radiochemistry USSR 3, 32.Google Scholar
  256. Grebenshschikova, V. I. and Cheinyavskaya, N. B. (1962) Sov. Radiochem. (Engl. Transl), 4, 207.Google Scholar
  257. Grenthe, I. (1962) Acta. Chem. Scand., 16, 1695.Google Scholar
  258. Grenthe, I., Fuger, J., Konings, R. J. M., Lemire, R. J., Muller, A. B., Nguyen-Trung, C., and Wanner, H. (1992) Chemical Thermodynamics of Uranium, Elsevier Science Publishers, North-Holland.Google Scholar
  259. Grigorescu-Sabau, C. S. (1972) Ü ber die Temperaturabhangigkeit von Komplexgleichge- wichten der Transplutone, Kernforschungszentrum Karlsruhe.Google Scholar
  260. Guillaume, B., Hobart, D. E., and Bourges, J. Y. (1981) J. Inorg. Nucl. Chem., 43(12), 3295–9.Google Scholar
  261. Guillaume, B., Begun, G. M., and Hahn, R. L. (1982) Inorg. Chem., 21, 1159–66.Google Scholar
  262. Guminski, C. (1995) J. Phase Equilib., 16, 333.Google Scholar
  263. Gureev, E. S., Kosyakov, V. N., and Yakovlev, G. N. (1964) Sov. Radiochem., 6, 639–47.Google Scholar
  264. Gureev, E. S., Dedov, V. B., Karpacheva, S. M., Shvetsov, I. K., Ryzhov, M. N., Trukchlayev, P. S., Yakovlev, G. N., and Lebedev, I. A. (1970) in Progress in Nuclear Energy, Process Chemistry, ser. III, vol. 4, (eds. C. E. Stevenson, E. A. Mason, and A.T. Gresky), Pergamon Press, New York, p. 631.Google Scholar
  265. Hafez, M. B. (1968) Spectrophotometric Study of the Complexes of Cerium and Uranides with Diethylenetriaminepentaacetic Acid (DTPA).Google Scholar
  266. Haire, R. G., Lloyd, M. H., Milligan, W. O., and Beasley, M. L. (1977) J. Inorg. Nucl. Chem., 39(5), 837–41 and 843–7.Google Scholar
  267. Haire, R. G., Benedict, U., Young, J. P., Peterson, J. R., and Begun, G. M. (1985) J. Phys. C: Solid State Phys., 18(24), 4595–601.Google Scholar
  268. Hale, W. H. and Lowe, J. T. (1969) Inorg. Nucl. Chem. Lett., 5, 363–9.Google Scholar
  269. Hall, G. R. Herniman, and P. D. (1954) J. Chem. Soc., 2214–21.Google Scholar
  270. Hall, G. R. and Markin, T. L. (1957) J. Inorg. Nucl. Chem., 4, 137–42.Google Scholar
  271. Hall, R. O. A., Lee, J. A., Mortimer, M. J., McElroy, D. L., Muller, W., and Spirlet, J. C. (1980) J. Low Temp. Phys., 41, 397–403.Google Scholar
  272. Hall, H. L. (1989) Report USDOE LBL-27878, University of California, Berkeley, USAGoogle Scholar
  273. Hara, M. (1970) Bull. Chem. Soc. Jpn., 43, 89–94.Google Scholar
  274. Harbour, R. M., Hale, W. H., Burney, G. A., and Lowe, J. T. (1972) At. Energy Rev., 10, 379–99.Google Scholar
  275. Hennelly, E. J. (1972) in Radioisotope Engineering (ed. G. G. Eichholz), Marcel Dekker, New York, pp. 44–134.Google Scholar
  276. Hermann, J. A. (1956) Coprecipitation of Am(III) with Lanthanum Oxalate, Los Alamos Scientific Laboratory.Google Scholar
  277. Hill, H. H. and Ellinger, F. H. (1971) J. Less Common Metals, 23, 92.Google Scholar
  278. Hill, H. H., Lindsey, J. D. G., White, R. W., Asprey, L. B., Streubing, V. O., and Matthias, B. T. (1971) Physica, 55, 615.Google Scholar
  279. Hindman, J. C. (1958) Proc. of the Second Int. Conf. on the Peaceful Uses of Atomic Energy, Geneva, United Nations, p. 349–60.Google Scholar
  280. Hobart, D., Samhoun, K., and Peterson, J. R. (1982) Radiochim. Acta, 31, 139–45.Google Scholar
  281. Hobart, D. E., Begun, G. M., Haire, R. G., and Hellwege, H. E. (1983a) J. Raman Spectrosc., 14(1), 59–62.Google Scholar
  282. Hobart, D. E., Samhoun, K., and Peterson, J. R. (1983b) Radiochim. Acta, 31, 139–45.Google Scholar
  283. Hoekstra, H. and Gebert, E. (1978) Inorg. Nucl. Chem. Lett., 14, 189–91.Google Scholar
  284. Holgye, Z. (1982) Radiochem. Radioanal. Lett., 53, 285–90.Google Scholar
  285. Horrocks, W. D. Jr and Sudnick, D. R. (1979) Science, 206(7), 1194–6.Google Scholar
  286. Horrocks, W. D. Jr and Sudnick, D. R. (1981) Acc. Chem. Res., 14, 384–92.Google Scholar
  287. Horwitz, E. P. (1966) J. Inorg. Nucl. Chem., 28, 1469–78.Google Scholar
  288. Horwitz, E. P., Bloomquist, C. A. A., Sauro, L. J., and Henderson, D. J. (1966) J. Inorg.Nucl. Chem., 28, 2313–24.Google Scholar
  289. Horwitz, E. P., Bloomquist, C. A. A., Orlandini, K. A., and Henderson, D. J. (1967) Radiochim. Acta, 8, 127–32.Google Scholar
  290. Horwitz, E. P., Bloomquist, C. A. A., and Griffin, H. E. (1969) Argonne National Laboratory.Google Scholar
  291. Horwitz, E. P., Kalina, D. G., and Muscatello, A. C. (1981) Sep. Sci. Technol., 16, 403.Google Scholar
  292. Horwitz, E. P., Kalina, D. G., Kaplan, L., Mason, G. W., and Diamond, H. (1982) Sep. Sci. Technol., 17, 1261.Google Scholar
  293. Horwitz, E. P. and Kalina, D. G. (1984) Solvent Extr. Ion Exch., 2, 179.Google Scholar
  294. Horwitz, E. P. and Schulz, W. W. (1985) in Solvent Extraction and Ion Exchange in the Nuclear Fuel Cycle (eds. D. H. Logsdail and A. L. Mills), Ellis Horwood, Chichester, p. 137.Google Scholar
  295. Horwitz, E. P., Kalina, D. G., Diamond, H., Kaplan, L., Vandegrift, G. F., Leonard, R. A., Steindler, M. J., and Schulz, W. W. (1985a) in Actinide/Lanthanide Separations (eds. G. R. Choppin, J. D. Navratil, and W. W. Schulz), World Scientific, Singapore, p. 43.Google Scholar
  296. Horwitz, E. P., Kalina, D. G., Diamond, H., Vandegrift, G. F., and Schulz, W. W. (1985b) Solvent Extr. Ion Exch., 3, 75.Google Scholar
  297. Horwitz, E. P. and Schulz, W. W. (1986) in Proc. ISEC '86Google Scholar
  298. Horwitz, E. P., Martin, K. A., Diamond, H., and Kaplan, L. (1986) Solvent Extr. Ion Exch., 4, 449.Google Scholar
  299. Horwitz, E. P., Diamond, H., Martin, K. A., and Chiarizia, R. (1987) Solvent Extr. Ion Exch., 3, 419 and 447.Google Scholar
  300. Horwitz, E. P. and Schulz, W. W. (1990) Symposium on New Separation Chemistry for Radioactive Waste and Other Specific Applications.Google Scholar
  301. Horwitz, E. P., Dietz, M. L., Nelson, D. M., La Rosa, J. J., and Fairman, W. B. (1990) Anal. Chim. Acta., 238, 263.Google Scholar
  302. Horwitz, E. P., Chiarizia, R., Dietz, M. L., and Diamond, H. (1993) Anal. Chem., 281, 361.Google Scholar
  303. Horwitz, E. P., Chiarizia, R., and Dietz, M. L. (1997) React. Funct. Polym., 33, 25.Google Scholar
  304. Horwitz, E. P. and Schulz, W. W. (1999) in Metal Ion Separation and Preconcentration: Progress and Opportunities (eds. A. H. Bond, M. L. Dietz, and R. D. Rogers), American Chemical Society, Washington, DC, p. 20.Google Scholar
  305. Hubert, S., Hussonnois, M., Brillard, L., Goby, G., and Guillaumont, R. (1974) J. Inorg. Chem., 36, 2361.Google Scholar
  306. Hubert, S., Hussonois, M., Brillard, L., and Guillaumont, R. (1975) in Transplutonium Elements, Proc. 4th Int. Symp., Baden-Baden, Sept. 13–17, Ed. by Muller, W. Lindner, R., North-Holland/Amer. Elsevier, p. 109–118.Google Scholar
  307. Hubert, S. and Thouvenot, P. (1992) J. Lumin., 54, 103–11.Google Scholar
  308. Hugen, Z., Yuxing, Y., and Xuexian, Y. (1982) Actinide Recovery from Waste and Low-Grade Source, Harwood Academic Publishers, New York, USA.Google Scholar
  309. Hulet, E. K., Gutmacher, R. G., and Coops, M. S. (1961) J. Inorg. Nucl. Chem., 17, 350–60.Google Scholar
  310. Hurtgen, C. and Fuger, J. (1977) Inorg. Nucl. Chem. Lett., 13, 1186–90.Google Scholar
  311. Hyde, E. K., Perlman, I., and Seaborg, G. T. (1971) The Nuclear Properties of the Heavy Elements, Prentice-Hall, New York.Google Scholar
  312. Jenkins, I. L. and Wain, A. G. (1972) Rep. Prog. Appl. Chem., 57, 308–19.Google Scholar
