Advertisement

Actinide Chalcogenide Compounds

  • Emmanouil Manos
  • Mercouri G. Kanatzidis
  • James A. Ibers

Abstract

This chapter describes the preparation, structures, and physical properties of the known binary, ternary, and quaternary actinide chalcogenide compounds. In discussing structures we rely almost exclusively on X-ray or neutron diffraction results from single crystals rather than from powders. Owing to the dearth of measurements on single crystals, in discussions of physical properties we must rely as well on the results from powders. In doing so we note the caveat that physical properties of solid-state materials are often very sensitive to the presence of impurities, defects, and related phenomena that are often difficult to detect by powder diffraction methods. For convenience the article is subdivided according to composition (e.g. binary, ternary and multinary compounds).

Keywords

White Ball Trigonal Prism Formal Oxidation State Weiss Behavior Gray Ball 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amoretti, G., Blaise, A., Bogé, M., Bonnisseau, D., Burlet, P., Collard, J.M., Fournier, J.M., Quézel, S., Rossat-Mignod J. (1989) J. Magn. Magn. Mater., 79, 207–24.Google Scholar
  2. Amoretti, G., Blaise, A., Bonnet, M., Caciuffo, R., Erdos, P., Noel, H., Santini P. (1995) J. Magn. Magn. Mater., 139, 339–46.Google Scholar
  3. Amoretti, G., Blaise, A., Burlet, P., Gordon, J. E., and Troc, R. (1986). J. Less-Common Met., 121, 233–48.Google Scholar
  4. Amoretti, G., Calestani, G., and Giori, D. C. (1984). Z. Naturforsch. A., 39, 778–82.Google Scholar
  5. Baenziger, N. C., Rundle R. E., Snow, A. I., Wilson, A. S., (1950), Acta Crystallogr., 3, 34–40.Google Scholar
  6. Bazan, C. and Zygmunt, A. (1972). Phys. Status Solidi A, 12, 649–53.Google Scholar
  7. Beck, H. P. and Dausch, W. (1988). Z. Naturforsch. B, 43, 1547–50.Google Scholar
  8. Beck, H. P. and Dausch, W. (1989a). Z. Anorg. Allg. Chem., 571, 162–4.Google Scholar
  9. Beck, H. P. and Dausch, W. (1989b). J. Solid State Chem., 80, 32–9Google Scholar
  10. Beck, J. and Fischer, A. (2002). Z. Anorg. Allg. Chem., 628, 369–72.Google Scholar
  11. Ben Salem, A., Meerschaut, A., and Rouxel, J. (1984). Cr. Hebd. Acad. Sci., II, 299, 617–9.Google Scholar
  12. Benz, R. and Zachariasen, W. H. (1969). Acta Crystallogr., B25, 294–6.Google Scholar
  13. Benz, R. and Zachariasen, W. H. (1970). Acta Crystallogr., B26, 823–7.Google Scholar
  14. Blaise, A., Lagnier, R., Wojakowski, A., Zygmunt, A., and Mortimer, M. J. (1980). J. Low Temp. Phys., 41, 61–72.Google Scholar
  15. Breeze, E. W., Brett, N. H., and White, J. (1971). J. Nucl. Mater., 39, 157–65.Google Scholar
  16. Briggs Piccoli, P. M., Abney, K. D., and Dorhout, P. K. (2002). J. Nucl. Sci. Technol., 3, 611–5.Google Scholar