  313. Jensen, M. P., Morss, L. R., Beitz, J. V., and Ensor, D. D. (2000) J. Alloys Compd., 303, 137–41.Google Scholar
  314. Johannson, B. (1978) J. Phys. Chem. Solids, 39, 467.Google Scholar
  315. Johannson, B. (1984) Phys. Rev B, 30, 3533–55.Google Scholar
  316. Johannson, B. (1995) J. Phys. Compds., 223, 211–15.Google Scholar
  317. Johannson, B. (2000) Physics World, 26–7.Google Scholar
  318. Jones, M. E. (1951) The Vapor Pressure of Americium Trifluoride (Thesis), University of California Radiation Laboratory.Google Scholar
  319. Jones, L. L. (1953) J. Chem. Phys., 23, 2105.Google Scholar
  320. Jones, L. H. and Penneman, R. A. (1953) J. Chem. Phys., 21, 542–4.Google Scholar
  321. Jones, L. H. (1955) J. Chem. Phys., 23, 2105–7.Google Scholar
  322. Jove, J. and Pages, M. (1977) Inorg. Nucl. Chem., 13, 329–34.Google Scholar
  323. Kalina, D. G., Horwitz, E. P., Kaplan, L., and Muscatello, A. C. (1981a) Sep. Sci. Technol., 16, 1127.Google Scholar
  324. Kalina, D. G., Mason, G. W., and Horwitz, E. P. (1981b) J. Inorg. Nucl. Chem., 43, 159.Google Scholar
  325. Kalina, D. G. and Horwitz, E. P. (1985) Solvent Extr. Ion Exch., 3, 235.Google Scholar
  326. Kalvius, G. M., Ruby, S. L., Dunlap, B. D., Shenoy, G. K., Cohen, D., and Brodsky, M. B. (1969) Phys. Lett. B, 29, 489–90.Google Scholar
  327. Kamashida, M. and Fukasawa, T. (1996) J. Nucl. Sci. Technol., 33, 403–8.Google Scholar
  328. Kamashida, M., Fukasawa, T., and Kawamura, F. (1998) J. Nucl. Sci. Technol., 35, 185–9.Google Scholar
  329. Kaneko, H., Tsujii, M., Abe, M., Morita, Y., and Kubota, M. (1992) J. Nucl. Sci. Technol., 29, 988.Google Scholar
  330. Kaneko, H., Tsujii, M., and Tamaura, Y. (1993) Solvent Extr. Ion Exch., 11, 693.Google Scholar
  331. Kanellakopoulos, B., Fisher, E. O., Dornberger, E., and Baumgartner, F. (1970) J. Organomet. Chem., 24, 507–14.Google Scholar
  332. Kanellakopulos, B., Charvillat, J. P., Maino, F., and Muller, W. (1975) inTransplutonium Elements, Proc. 4th Int. Symp., Baden-Baden, Sept. 13–17, Ed. by Muller, W. Linder, R., North-Holland/Amer. Elsevier.Google Scholar
  333. Kanellakopulos, B., Aderhold, C., Dornberger, E., Muller, W., and Baybarz, R. D. (1978) Radiochim. Acta 25(2), 89–92.Google Scholar
  334. Kanellakopulos, B. (1979) in Organometallics of the f-Elements (eds. T. J. Marks and R. D. Fischer), Reidel, Dordrecht, pp. 1–35.Google Scholar
  335. Karraker, D. G. Potassium Bis(Cyclooctatetraenyl) Americium(III). in Transplutonium Elements, proc. 4th Int. Symp., Baden-Baden, Sept. 13–17, Ed. by Muller, W. Lindner, R., North-Holland/Amer. Elsevier, p. 131–5.Google Scholar
  336. Karraker, D. G. (1977) J. Inorg. Nucl. Chem., 39(1), 87–9.Google Scholar
  337. Kaszuba, J. P. and Runde, W. (1999) Environ. Sci. Technol., 33, 4427–33.Google Scholar
  338. Katz, J. J. and Gruen, D. M. (1949) J. Am. Chem. Soc., 71, 2106–12.Google Scholar
  339. Katz, J. J: Seaborg, G. T. (1957) The Chemistry of the Actinide Elements, Methuen, London, UK.Google Scholar
  340. Keenan, T. K. (1959) J. Chem. Educ., 36, 27–31.Google Scholar
  341. Keenan, T. K. and Kruse, F. H. (1964) Inorg. Chem., 3, 1231–2.Google Scholar
  342. Keenan, T. K. (1965) Inorg. Chem., 4, 1500–1.Google Scholar
  343. Keenan, T. K. (1966) Inorg. Nucl. Chem. Lett., 2, 153–6 and 211–14.Google Scholar
  344. Keenan, T. K. (1967) Inorg. Nucl Chem. Lett., 3, 391–6 and 463–7.Google Scholar
  345. Keenan, T. K. (1968) Inorg. Nucl. Chem. Lett., 4, 381–4.Google Scholar
  346. Keller, C. (1963) Nukleonik, 5, 41–8.Google Scholar
  347. Keller, C. (1964) Ü ber die Festkörperchemie der Actiniden-Oxide, Kernforschungszentrum Karlsruhe.Google Scholar
  348. Keller, C. and Schmutz, H. (1964) Z. Naturf. B, 19, 1080.Google Scholar
  349. Keller, C. (1965) J. Inorg. Nucl. Chem., 27, 321–7.Google Scholar
  350. Keller, C. and Walter, K. H. (1965) J. Inorg. Nucl. Chem., 27, 1247–51 and 1253–60.Google Scholar
  351. Keller, C., Eberle, S. H., and Mosdzelewski, K. (1965a) Radiochim. Acta, 4, 141–5.Google Scholar
  352. Keller, C., Koch, L., and Walter, K. H. (1965b) J. Inorg. Nucl. Chem., 27, 1205–23 and 1225–32.Google Scholar
  353. Keller, C., Eberle, S. H., and Mosdzelewski, K. (1966) Radiochim. Acta, 5, 185–8.Google Scholar
  354. Keller, C. (1967) in Lanthanide/Actinide Chemistry (ed. R. F. Gould), American Chemical Society, Washington, DC, , pp. 228–47.Google Scholar
  355. Keller, C. and Fang, D. (1969) Radiochim. Acta, 11, 123.Google Scholar
  356. Keller, C. and Schreck, H. (1969) J. Inorg. Nucl. Chem., 31, 1121–32.Google Scholar
  357. Keller, C. (1971) Chemistry of the Transuranium Elements, Verlag Chemie, Weinheim.Google Scholar
  358. Keller, C., Berndt, U., Debbabi, M., and Engerer, H. (1972) J. Nucl. Mater., 42, 23–31.Google Scholar
  359. Keller, C. and Berndt, U. (1975) in Transplutonium, Proc. 4th Int. Symp., Baden-Baden, Sept. 13–17, Ed. by Muller, W. Lindner, R., North-Holland/Amer. Elsevier, p. 85–93.Google Scholar
  360. Khopkar, P. K. and Narayankutty, P. (1971) J. Inorg. Nucl. Chem., 33, 495–502.Google Scholar
  361. Kim, J. I., Rhee, D. S., Wimmer, H., Buckau, G., and Klenze, R. (1993) Radiochim. Acta, 62, 35.Google Scholar
  362. Kimura, T. and Kato, Y. (1998) J. Alloys Compd, 271, 867–71.Google Scholar
  363. King, L. J., Bigelow, J. E., and Collins, E. D. (1973) Transuranium Processing Plant Semiannual Report of Production, Status, and Plans for Period Ending June 30, 1972, Oak Ridge National Laboratory.Google Scholar
  364. Kirin, I. S., Moskalev, P. N., and Mishin, V. Y. (1967) Zh. Obshch. Khim., 37, 1065–8.Google Scholar
  365. Koch, G. and Schoen, J. (1968) German Report KFK-783, Kernforschungszentrum Karlsruhe, Germany.Google Scholar
  366. Koch, G. (1969) Conf. Report CONF-690426, Liege, Belgium.Google Scholar
  367. Kochen, R. L. (1987) Actinide Removal from Aqueous Solution with Activated Magnetite, Rockwell International, Golden, CO.Google Scholar
  368. Kochen, R. L. and Navratil, J. D. (1987) Lanthanide/Actinide Res., 2, 9.Google Scholar
  369. Koehly, G. and Hoffert, F. (1967) Semiannual Report of the Chemistry Department, Center for Nuclear Studies at Fontenay-aux-Roses, December 1966–May 1967, Argonne National Laboratory.Google Scholar
  370. Kolarik, Z. J. and Horwitz, E. P. (1988) Solvent Extr. Ion Exch., 6, 247.Google Scholar
  371. Kolarik, Z., Mullich, U., and Gassner, F. (1999) Solvent Extr. Ion Exch., 17, 23 and 1155.Google Scholar
  372. Koma, Y., Watanabe, M., Nemoto, S., and Tanaka, Y. (1998) Solvent Extr. Ion Exch., 16, 1357.Google Scholar
  373. Kornilov, A. S., Frolov, A. A., and Vasil'ev, V. Y. (1986) Radiokhimiya, 28(5), 656–60.Google Scholar
  374. Kosyakov, V. N., Timofeev, G. A., Erin, E. A., Andreev, V. I., Kopytov, V. V., and Simakin, G. A. (1977) Radiokhimiya, 19, 511–7.Google Scholar
  375. Krot, N. N., Shillov, V. P., Nikolaevskii, V. B., Nikaev, A. K., Gel'man, A. D.,and Spitsyn, V. I. (1974a) Dokl. Acad. Sci. USSR, 217(3), 525–7.Google Scholar
  376. Krot, N. N., Shillov, V. P., Nikolaevskii, V. B., Nikaev, A. K., Gel'man, A. D., and Spitsyn, V. I. (1974b). Oak Ridge National Laboratory.Google Scholar
  377. Kruse, F. H. and Asprey, L. B. (1962) Inorg. Chem., 1(1), 137–9.Google Scholar
  378. Kuznetsov, V. I. and Skobelev, N. K. (1966) ORO-tr-3346-15, Joint Inst. for Nuclear Research, Dubna (USSR), translation of Russian report JINR-p7-2984.Google Scholar
  379. Lam, D. J. and Mitchell, A. W. (1972) J. Nucl. Mater., 44, 279–84.Google Scholar
  380. Larson, D. T. and Haschke, J. M. (1981) Inorg. Chem., 20, 1945–50.Google Scholar
  381. Law, J. D., Brewer, K. N., Herbst, R. S., Todd, T. A., and Olsen, L. G. (1998) Report INEL/EXT-98-00004, Idaho National Engineering and Environmental Laboratory, Idaho Falls, Idaho, USA.Google Scholar
  382. Law, J. D., Brewer, K. N., Herbst, R. S., and Todd, T. A. (1998) Report INEL/EXT-97-00837, Idaho National Engineering and Environmental Laboratory, Idaho Falls, Idaho, USA.Google Scholar
  383. Lawaldt, D., Marquart, R., Werner, G.-D., and Wigel, F. (1982) J. Less Common Metals, 85, 37–41.Google Scholar
  384. Lebedev, I. A., Pirozhkov, S. V., Razbitnoi, V. M., and Yakovlev, G. N. (1960a) Radiokhimiya, 2, 351–6.Google Scholar
  385. Lebedev, I. A., Pirozhkov, S. V., and Yakovlev, G. N. (1960b) Radiokhimiya, 2, 549–58.Google Scholar
  386. Lebedev, I. A. and Yakovlev, G. N. (1961) Radiokhimiya, 3, 455.Google Scholar
  387. I. A., Pirozhkov, S. V., and Yakovlev, G. N. (1962) Radiokhimiya, 4, 304–8.Google Scholar
  388. Lebedev, I. A., Maksimova, A. M., Stepanov, A. V., and Shalinets, A. B. (1967) Radiokhimiya, 9, 707.Google Scholar
  389. Lebedev, I. A. and Shalinets, A. B. (1968) Radiokhimiya, 10, 233.Google Scholar
  390. Lebedev, I. A., Filimonov, V. T., Shalinets, A. B., and Yakovlev, G. N. (1968) Radiokhimiya, 10, 93.Google Scholar
  391. Lebedev, I. A., Frenkel, V. Y., Kulyako, Y. M., and Myasoedov, B. F. (1979) Radiokhimiya, 21(6), 809–16.Google Scholar
  392. Lederer, C. M. and Shirley, V. S. (1978) in Table of Radioactive Isotopes, John Wiley, New York.Google Scholar
  393. Leger, J. M., Yacoubi, N., and Loriers, J. (1981) J. Solid State Chem., 36, 261–70.Google Scholar
  394. Levakov, B. I. and Shalinets, A. B. (1971) Radiokhimiya, 13, 295.Google Scholar
  395. Le Vert, F. E. and Helminski, E. L. (1973) Literature Review and Commercial Source Evaluation of Americium-241, Tuskegee Institute.Google Scholar
  396. Li, J. and Bursten, B. E. (1997) J. Am. Chem. Soc., 119(38), 9021–32.Google Scholar
  397. Liansheng, W., Casarci, M., and Gasparini, G. M. (1991) Solvent Extr. Ion Exch., 8, 49.Google Scholar
  398. Liminga, R., Abrahams, S. C., and Bernstein, J. L. (1977) J. Chem. Phys., 67(3), 1015–23.Google Scholar
  399. Lin, Z., Berne, A., Cummings, B., Filliben, J. J., and Inn, K. G. W. (2002) Appl. Radiat. Isot., 56, 57–63.Google Scholar
  400. Lindbaum, A., Heathman, S., Litfin, K., Meresse, Y., Haire, R. G., Le Bihan, T., and Libotte, H. (2001) Phys. Rev. B, 63, 214101 (1–10).Google Scholar
  401. Link, P., Braithwaite, D., Wittig, J., Benedict, U., and Haire, R. G. (1994) J. Alloys Compd., 213/214, 148–52.Google Scholar
  402. Liu, G. K., Beitz, J. V., Huang, J., Abraham, M. M., and Boatner, L. A. (1997) J. Alloys Compd., 250, 347–51.Google Scholar
  403. Lohr, H. R. and Cunningham, B. B. (1951) J. Am. Chem. Soc., 73, 2025–8.Google Scholar
  404. Lumetta, G. J. and Swanson, J. L. (1993a) Sep. Sci. Technol., 28, 43.Google Scholar
  405. Lumetta, G. J. and Swanson, J. L. (1993b) Pacific Northwestern Laboratory.Google Scholar
  406. Lumetta, G. J., Wester, D. W., Morrey, J. R., and Wagner, M. J. (1993) Solvent Extr. Ion Exch., 11, 663.Google Scholar
  407. Lux, F. (1973) Proc. Tenth Rare Earth Reasearch Conf., Carefree, Arizona, April 30-May 3, Ed. by Kevane, C. J. and Moeller, T., pp. 871–80.Google Scholar
  408. Lychev, A. A., Mashirov, L. G., Smolin, Y. I., Suglobov, D. N., and Shepelev, Y. F. (1980) Radiokhimiya, 22, 43–8.Google Scholar
  409. Lynch, R. W., Dosch, R. G., Kenna, B. T., Johnstone, J. K., and Nowak, E. J. (1975) The Sandia Solidification Process: A Broad Range Aqueous Waste Solidification Method. Google Scholar
  410. Madic, C., Guillaumont, B., Morisseau, J. C., and Moulin, J. P. (1979) J. Inorg. Nucl. Chem., 83, 3373.Google Scholar
  411. Madic, C., Hobart, D. E., and Begun, G. M. (1983) Inorg. Chem., 22, 1494–503.Google Scholar
  412. Pozo, C., Lecomte, M., Phillipe, M., Masson, M., Hequet, C., and Hudson, M. J. (1994) French Report CEA-CONF-12297.Google Scholar
  413. Madic, C. and Hudson, M. J. (1998) Report EUR 18038 EN.Google Scholar
  414. Magirius, S., Carnall, W. T., and Kim, J. I. (1985) Radiochim. Acta, 38, 29–32.Google Scholar
  415. Mahajan, G. R., Prabhu, D. R., Manchanda, V. K., and Badheka, L. P. (1998) Waste Manage., 18, 125.Google Scholar
  416. Maly, J. (1969) J. Inorg. Nucl. Chem., 31, 1007–17.Google Scholar
  417. Manchanda, V. K. and Mohapatra, P. K. (1995) Radiochim. Acta, 69, 81.Google Scholar
  418. Mapara, P. M., Godbole, A. G., Rajendra, S., and Thakur, N. V. (1998) Hydrometallur-gy, 49, 197–201.Google Scholar
  419. Marcu, G. and Samochocka, K. (1965) Stud. Univ. Babes-Bolyai, Ser. Chem., 10, 71.Google Scholar
  420. Marcu, G. and Samochocka, K. (1966) Stud. Univ. Babes-Bolyai, Ser. Chem., 11, 15.Google Scholar
  421. Marcus, Y., Givon, M., and Choppin, G. R. (1963) J. Inorg. Nucl. Chem., 25, 1457–63.Google Scholar
  422. Marcus, Y. and Cohen, D. (1966) Inorg. Chem., 5, 1740–3.Google Scholar
  423. Marcus, Y. and Shiloh, M. (1969) Israel J. Chem., 7, 31–43.Google Scholar
  424. Marcus, Y. and Bomse, M. (1970) Israel J. Chem., 8, 901–11.Google Scholar
  425. Marcus, Y., Yanir, E., and Givon, M. (1972) The standard potential of the americium III/IV couple. An estimate from the formal potential and complex stabilities in phosphoric acid, in Coordination Chemistry in Solution, Vol. kungl. Tek. Högsk. Handl. Nr. 265 (ed. E. Högfeldt), Swedish Nat. Sci. Res. Council, pp. 227–38.Google Scholar
  426. Markin, T. L. (1958) J. Inorg. Nucl. Chem. 7, 290–2.Google Scholar
  427. Martella, L. L. and Navratil, J. D. (1979) US Report.Google Scholar
  428. Martensson, N., Johansson, B., and Naegele, J. R. (1987) Phys. Rev. B, 35, 1437–9.Google Scholar
  429. Martinot, L. and Fuger, J. (1985) The Actinides in Standard Potentials in Aqueous Solution, ed. by Bard, A. J., Parsons, R., Jordan, J., Dekker, New York, USA, p. 631–74.Google Scholar
  430. Mathur, J. N., Murali, M. S., and Natarajan, R. R. (1991) J. Radioanal. Nucl. Chem., 152, 127.Google Scholar
  431. Mathur, J. N., Murali, M. S., Natarajan, P. R., Bodheka, L. P., and Benerji, R. (1992a) Talanta, 39, 493.Google Scholar
  432. Mathur, J. N., Murali, M. S., and Natarajan, R. R. (1992b) J. Radioanal. Nucl. Chem., 155, 195.Google Scholar
  433. Mathur, J. N., Murali, M. S., Rizvi, G. H., Iyer, R. H., Michael, K. M., Kapoor, S. C., Dhumwad, R. K., Badheka, L. P., and Bannerji, A., (1994) Solvent Extr. Ion Exch., 12, 745.Google Scholar
  434. Mathur, J. N., Murali, M. S., Iyer, R. H., Ramanujam, A., Dhami, P. S.,Gopalakrishnan, V., Badheka, L. P., and Bannerji, A. (1995) Nucl. Technol., 109, 216.Google Scholar
  435. Mathur, J. N., Murali, M. S., Ruikar, P. B., Nagar, M. S., Sipahimalani, A. R., Bauri, A. K., and Bannerji, A. (1998) Sep. Sci. Technol., 33, 2179.Google Scholar
  436. Mathur, J. N., Murali, M. S., and Nash, K. L. (2001) Solvent Extr. Ion Exch., 19, 357–90.Google Scholar
  437. Matonic, J. H., Scott, B. L., and Neu, M. P. (2001). Inorg. Chem., 40, 2638.Google Scholar
  438. McIsaac, L. D. and Schulz, W. W. (1976) Transplutonium 1975, North-Holland, Amsterdam.Google Scholar
  439. McIsaac, L. D. (1982) Sep. Sci. Technol., 17, 387.Google Scholar
  440. McIsaac, L. D. and Baker, J. D. (1983) Solvent Extr. Ion Exch., 1, 72.Google Scholar