  17. Briggs Piccoli, P. M., Abney, K. D., Schnoover, J. R., and Dorhout, P. K. (2000). Inorg. Chem., 39, 2970–6.Google Scholar
  18. Briggs Piccoli, P. M., Abney, K. D., Schoonover, J. D., and Dorhout, P. K. (2001). Inorg. Chem., 40, 4871–5.Google Scholar
  19. Brochu, R., Padiou, J., and Grandjean, D. (1970b). Cr. Acad. Sci. C. Chim., 271, 642–3.Google Scholar
  20. Brochu, R., Padiou, J., and Prigent, J. (1970a). Cr. Acad. Sci. C. Chim., 270, 809–10.Google Scholar
  21. Brochu, R., Padiou, J., and Prigent, J. (1972). Cr. Acad. Sci. C. Chim., 274, 959–61.Google Scholar
  22. Bugaris, D. E., Wells, D. M., and Ibers, J. A. (2009). J. Solid State Chem., 182, 1017–20.Google Scholar
  23. Busch, G. and Vogt, O. (1978). J. Less-Common Met., 62, 335–42.Google Scholar
  24. Chan, B. C., Hess, R. F., Feng, P. L., Abney, K. D., and Dorhout, P. K. (2005). Inorg. Chem., 44, 2106–13.Google Scholar
  25. Chan, B. C., Hulvey, Z., Abney, K. D., and Dorhout, P. K. (2004). Inorg. Chem., 43, 2453–5.Google Scholar
  26. Chenevier, B., Wolfers, P., Bacmann, M., and Noel, H. (1981). Cr. Acad. Sci. II B, 293, 649–52.Google Scholar
  27. Chevrel, R., Sergent, M., and Prigent, J. (1971). J. Solid State Chem., 3, 515–9.Google Scholar
  28. Choi, K. S., Iordanidis, L., Chondroudis, K., and Kanatzidis, M. G. (1997). Inorg. Chem., 36, 3804–5.Google Scholar
  29. Choi, K. S. and Kanatzidis, M. G. (1999). Chem. Mater., 11, 2613–8.Google Scholar
  30. Choi, K. S., Patschke, R., Billinge, S. J. L., Waner, M. J., Dantus, M., and Kanatzidis, M. G. (1998). J. Am. Chem. Soc., 120, 10706–14.Google Scholar
  31. Chondroudis, K. and Kanatzidis, M. G. (1996). Cr. Hebd. Acad. Sci., II. 322, 887–94.Google Scholar
  32. Chondroudis, K. and Kanatzidis, M. G. (1997). J. Am. Chem. Soc., 119, 2574–5.Google Scholar
  33. Cody, J. A. and Ibers, J. A. (1995). Inorg. Chem. 34, 3165–72.Google Scholar
  34. Cody, J. A. and Ibers, J. A. (1996). Inorg. Chem. 35, 3836–8.Google Scholar
  35. Conradson, S. D., Abney, K. D., Begg, B. D., Brady, E. D., Clark, D. L., Den Auwer, C., Ding, M., Dorhout, P. K., Espinosa-Faller, F. J., Gordon, P. L., Haire, R. G., Hess, N. J., Hess, R. F., Keogh, D. W., Lander, G. H., Lupinetti, A. J., Morales, L. A., Neu, M. P., Palmer,P. D., Paviet-Hartmann, P., Reilly, S. D., Runde,W. H., Tait, C. D., Veirs, D. K., and Wastin, F. (2004a). Inorg. Chem. 43, 116–31.Google Scholar
  36. Conradson, S. D., Begg, B. D., Clark, D. L., Den Auwer, C., Ding, M., Dorhout, P. K., Espinosa-Faller, F. J., Gordon, P. L., Haire, R. G., Hess, N. J., Hess, R. F., Keogh, D. W., Morales, L. A., Neu, M. P., Paviet-Hartmann, P., Runde, W., Tait, C. D., Veirs, D. K., and Villella, P. M. (2004b). J. Am Chem. Soc., 126, 13443–58.Google Scholar