  441. McWhan, D. B., Wallmann, J. C., Cunningham, B. B., Asprey, L. B., Ellinger, F. H., and Zachariasen, W. H. (1960) J. Inorg. Nucl. Chem., 15, 185–7.Google Scholar
  442. Meinrath, G. and Kim, J. I. (1991a) Radiochim. Acta, 52/53, 29.Google Scholar
  443. Meinrath, G. and Kim, J. I. (1991b) Eur. J. Inorg. Solid State Chem., 28, 383–8.Google Scholar
  444. Melkaya, R. F., Volkov, Y. F., Sokolov, E. I., Kapshukov, I. I., and Rykov, A. G. (1982) Dokl. Chem. (Engl. Transl.), 262/7, 42.Google Scholar
  445. Mercing, E. and Duyckaerts, E. (1967) Anal. Lett., 1, 23.Google Scholar
  446. Michael, K. M., Rizvi, G. H., Mathur, J. N., and Ramanujam, A. (2000) J. Radioanal. Nucl. Chem., 246, 355.Google Scholar
  447. Mikheev, N. B. and Myasoedov, B. F. (1985) Lower and higher oxidation states of transplutonium elements in solutions and Metals, in Handbook on the Physics and Chemistry of the Actinides, ch. 9 (eds. J. A. Freeman and C. Keller), Elsevier Science Publishers, pp. 347–86.Google Scholar
  448. Milligan, W. O. and Beasley, M. L. (1968) Acta Crystallogr. B, 24, 979–81.Google Scholar
  449. Mills, T. R. and Reese, L. W. (1994) J. Alloys Compd., 213/214, 360–2.Google Scholar
  450. Milyukova, M. S., Litvina, M. N., and Myasoedov, B. F. (1980) Radiochem. Radioanal. Lett., 44(4), 259–68.Google Scholar
  451. Mishra, S., Chakravortty, V., and Vasudeva Rao, P. R. (1996) Radiochim. Acta, 73, 89.Google Scholar
  452. Mitchell, A. W. and Lam, D. J. (1970a) J. Nucl. Mater., 37, 349–52.Google Scholar
  453. Mitchell, A. W. and Lam, D. J. (1970b) J. Nucl. Mater., 36, 110–12.Google Scholar
  454. Moattar, F. (1971) Compounds of Trivalent Transuranium Compounds Appearing in Mixtures of Complexing Agents. Report KFK-1416, Kernforschungszentrum Karlsruhe, Germany.Google Scholar
  455. Modolo, G. and Odoj, R. (1998) J. Radioanl. Nucl. Chem., 228, 83.Google Scholar
  456. Modolo, G. and Odoj, R. (1999) Solvent Extr. Ion Exch., 17, 33.Google Scholar
  457. Mohapatra, P. K. and Manchanda, V. K. (1991) Radiochim. Acta, 55(4), 193–7.Google Scholar
  458. Mohapatra, P. K. and Manchanda, V. K. (1995) Polyhedron, 14(13–14), 1993–7.Google Scholar
  459. Mohapatra, P. K. and Manchanda, V. K. (1999) J. Radioanal. Nucl. Chem., 240, 259.Google Scholar
  460. Mohapatra, P. K., Sriram, S., Manchanda, V. K., and Badheka, L. P. (2000) Sep. Sci. Technol., 35, 39.Google Scholar
  461. Moore, R. H. and Lyon, W. L. (1959) Distribution of Actinide Elements in Molten System KCl-AlCl 3-Al, General Electric Company, Hanford Atomic Products Operation.Google Scholar
  462. Moore, F. L. (1964) Anal. Chem., 36, 2158.Google Scholar
  463. Moore, F. L. (1966a) Anal. Chem., 38, 510.Google Scholar
  464. Moore, F. L. (1966b) US Patent 3 194 494.Google Scholar
  465. Moore, G. E. (1970) Chemistry Division Annual Progress Report for Period Ending May 20, 1970, Oak Ridge National Laboratory.Google Scholar
  466. Moore, F. L. (1973) US Patent 3 687 641.Google Scholar
  467. Morita, Y. and Kubota, M. (1988) Solvent Extr. Ion Exch., 6, 233.Google Scholar
  468. Morita, Y., Yamaguchi, L., Kondo, Y., Shirahashi, K., Yamagishi, I., Fugiwara, T., and Kubota, M. (1993) in Proc. of Technical Committee on Safety and Environmental Aspects of Partitioning and Transmutation of Actinides and Fission Products. Report IAEA-TECDOC-783, Vienna, Austria.Google Scholar
  469. Morss, L. R., Siegal, M., Stenger, L., and Edelstein, N. (1970) Inorg. Chem., 9(7), 1771–5Google Scholar
  470. Morss, L. R. and Fuger, J. (1981) J. Inorg. Nucl. Chem., 43(9), 2059–64.Google Scholar
  471. Morss, L. R. (1982) in Actinides in Perspective (ed. N. Edelstein), Pergamon Press, New York, pp. 381–407.Google Scholar
  472. Morss, L. R. (1983) J. Less Common Metals, 93, 301–21.Google Scholar
  473. Morss, L. R. and Williams, C. W. (1994) Radiochim. Acta, 66/67, 99–103.Google Scholar
  474. Moskalev, P. N., Shapkin, G. N., and Darovskikh, A. N. (1979) Zh. Neorg. khim., 24, 340–6.Google Scholar
  475. Moskvin, A. I., Khalturin, G. V., and Gel'man, A. D. (1959) Radiokhimiya, 1, 141.Google Scholar
  476. Moskvin, A. I., Khalturin, G. V., and Gel'man, A. D. (1962) Radiokhimiya, 4, 162.Google Scholar
  477. Moskvin, A. I. (1967) Radiokhimiya, 9, 718–20.Google Scholar
  478. Moskvin, A. I. (1971) Radiokhimiya, 13, 221–3, 224–30, 575–81, and 668–74.Google Scholar
  479. Moskvin, A. I. (1973) Radiokhimiya, 15, 504–13.Google Scholar
  480. Mosley W. C. (1970) in Proc. 4th Internat. Conf. on Plutonium and other Actinides, Santa Fe, NM, USA, USAEC CONF-701001, Parts II, pp 762–771.Google Scholar
  481. Moulin, V., Robouch, P. B., Vitorge, P., and Allard, B. (1987) Inorg. Chim. Acta, 140, 303.Google Scholar
  482. Muller, W. (1971) Angew. Chem., 83, 625.Google Scholar
  483. Muller, W., Reul, J., and Spirlet, J. C. (1972) Atomwirtschaft, 17, 415.Google Scholar
  484. Muller, W., Schenkel, R., Schmick, H. E., Spirlet, J. C., McElroy, D. L., Hall, R. O. A., and Mortimer, M. J. (1978) J. Low Temp. Phys., 40, 361–78.Google Scholar
  485. Mullins, L. J. and Leary, J. A. (1969) US Patent 3420639.Google Scholar
  486. Murali, M. S. and Mathur, J. N. (2001) Solvent Extr. Ion Exch., 19, 61–77.Google Scholar
  487. Musikas, C. (1973a) Radiochem. Radioanal. Lett., 13, 255–8.Google Scholar
  488. Musikas, C. C. (1973b) Electrochimie en solution aqueuse, in Gmelin Handbook of Inorganic Chemistry, vol. part D1, Verlag Chemie, Weinheim, pp. 5–23.Google Scholar
  489. Musikas, C., Germain, M., and Bathelier, A. (1980a) in Actinide Separations (eds. J. D. Navratil and W. W. Schulz) (ACS Symp. Ser. 117), American Chemical Society, Washington, DC, pp. 157–73.Google Scholar
  490. Musikas, C., Le Marois, G., Fitoussi, R., and Cuillerdier, C. (1980b). in Actinide Separations (eds. J. D. Navratil and W. W. Schulz), (ACS Symp. Ser. 117), American Chemical Society, Washington, DC, pp. 131–45.Google Scholar
  491. Musikas, C. and Hubert, H. (1983) Proc. ISEC83, p. 449.Google Scholar
  492. Musikas, C. (1984) Actinide/Lanthanide Separations, Proc., Int. Symp., 19–30.Google Scholar
  493. Musikas, C. (1987) Inorg. Chim. Acta, 140, 197.Google Scholar
  494. Musikas, C., Condamines, C., Cuillerdier, C., and Nigond, L. (1991) International Symposium on Radiochemistry and Radiation Chemistry.Google Scholar
  495. Musikas, C. (1995) Nuclear and Radiochemistry Symposium.Google Scholar
  496. Myasoedov, B. F., Mikhailov, V. M., Lebedev, I. A., Litvina, M. N., and Frenkel, V. Y. (1973) Radiochem. Radioanal. Lett., 14, 17–24.Google Scholar
  497. Myasoedov, B. F., Guseva, L. I., Lebedev, I. A., Milyukova, M. S., and Chmutova, M. S. (1974a) Analytical Chemistry of the Transplutonium Elements, John Wiley, New York.Google Scholar
  498. Myasoedov, B. F., Lebedev, I. A., Frenkel, V. Y., and Vyatkina, I. I. (1974b) Sov. Radiochem., 16, 803–7.Google Scholar
  499. Myasoedov, B. F., Milyukova, M. S., Lebedev, I. A., Livina, M. N., and Frenkel, V. Y. (1975) J. Inorg. Nucl. Chem., 37, 1475–8.Google Scholar
  500. Myasoedov, B. F., Lebedev, I. A., and Milyukova, M. S. (1977) Rev. Chem. Minér., 14, 160–71.Google Scholar
  501. Myasoedov, B. F., Chmutova, M. K., and Karalova, Z. K. (1980) in Actinide Separations (eds. J. D. Navratil and W. W. Schulz), American Chemical Society, Washington, DC, p. 101.Google Scholar
  502. Myasoedov, B. F. and Kremliakova, N. Y. (1985) Studies of americium and curium solution chemistry in the USSR, in Americium and Curium Chemistry and Technology (ed. N. M. Edelstein), D. Reidel, Germany, pp. 53–79.Google Scholar
  503. Myasoedov, B. F., Chmutova, M. K., Kochetkova, N. E., Koiro, O. E., Priibylova, G. A., Nesterova, N. P., Medved, T. Y., and Kabachnik, M. I. (1986) Solvent Extr. Ion Exch., 4, 61.Google Scholar
  504. Myasoedov, B. F. and Lebedev, I. A. (1991) in Handbook on the Physics and Chemistry of the Actinides (eds. A. J. Freeman and C. Keller), Elsevier, New York, p. 551.Google Scholar
  505. Myasoedov, B. F. (1994) J. Alloys Compd., 290, 213–14.Google Scholar
  506. Naegele, J. R., Manes, L., Spirlet, J. C., and Muller, W. (1984) Phys. Rev. Lett., 52, 1834–7.Google Scholar
  507. Nair, G. M. and Chander, K. (1983) J. Less Common Metals, 92(1), 29–34.Google Scholar
  508. Nash, K. L., Gatrone, R. C., Clark, G. A., Rickert, P. G., and Horwitz, E. P. (1988) Sep. Sci. Technol., 23, 1355.Google Scholar
  509. Nash, K. L., Gatrone, R. C., Clark, G. A., Rickert, P. G., and Horwitz, E., (1989) Solvent Extr. Ion Exch., 7, 644.Google Scholar
  510. Nash, K. L. (1994) in Handbook on the Physics and Chemistry of Rare Earths, Gschneidner (eds. K. A. Gschneidner, Jr, L. Eyring, G. R. Choppin, and G. H. Lander), New York, Elsevier North-Holland, pp. 197–235.Google Scholar
  511. Natowitz, J. B. (1973) USAEC Report ORO-3924–14.Google Scholar
  512. Nellis, W. and Brodsky, M. B. (1974) in The Actinides: Electronic Structure and Related Properties, Academic Press, New York.Google Scholar
  513. Newton, T. W. and Baker, F. (1967) in Lanthanide/Actinide Chemistry (ed. R. F. Gould), ACS Adv. Chem. Ser., American Chemical Society, Washing DC, pp. 268–95.Google Scholar
  514. Newton, T. W. (1975) The Kinetics of the Oxidation–Reduction Reactions of Uranium, Neptunium, Plutonium, and Americium Ions in Aqueous Solutions. Google Scholar
  515. Nigon, J. P., Penneman, R. A., Staritzki, E., Keenan, T. K., and Asprey, L. B. (1954) J. Phys. Chem., 58, 403–4.Google Scholar
  516. Nigond, L., Musikas, C., and Cuillerdier, C. (1994) Solvent Extr. Ion Exch., 12, 261 and 297.Google Scholar
  517. Nikolaev, A. V. and Ionova, G. V. (1991) Phys. Stat. Sol. (6) 167, 613–23.Google Scholar
  518. Nikolaevskii, V. B., Shilov, V. P., and Krot, N. N. (1974) Radiokhimiya, 16, 122–3. Nikolaevskii, V. B., Shilov, V. P., Krot, N. N., and Peretrukhin, V. F. (1975) Radiokhimiya, 17, 420–2 and 431–3.Google Scholar
  519. Nikolaevskii, V. B., Shilov, V. P., Krot, N. N., and Peretrukhin, V. F. (1975) Radiokhimiya, 17, 420–2 and 431–3.Google Scholar
  520. NN (2002) Nucl. News, 45(Jan), 58–60.Google Scholar
  521. Nugent, L. J., Baybarz, R. D., Burnett, J. L., and Ryan, J. L. (1971a) J. Inorg. Nucl. Chem., 33, 2503–30.Google Scholar
  522. Nugent, L. J., Laubereau, P. G., Werner, G. K., and Vander Sluis, K. L. (1971b) J. Organomet. Chem., 27(3), 365–72.Google Scholar
  523. Nugent, L. J., Baybarz, R. D., Burnett, J. L., and Ryan, J. L. (1973a) J. Phys. Chem., 77, 1528–39.Google Scholar
  524. Nugent, L. J., Burnett, J. L., and Morss, L. R. (1973b) J. Chem. Thermodyn., 5, 665–78.Google Scholar
  525. Nunez, L., Buchholz, B. A., Kaminski, M., Aase, S. B., Brown, N. R., and Vandegrift, G. F. (1996) Sep. Sci. Technol., 31, 1393.Google Scholar
  526. Oetting, F. L., Rand, M. H., and Ackermann, R. J. (1976) in The Chemical Thermodynamics of Actinide Elements and Compounds, part 1, The Actinide Elements. IAEA. Ogawa, T., Shirasu, Y., Minato, K., and Serizawa, H. (1997) J. Nucl. Mater., 247, 151–7.Google Scholar
  527. Ogawa, T., Shirasu, Y., Minato, K., and Serizawa, H. (1997) J. Nucl. Mater., 247, 151–7.Google Scholar
  528. Oetting, F. L., Rand, M. H., and Ackermann, R. J. (1976) in The Chemical Thermodynamics of Actinide Elements and Compounds, part 1, The Actinide Elements. IAEA.Google Scholar
  529. Ohyoshi, E. and Ohyoshi, A. (1971) J. Inorg. Nucl. Chem., 33, 4265.Google Scholar
  530. Okamoto, H. (1998) J. Phase Euilib., 20, 450–2.Google Scholar
  531. Olson, W. M. and Mulford, R. N. R. (1966) J. Phys. Chem., 70, 2934–7.Google Scholar
  532. Osipov, S. V., Andreichuk, N. N., Vasil'ev, V. Y., and Rykov, A. G. (1977) Radiokhimiya, 19(4), 522–4.Google Scholar
  533. Ozawa, M., Nemoto, S., Togashi, A., Kawata, T., and Onishi, K. (1992) Solvent Extr. Ion Exch., 10, 829.Google Scholar
  534. Ozawa, M., Koma, Y., Nomura, K., and Tanaka, Y. (1998) J. Alloys Compd., 538, 272–3.Google Scholar
  535. Pappalardo, R., Carnall, W. T., and Fields, P. R. (1969a) J. Chem. Phys., 51(2), 842–3.Google Scholar
  536. Pappalardo, R. G., Carnall, W. T., and Fields, P. R. (1969b) J. Chem. Phys., 51, 1182–2000.Google Scholar
  537. Pazukhin, E. M., Krivokhatskii, A. S., and Kochergin, S. M. (1987) Sov. Radiochem., 29(1), 9–13.Google Scholar
  538. Penneman, R. A. and Asprey, L. B. (1950) The formal potential of the Am(V)-Am(VI) couple, Los Alamos National Laboratory.Google Scholar
  539. Penneman, R. A. and Asprey, L. B. (1955) A Review of Americium and Curium Chemistry, Proc. First Int. Conf. on the Peaceful Uses of Atomic Energy, pp. 355–62.Google Scholar
  540. Penneman, R. A. and Keenan, T. K. (1960) The Radiochemistry of Americium and Curium, National Academy of Sciences.Google Scholar
  541. Penneman, R. A., Coleman, J. S., and Keenan, T. K. (1961) J. Inorg. Nucl. Chem., 17, 138–45.Google Scholar
  542. Penneman, R. A. and Mann, J. B. (1976) J. Inorg. Nucl. Chem., Suppl., 257–63.Google Scholar
  543. Peppard, D. F., Mason, G. W., Driscoll, W. J., and Sironen, R. J. (1958) J. Inorg. Nucl. Chem., 7, 276–85.Google Scholar
  544. Peppard, D. F., Mason, G. W., Driscoll, W. J., and Sironen, R. J. (1962) J. Inorg. Nucl. Chem., 24, 881–8.Google Scholar
  545. Pereira, L. C. J., Wastin, F., Winand, J. M., Kanellakopoulos, B., Rebizant, J., Spirlet, J. C., and Almeida, M. (1997) J. Solid State Chem., 134, 138–47.Google Scholar
  546. Peretrukhin, V. F. and Spitsyn, V. I. (1982) Izv. Akad. Nauk SSSR, Ser. Khim., 31, 826–31.Google Scholar
  547. Persson, G. E., Svantesson, S., Wingefors, S., and Liljenzin, J. O. (1984) Solvent Extr. Ion Exch., 2, 89.Google Scholar
  548. Peterson, J. R. (1973) in Proc. 10th Rare Earth Research Conf. (eds. C. J. Kevane and T. Moeller), April 30-May 3, Carefree, Arizona.Google Scholar
  549. Petrzilova, H., Binka, J., and Kuca, L. (1979) J. Radioanal. Nucl. Chem., 51, 107.Google Scholar
  550. Pikaev, A. K., Shilov, V. N., Nikolaevskii, V. B., Krot, N. N., and Spitsyn, V. I. (1977) Radiokhimiya, 19(5), 720–4.Google Scholar
  551. Pilv Vo, R. and Bickel, M. (1998) J. Alloys Compd., 49, 271.Google Scholar
  552. Pilv Vo, R., La Rosa, J. J., Mouchel, D., Nardel, R., Bichel, M., and Altzizaglau, T. (1999) J. Environ. Radioact., 43, 343.Google Scholar
  553. Pilv Vo, R. and Bichel, M. (2000) Appl. Radiat. Isot., 53, 273.Google Scholar
  554. Piskunov, E. M. and Rykov, A. G. (1972) Radiokhimiya, 14, 638.Google Scholar
  555. Potter, R. A. and Tennery, V. J. (1973) US Patent, 3,758, 669.Google Scholar
  556. Proctor, S. G. and Connor, W. V. (1970) J. Inorg. Nucl. Chem., 32, 3699–701.Google Scholar
  557. Proctor, S. G. (1975) Cation Exchange Process for Molten Salt Extraction Residues, Rocky Flats Plant, Dow Chemical Company.Google Scholar
  558. Proctor, S. G. (1976) J. Less Common Metals, 44, 195–9.Google Scholar
  559. Prunier, C., Guérin, L., Faugére, J.-L., Cocuaud, N., and Pidnet, J.-M. (1997) Nucl. Technol., 120, 110–20.Google Scholar
  560. Radchenko, V. M., Ryabinin, M. A., Selezenev, A. G., Shimbarev, E. V., Sudakov, L. V., Kapashukov, I. I., and Vasil'ev, V. Y. (1982) Sov. Radiochem. (Engl. Trans.), 24, 144–6.Google Scholar
  561. Radzewitz, H. (1966) Festkörperchemische Untersuchungen über die Systeme SeO1.5-;ZrO2 (HfO2, AmO1.5–ZrO2 (HfO2, ThO2)–O2, und TiO2–NpO2 (PuO2), Kernforschungs-zentrum Karlsruhe.Google Scholar
  562. Rai, D., Felmy, A. R., and Fulton, R. W. (1992) Radiochim. Acta, 56(1), 7–14.Google Scholar
  563. Rais, J. and Tachimori, S. (1994) J. Radioanal. Nucl. Chem. Lett.,188, 157.Google Scholar
  564. Rao, V. K., Mahajan, G. R., and Natarajan, P. R. (1987) Inorg. Chim. Acta, 128(1), 131–4.Google Scholar
  565. Rao, L. F., Rai, D., Felmy, A. R., Fulton, R. W., and Novak, C. F. (1996) Radiochim. Acta, 75(3), 141–7.Google Scholar
  566. Rapko, B. M. and Lumetta, G. J. (1994) Solvent Extr. Ion Exch., 12, 967.Google Scholar
  567. Rapko, B. M. (1995) in Separations of Elements (eds. K. L. Nash and G. R. Choppin), Plenum Press, New York, p. 99.Google Scholar
  568. Rebizant, J. and Benedikt, U. (1978) J. Less Common Metals, 58, 31–3.Google Scholar
  569. Rizvi, G. H. and Mathur, J. N. (1997), Report BARC/P004, p. 56.Google Scholar
  570. Robel, W. (1970) Complex Compounds of Hexavalent Actinides with Pyridine Carboxylic Acids. KFK.Google Scholar
  571. Roddy, J. W. (1973) J. Inorg. Nucl. Chem., 35, 4141–8.Google Scholar
  572. Roddy, J. W. (1974) J. Inorg. Nucl. Chem., 36, 2531–3.Google Scholar
  573. Rogozina, E. M., Konkina, L. F., and Popov, D. K. (1974) Radiokhimiya, 16, 383–6.Google Scholar
  574. Roof, R. B., Haire, R. G., Schiferl, D., Schwalbe, L., Kmetko, E. A., and Smith, J. L. (1980) Science, 207, 1353–5.Google Scholar
  575. Roof, R. B. (1982) Z. Kristallogr., 158, 307–12.Google Scholar
  576. Rosch, F., Reimann, T., Ludwig, R., Dreyer, R., Buklanov, G. V., Khalkhin, V. A., Milanov, M., and Tran Kim, H. (1989) in Actinides-89 Abstracts, Tashkent, USSR.Google Scholar
  577. Rose, R. L., Kelly, R. E., and Lesuer, D. R. (1979) J. Nucl. Mater., 79, 414–16.Google Scholar
  578. Runde, W., Meinrath, G., and Kim, J. I. (1992) Radiochim. Acta, 58/59, 93–100.Google Scholar
  579. Runde, W. and Kim, J. I. (1994) Chemisches Verhalten von Drei- und FünfwertigemAmericium in Salinen NaCl-Lösungen, Institut fur Radiochemie, Technische Universitôt Mönchen.Google Scholar
  580. Runde, W., Neu, M. P., and Clark, D. L. (1996) Geochim. Cosmochim. Acta, 60(12), 2065–73.Google Scholar
  581. Runde, W., Van Pelt, C., and Allen, P. G. (2000) J. Alloys Compd., 303/304, 182–90.Google Scholar
  582. Runde, W., Neu, M. P., Conradson, S., and Tait, C. D. (2002) American Chemical Society Meeting ACS 2002, Orlando, Florida, USA.Google Scholar
  583. Runde, W., Bean, A., and Scott, B. (2003) Chem. Commun., 1848–9.Google Scholar
  584. Runnals, O. J. C. and Boucher, R. R. (1955) Nature, 176, 1019–20.Google Scholar
  585. Runnals, O. J. C. and Boucher, R. R. (1956) Can. J. Phys., 34, 949–58; Great Britain Patent 741441 (1956); and US Patent 2809887 (1975).Google Scholar
  586. Ryan, J. L. (1967) Octahedral complexes of trivalent actinides, in Lanthanide/ Actinide Chemistry (ed. R. F. Gould), American Chemical Society, Washing DC, pp. 331–4.Google Scholar
  587. Ryan, J. L. (1974) Ion exchange, in Gmelins Handbuch der Anorganischen Chemie, vol. 21, Transurane, part D2, Verlag Chemie, Weinheim.Google Scholar
  588. Rykov, A. G., Ermakov, V. A., Timofeev, G. A., Chistyakov, V. M., and Yakovlev, G. N. (1970) Sov. Radiochem., 13, 858–61.Google Scholar
  589. Rykov, A. G., Timofeev, G. A., and Chistyakov, V. M. (1973) Radiokhimiya, 15, 872–4.Google Scholar
  590. Sakama, M., Tsukada, K., Asai, M., Tchikawa, S., Haka, H., Gata, S., Oura, Y., Nishanaka, I., Nagama, Y., Shibata, M., Kojima, Y., Kawada, K., Ebihara, M., and Nikahara, H. (2000) Eur. Phys. J. A, 9, 303–5.Google Scholar
  591. Sakamura, Y., Hijkata, T., Kinoshita, K., Inoue, T., Storvik, T. S., Kreuger, C. L., Grantham, L. F., Fusselman, S. F., Grimmett, D. L., and Roy, J. J. (1998) J. Nucl. Sci. Technol., 35, 49–59.Google Scholar
  592. Sakanoue, M. and Amano, R. (1975) in Transplutonium 1975, Proc. 4th Int. Symp., pp. 123–9.Google Scholar
  593. Sakanque, M. and Nakatani, M. (1972) Bull. Chem. Soc. Jpn., 45, 3429.Google Scholar
  594. Saprykin, A. S., Spitsyn, V. I., and Krot, N. N. (1976) Dokl. Akad. Nauk SSSR, 228, 649–51.Google Scholar
  595. Sari, C., Müller, W., and Benedict, U. (1972/73) J. Nucl. Mater., 45, 73–5.Google Scholar
  596. Sasaki, Y. and Tachimori, S. (2002) Solvent Extr. Ion Exch., 20, 21.Google Scholar
  597. Schleid, T., Morss, L. R., and Meyer, G. (1987) J. Less Common Metals, 127, 183–7.Google Scholar
  598. Schmutz, H. (1966) Untersuchungen in den Systemem Alkalifluorid-Lanthaniden/Actini-denfluorid (Li, Na, K, Rb-La, S. E., Y/Np, Pu, Am), KFK.Google Scholar
  599. Schoebrechts, J. P., Gens, R., Fuger, J., and Morss, L. R. (1989) Thermochim. Acta, 139, 49–66.Google Scholar
  600. Schulz, W. W. (1974) Bidentate Organophosphorus Extraction of Americium and Plutonium from Hanford Plutonium Reclamation Facility Waste, Atlantic Richfield Hanford Company.Google Scholar
  601. Schulz, W. W. (1975) Trans. Am. Nucl. Soc., 21, 262–3.Google Scholar
  602. Schulz, W. W. (1976) The Chemistry of Americium, DOE Technical Information Center.Google Scholar
  603. Schulz, W. W., Koenst, J. W., and Tallant, D. R. (1980) Actinide Separations, American Chemical Society, Washington, DC.Google Scholar
  604. Schulz, W. W. and Navratil, J. D. (1982) in Recent Developments in Separation Science, vol. 7 (ed. Li, N.), CRC Press, Boca Raton, FL.Google Scholar
  605. Schulz, W. W. and Horwitz, P. (1988) Sep. Sci. Technol., 23, 1191.Google Scholar
  606. Seaborg, G. T., James, R. A., Ghiorso, A., and Morgan, L. O. (1950) Phys. Rev., 78, 472.Google Scholar
  607. Seaborg, G. T. (1970) Nucl. Appl. Technol., 9, 830–50.Google Scholar
  608. Seaborg, G. T. (1972) Pure Appl. Chem., 30, 539–49.Google Scholar
  609. Sekine, T. (1965) Acta Chem. Scand., 19, 1476.Google Scholar
  610. Seleznev, A. G., Shushakov, V. D., and Kosulin, N. S. (1979) Phys. Met. Metall. (Engl. Transl.), 46, 193–4.Google Scholar
  611. Shafiev, A. I., Efremov, Y. V., Nikolaev, V. M., and Yakovlev, G. N. (1971) Sov. Radiochem., 13, 123–5.Google Scholar
  612. Shalinets, A. B. and Stepanov, A. V. (1971) Radiokhimiya, 13, 566–70.Google Scholar
  613. Shalinets, A. B. and Stepanov, A. V. (1972) Radiokhimiya, 14, 280–3.Google Scholar
  614. Shalinets, A. B. (1972a) Radiokhimiya, 14, 275.Google Scholar
  615. Shalinets, A. B. (1972b) Radiokhimiya, 14, 33.Google Scholar
  616. Shalinets, A. B. (1972c) Radiokhimiya, 14, 269.Google Scholar
  617. Shannon, R. D. (1976) Acta Crystallogr. B, A32, 751–67.Google Scholar
  618. Shen, C., Bao, B., Zhu, J., Wang, Y., and Cao, Z. (1996) J. Radioanal. Nucl. Chem. Art., 212, 187.Google Scholar
  619. Shiloh, M., Givon, M., and Marcus, Y. (1969) J. Inorg. Nucl. Chem., 31, 1807–14.Google Scholar
  620. Shilov, V. P., Nikolaevskii, V. B., and Krot, N. N. (1974) Zh. Neorg. Khim., 19, 469.Google Scholar
  621. Shilov, V. P. (1976) Radiokhimiya, 18, 659–60.Google Scholar
  622. Shilov, V. P., Nikalagevsky, V. B., and Krot, N. N. (1976) in Chemistry of Transuranium Elements (eds. V. I. Spitsyn and J. J. Katz), Pergamon Press, New York, pp. 225–8.Google Scholar
  623. Shilov, V. P., Garnov, A. Y., Krot, N. N., and Yusov, A. B. (1997) Radiochemistry (Eng. Transl.), 39(6), 504–7.Google Scholar
  624. Shilov, V. P. and Yusov, A. B. (1999) Radiochemiya (Moscow), 41(5), 445–7.Google Scholar
  625. Shirokova, I. B., Grigor'ev, M. S., Makarenkov, V. I., Den Auwer, C., Fedoseev, A. M., Budantseva, N. A., and Bessonov, A. A. (2001) Russ. J. Coord. Chem., 27, 729–30.Google Scholar
  626. Shoun, R. R. and McDowell, W. J. (1980) Actinide Separation, ch 6.Google Scholar
  627. Shoup, S. and Bamberger, C. (1997) Radiochim. Acta, 76, 63–9.Google Scholar
  628. Siddall, T. H. I. (1963) J. Inorg. Nucl. Chem., 25, 883–92.Google Scholar
  629. Siddall, T. H. J. (1964) J. Inorg. Nucl. Chem., 26, 1991.Google Scholar
  630. Silva, R. J. (1982) Thermodynamic Properties of Chemical Species in Nuclear Waste. Topical Report: The Solubilities of Crystalline Neodymium and Americium Trihydrox-ides, Lawrence Berkeley National Laboratory, p. 57.Google Scholar
  631. Silva, R. J., Bidoglio, G., Rand, M. H., Robouch, P. B., Wanner, H., and Puigdomenech, I. (1995) Chemical Thermodynamics of Americium, Elsevier, New York.Google Scholar
  632. Silvestre, J. P., Freundlich, A., and Pages, M. (1977) Rev. Chim. Minér., 14, 225–9.Google Scholar
  633. Skobelev, N. K. (1972) Sov. J. Nucl. Phys. (Engl. Transl), 15, 249.Google Scholar
  634. Skriver, H. L., Anderson, O. K., and Johannson, B. (1980) Phys. Rev. Lett., 44, 1230–3.Google Scholar
  635. Smith, J. L. and Haire, R. G. (1978) Science, 200, 535–7.Google Scholar
  636. Smith, G. S., Akella, J., Reichlin, R., Johnson, Q., Schock, R. N., and Schwab, M. (1981) Actinides – 1981, Lawrence Berkeley Laboratory.Google Scholar
  637. Smith, B. F., Jarvinen, G. D., Jones, M. M., and Hay, P. J. (1989) Solvent Extr. Ion Exch., 7, 749.Google Scholar
  638. Smith, L. L., Crain, J. P., Yeager, J. P., Horwitz, E. P., Diamond, H., and Chiarizia, R. (1995) J. Radioanal. Chem., 15, 194.Google Scholar
  639. Soderholm, L., Skanthakamur, S., Antonio, M. R., and Conradson, S. (1996) Z. Phys. B, 101, 539–45.Google Scholar
  640. Soderland, P., Ahuja, R., Eriksson, O., Johannson, B., and Wills, J. M. (2000) Phys. Rev. B, 61, 8119–24.Google Scholar
  641. Sole, K. C., Hiskey, J. B., and Ferguson, T. L. (1993) Solvent Extr. Ion Exch., 11, 1993.Google Scholar
  642. Spjuth, L., Liljenzin, J. O., Hudson, M. I., Drew, M. G. B., Iveson, P. B., and Madic, C. (2000) Solvent Extr. Ion Exch., 18, 1.Google Scholar
  643. Stadler, S. and Kim, J. I. (1988) Radiochim. Acta, 44/45, 39–44.Google Scholar
  644. Standifer, E. M. and Nitsche, H. (1988) Lanthanide and Actinide Res., 2, 383.Google Scholar
  645. Staritzky, E. and Truitt, A. L. (1954) Optical properties of some compounds of Uranium, Plutonium, and related elements, in The Actinide Elements (eds. G. T. Seaborg and J. J. Katz), Natl. Nucl. En. Ser., Div. IV, Vol. 14A, McGraw-Hill, New York, chapter 9.Google Scholar
  646. Stary, J. (1965) Talanta, 13, 421.Google Scholar
  647. Stary, I. (1966) Radiokhimiya, 8, 504.Google Scholar
  648. Stepanov, A. V. and Makarova, T. P. (1965) Radiokhimiya, 7, 670.Google Scholar
  649. Stepanov, A. V., Makarova, T. P., Maksimova, A. M., and Shalinets, A. B. (1967) Radiokhimiya, 9, 710.Google Scholar
  650. Stepanov, A. V. (1971) Zh. Neorg. Khim., 16, 2981.Google Scholar
  651. Stephanou, S. E. and Penneman, R. A. (1952) J. Am. Chem. Soc., 74, 3701–2.Google Scholar
  652. Stephanou, S. E., Nigon, J. P., and Penneman, R. A. (1953) J. Chem. Phys., 21, 42–5.Google Scholar
  653. Stephens, D. R., Stromberg, H. D., and Lilley, E. M. (1968) J. Phys. Chem. Solids, 29, 815–21.Google Scholar
  654. Stronski, I. and Rekas, M. (1973) Radiochem. Radioanal. Lett., 14, 297.Google Scholar
  655. Sullivan, J. C., Hindman, J. C., and Zielen, A. J. (1961) J. Am. Chem. Soc., 83, 3373.Google Scholar
  656. Sullivan, J. C., Gordon, S., Mulac, W. A., Schmidt, K. M., Cohen, D., and Sjoblom, R. (1976) Inorg. Nucl. Chem. Lett., 12, 599–601.Google Scholar
  657. Sullivan, J. C., Gordon, S., Mulac, W. A., Schmidt, K. M., Cohen, D., and Sjoblom, R. (1978) Inorg. Chem., 17, 294–6.Google Scholar
  658. Surls, J. P. J. and Choppin, G. R. (1957) J. Inorg. Nucl. Chem., 4, 62–73.Google Scholar
  659. Swanson, J. L. (1991) Reports PNL-7716, 7734, and 7780, Pacific Northwestern Laboratory, Richland, Washington, USA.Google Scholar
  660. Tabuteau, A., Pages, M., and Freundlich, W. (1972) Radiochem. Radioanal. Lett., 12, 139–44.Google Scholar
  661. Tabuteau, A. and Pages, M. (1978) J. Solid State Chem., 26(2), 153–8.Google Scholar
  662. Tagawa, H. (1971) Nippon Genshiryoku Gakkaishi, 5, 267.Google Scholar
  663. Tan, X.-F., Wang, U.-S., Tan, T.-Z., Zhou, G.-F., and Bao, B.-R. (1999) J. Radioanal. Nucl. Chem. Art., 242, 123.Google Scholar
  664. Tananaev, I. G. (1990a) Radiokhimiya, 32(5), 53–7.Google Scholar
  665. Tananaev, I. G. (1990b) Radiokhimiya, 32(4), 4–6.Google Scholar
  666. Tananev, I. G. (1991) Sov. Radiochem., 33, 224–30.Google Scholar
  667. Tanner, S. P. and Choppin, G. R. (1968) Inorg. Chem., 7, 2046.Google Scholar
  668. Templeton, D. H. and Dauben, C. H. (1953) J. Am. Chem. Soc., 75, 4560–2.Google Scholar
  669. Thouvenot, P., Hubert, S., Moulin, C., Decambox, P., and Mauchien, P. (1993) Radio-chim. Acta, 61, 15–21.Google Scholar
  670. Tian, G. X., Zhu, Y. J., Xu, J. M., Hu, T. D., and Xie, Y. N. (2002) J. Alloys Compd., 334, 86–91.Google Scholar
  671. Tikhonov, M. F., Nepomnyaskeru, V. Z., Kalinina, S. V., Khokhlov, A. D., Bulkin, V. I., and Filin, B. M. (1988) Radiokhimiya, 28, 804–9.Google Scholar
  672. Tomkins, F. S. and Fred, M. (1949) J. Opt. Soc. Am., 39, 357–63.Google Scholar
  673. Torres, R. A. and Choppin, G. R. (1984) Radiochim. Acta, 35, 143.Google Scholar
  674. Trautmann, N. (1994) J. Alloys Compd., 213/214, 28–32.Google Scholar
  675. Tsukada, K., Ichikawa, Y., Hatsukawa, Y., Nishinaka, I., Hata, K., Nagame, Y., Oura, Y., Ohyama, T., Sueki, K., Nakahara, H., Asai, M., Kojima, Y., Hirose, T., Yamamoto, H., and Kawade, K. (1998) Phys. Rev. C, 57, 2057–60.Google Scholar
  676. Uchiyama, G., Mineo, H., Hataku, S., Asakura, T., Kansi, K., Watanabe, M., Nakano, Y., Kimura, S., and Fujine, S. (2000) Prog. Nucl. Energy, 35, 151–6.Google Scholar
  677. UCRL (1959) Chemistry Division Semiannual Report for December 1958 Through May 1959 and Chemistry Division Semiannual Report for June Through December 1959.Google Scholar
  678. Ueno, K. and Hoshi, M. (1971) J. Inorg. Nucl. Chem., 33, 1765 and 2631–3.Google Scholar
  679. Valenzuela, R. W. and Brundage, R. T. (1990) J. Chem. Phys., 93, 8469–73.Google Scholar
  680. Varga, L. P., Mann, J. B., Asprey, L. B., and Reisfeld, M. J. (1971) J. Chem. Phys., 55(9), 4230..Google Scholar
  681. Varga, L. P., Baybarz, R. D., Reisfeld, M. J., and Asprey, L. B. (1973) J. Inorg. Nucl. Chem., 35, 2775–85.Google Scholar
  682. Vladimirova, M. V., Ryabova, A. A., ulikov, I. A., and Milovanova, A. S. (1977) Radiokhimiya, 19(5), 725–31.Google Scholar
  683. Vladimirova, M. V. (1986) Radiokhimiya, 28(5), 649–56.Google Scholar
  684. Vogt, O., Mattenberger, K., Löhle, J., and Rebizant, J. (1998) J. Alloys Compd., 271–273 508–12.Google Scholar
  685. Volkov, Y. F., Kapshukov, I. I., Visyasheva, G. I., and Yokovlev, G. N. (1974) Radio-khimiya, 16, 859–63, 863–7, and 868–73.Google Scholar
  686. Volkov, Y. F., Visyasheva, G. I., Tomilin, S. V., Kapshukov, I. I., and Rykov, A. G. (1981) Sov. Radiochem., 23, 195.Google Scholar
  687. Vorob'eva, V. V., Elesin, A. A., and Zaitsev, A. A. (1973a) Complexing of Trivalent Americium, Curium, Californium, Promethium, and Yttrium Ions with Dioxymethylpho-sphinic Acid. Google Scholar
  688. Vorob'eva, V. V., Elesin, A. A., and Zaitsev, A. A. (1973b) Complexing Trivalent Americium, Curium, Californium, and Yttrium Ions with Bis(hydroxymethyl)phosphinic Acid.Google Scholar
  689. Wall, N., Borkowski, M., Chen, J., and Choppin, G. (2002) Radiochim. Acta, 90(9–11), 563–8.Google Scholar
  690. Wapstra, A. H. and Gove, N. B. (1971) Nucl. Data Tables, 9, 265–468.Google Scholar
  691. Ward, J. W., Muller, W., and Kramer, G. F. (1975), in Transplutonium Elements, Proc. 4th Int. Symp., Baden-Baden, Sept. 13–17, (eds. W. Müller and R. Lindner), Elsevier, North-Holland/Amer. Elsevier, p. 161–71.Google Scholar
  692. Ward, J. W. and Hill, H. H. (1976) Heavy Elements Properties, North-Holland, Amsterdam.Google Scholar
  693. Weaver, B. and Kappelmann, F. A. (1964) Talspeak: A New Method of Separating Americium and Curium from the Lanthanides by Extraction from and Aqueous Solution of an Aminopolyacetic Acid Complex with a Monoacidic Organophosphate or Phosphonate, Oak Ridge National Laboratory.Google Scholar
  694. Weaver, B. and Shoun, R. R. (1971) in Proc. 9th Rare Earth Research Conf., p. 322.Google Scholar
  695. Weaver, B. (1974) in Ion Exchange and Solvent Extraction, (eds. J. A. Marinsky and Y. Marcus), A Series of Advances, vol. 6, Marcel Dekker, New York.Google Scholar
  696. Wei, Y. Z., Kumagai, M., Takashima, Y., Modolo, G., and Odoj, R. (2000a) Nucl. Tech., 132, 413–23.Google Scholar
  697. Wei, Y. Z., Sabharwal, K. N., Kumagi, M., Asakara, T., Uchiyama, G., and Fujine, S. (2000b) J. Nucl. Sci. Technol., 37, 1108–10.Google Scholar
  698. Weifan, Y., Junsheng, G., Wantong, M., Keming, F., Zaiguo, G., Hongye, L., Lijun, S., Shuifa, S., Shuanggui, Y., Shuhong, W., Denming, K., and Jimin, Q. (1999) J. Radio-anal. Nucl. Chem., 240, 379–81.Google Scholar
  699. Weigel, F., Ollendorff, W., Scherer, V., and Hagenbruch, R. (1966) Z. Anorg. Allg. Chem., 345, 119–28.Google Scholar
  700. Weigel, F. and Meer, ter N. (1967) Inorg. Nucl. Chem. Lett., 3, 403–8.Google Scholar
  701. Weigel, F. and Meer, ter N. (1971) Z. Naturf. B, 26, 504–12.Google Scholar
  702. Weigel, F., Wishnevsky, V., and Hauske, H. (1975), in Transplutonium Elements, Proc. 4th Int. Symp., Baden-Baden, Sept. 13–17, (eds. W. Muller and R. Lindner), Elsevier, North-Holland/Amer., p. 217–26.Google Scholar
  703. Weigel, F., Wittmann, F. D., and Marquart, R. (1977) J. Less Common Metals, 56, 47–53.Google Scholar
  704. Weigel, F., Wishnevsky, V., and Wolf, M. (1979) J. Less Common Metals, 63, 81–6.Google Scholar
  705. Weigel, F., Wittmann, F. D., Schuster, W., and Marquart, R. (1984) J. Less Common Metals, 102(2), 227–38.Google Scholar
  706. Werner, L. B. and Perlman, I. (1950) J. Am. Chem. Soc., 73, 495–6.Google Scholar
  707. Wheelwright, E. J., Roberts, F. P., and Bray, L. A. (1968) Simultaneous Recovery and Purification of Pm, Am, and Cm by the Use of Alternating DTPA and NTA Cation-Exchange Flowsheets, Pacific Northwest Laboratories.Google Scholar
  708. Williams, C. W., Antonio, M. R., and Soderholm, L. (2000) J. Alloys Compd., 303/304, 509–13.Google Scholar
  709. Wittmann, F. D. (1980) University of Munich.Google Scholar
  710. Woods, M., Cain, A., and Sullivan, J. C. (1974) J. Inorg. Nucl. Chem., 36, 2605–7.Google Scholar
  711. Woods, M. and Sullivan, J. C. (1974) Inorg. Chem., 13, 2774–5.Google Scholar
  712. Woods, M., Montag, T. A., and Sullivan, J. C. (1976) J. Inorg. Nucl. Chem., 38, 2059–61.Google Scholar
  713. Wruck, D. A., Palmer, C. E. A., and Silva, R. J. (1999) Radiochim. Acta, 85, 21–4.Google Scholar
  714. Yaita, T., Tachimori, S., Edelstein, N. M., Bucher, J. J., Rao, L., Shuh, D. K., and Allen, P. G. (2001) J. Synchrotron Radiation, 8, 663–5.Google Scholar
  715. Yakovlev, G. N. and Gorbenko- Germanov, D. S. (1955) in Proc. Int. Conf. on the Peaceful Uses of Atomic Energy, pp. 306–8.Google Scholar
  716. Yakovlev, G. N., Gorbenko- Germanov, D. S., Zenkova, R. A., Razbitnoi, V. L., and Kazanski, K. S. (1958) J. Gen. Chem. USSR, 28(2653).Google Scholar
  717. Yakovlev, G. N. and Kosyakov, V. N. (1958a) An Investigation of the Chemistry of Americium, Proc. 2nd Int. Conf. on the Peaceful Uses of Atomic Energy, pp. 373–84.Google Scholar
  718. Yakovlev, G. N. and Kosyakov, V. N. (1958b) Spectrophotometric Studies of the Behaviour of Americium Ions in Solutions, Proc. 2nd Int. Conf. on the Peaceful Uses of Atomic Energy, pp. 363–8.Google Scholar
  719. Yamagishi, I., Morita, Y., and Kubota, M. (1996) Radiochim. Acta, 75, 27–32.Google Scholar
  720. Yamamoto, M. and Sakanoue, M. (1982) J. Radiat. Res., 23, 261.Google Scholar
  721. Yamana, H. and Moriyama, H. (1996) J. Nucl. Sci. Technol., 33, 288–97.Google Scholar
  722. Yanir, E., Givon, M., and Marcus, Y. (1959) Inorg. Nucl. Chem. Lett., 6, 415–9.Google Scholar
  723. Yanir, E., Givon, M., and Marcus, Y. (1969) Inorg. Nucl. Chem. Lett., 5, 369–72.Google Scholar
  724. Yusov, A. B. (1989) Photoluminescence of americium(III) in aqueous and organic solutions, in Actinides ‘89, p. 240 and pp. 241–2.Google Scholar
  725. Yusov, A. B. (1993) Radiochem. Radioanal. Lett., 35, 1–14.Google Scholar
  726. Zachariasen, W. H. (1948a) Phys. Rev. B, 73, 1104–5.Google Scholar
  727. Zachariasen, W. H. (1948b) Acta Crystallogr., 1, 265–9.Google Scholar
  728. Zachariasen, W. H. (1949a) Acta Crystallogr., 2, 288–91.Google Scholar
  729. Zachariasen, W. H. (1949b) Acta Crystallogr., 2, 388–90.Google Scholar
  730. Zachariasen, W. H. (1949c) Phys. Rev., 73, 1104.Google Scholar
  731. Zachariasen, W. H. (1949d) Acta Crystallogr., 2, 57–60.Google Scholar
  732. Zachariasen, W. H. (1954) in The Actinide Elements (eds. G. T. Seaborg, L. R. Morss and J. J. Katz), McGraw-Hill, New York, pp. 769–95.Google Scholar
  733. Zachariasen, W. H. (1978) J. Less Common Metals, 62, 1–7.Google Scholar
  734. Zaitsev, A. A., Kosyakov, V. N., Rykov, A. G., Sobolev, Y. B., and Yakovlev, G. N. (1960a) Radiokhimiya, 2(3), 348–50.Google Scholar
  735. Zaitsev, A. A., kosyakov, V. N., Rykov, A. G., Sobolov, Y. P., and Yakovlev, G. N. (1960b) Sov. At. Energy, 7, 562–9.Google Scholar
  736. Zemlyanukhin, V. I., Savoskina, G. P., and Pushlenkov, M. F. (1962) Sov. Radiochem., 4, 501–5.Google Scholar
  737. Zhu, Y. (1995) Radiochim. Acta, 68, 1995.Google Scholar
  738. Zhu, Y., Chen, J., and Choppin, G. R. (1996a) Solvent Extr. Ion Exch., 14, 543.Google Scholar
  739. Zhu, Y., Chen, J., and Jiao, R. (1996b) Solvent Extr. Ion Exch., 14, 61.Google Scholar
  740. Zhu, Y. and Jiao, R. (1994) Nucl. Technol., 108, 361–9.Google Scholar
  741. Zhu, Y., Xu, J., Chen, J., and Chen, Y. (1998) J. Alloys Compd., 742, 271–3.Google Scholar
  742. Zubarev, V. G. and Krot, N. N. (1982) Sov. Radiochem. (Engl. Transl.), 24, 264–7.Google Scholar
  743. Zubarev, V. G. and Krot, N. N. (1983a) Sov. Radiochem., 25, 601.Google Scholar
  744. Zubarev, V. G. and Krot, N. N. (1983b) Sov. Radiochem., 25, 594.Google Scholar
  745. Zur Nedden, P. (1969) Z. Anal. Chem., 247, 236.Google Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Wolfgang H. Runde
    • 1
  • Wallace W. Schulz
    • 2
  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.AlbuquerqueUSA

Personalised recommendations