  37. Conradson, S. D., Begg, B. D., Clark, D. L., Den Auwer, C., Ding, M., Dorhout, P. K., Espinosa-Faller, F. J., Gordon, P. L., Haire, R. G., Hess, N. J., Hess, R. F., Webster Keogh, D., Lander, G. H., Manara, D., Morales, L. A., Neu, M. P., Paviet-Hartmann, P., Rebizant, J., Rondinella, V. V., Runde, W., Tait, C. D., Veirs, D. K., Villella, P. M., and Wastin, F. (2005). J. Solid State Chem., 178, 521–35.Google Scholar
  38. Costantini, J. M., Damien, D., De Novion, C. H., Blaise, A., Cousson, A., Abazli, H., and Pages, M. (1983). J. Solid State Chem. 47, 210–18.Google Scholar
  39. d’Eye, R. W. M. (1953). J. Chem. Soc., 1953, 1670–2.Google Scholar
  40. d’Eye, R. W. M. and Sellman, P. G. (1954). J. Chem. Soc., 1954, 3760–6.Google Scholar
  41. d’Eye, R. W. M., Sellman, P. G., and Murray, J. R. (1952). J. Chem. Soc., 1952, 2555–62.Google Scholar
  42. Dabos-Seignon, S., Benedict, U., Heathman, S., Spirlet, J. C., and Pages, M. (1990). J. Less-Common Met., 160, 35–52.Google Scholar
  43. Damien, D. (1973). Inorg. Nucl. Chem. Lett. 9, 453–6.Google Scholar
  44. Damien, D. (1974). J. Inorg. Nucl. Chem. 36, 307–8.Google Scholar
  45. Damien, D., de Novion, C. H., and Gal, J. (1981). Solid State Commun. 38, 443–40Google Scholar
  46. Daoudi, A., Lamire, M., Levet, J. C., and Noel, H. (1996c). J. Solid State Chem., 123, 331–6.Google Scholar
  47. Daoudi, A., Levet, J. C., Potel, M., and Noel, H. (1996a). Mater. Res. Bull., 31, 1213–8.Google Scholar
  48. Daoudi, A. and Noel, H. (1985). J. Solid State Chem. 60, 131–4.Google Scholar
  49. Daoudi, A. and Noel, H. (1986a). Inorg. Chim. Acta., 117, 183–5.Google Scholar
  50. Daoudi, A. and Noel, H. (1986b). J. Less-Common Met., 115, 253–9.Google Scholar
  51. Daoudi, A. and Noel, H. (1987). Inorg. Chim. Acta, 140, 93–5.Google Scholar
  52. Daoudi, A. and Noel, H. (1989). J. Less-Common Met., 153, 293–8.Google Scholar
  53. Daoudi, A. and Noel, H. (1996). J. Alloy. Compd. 233, 169–73.Google Scholar
  54. Daoudi, A., Potel, M., and Noel, H. (1996b). J. Alloy. Compd. 232, 180–5.Google Scholar
  55. Dell, R. M., Carney, R. F. A., and Allbutt, M. (1967). Application, GB Patent No. 1060130.Google Scholar
  56. de Novion, C. H., Damien, D., and Hubert, H. (1981). J. Solid State Chem. 39, 360–7Google Scholar
  57. Do, J., Kim, J., Lah, S., and Yun, H. (1993) Bull. Korean Chem. Soc., 14, 678–681.Google Scholar
  58. Ellert, G. V., Kuz’micheva, G. M., Eliseev, A. A., Slovyanskikh, V. K., and Morozov, S. P. (1974). Zh. Neorg. Khim., 19, 2834–8.Google Scholar
  59. Ferro, R. (1954). Z. Anorg. Allg. Chem., 275, 320–6.Google Scholar
  60. Ferro, R. (1955). Atti Accad. Nazl. Lin., 18, 641–4.Google Scholar
  61. Furuseth, S., Brattas, L., and Kjekshus, A. (1975). Acta Chem. Scand. A. 29, 623–31.Google Scholar
  62. Furuseth, S. and Fjellvag, H. (1991). Acta Chem. Scand. A. 45, 694–7.Google Scholar
  63. Gieck, C. and Tremel, W. (2002). Chem. Eur. J. 8, 2980–7.Google Scholar
  64. Gray, D. L., Backus, L. A., von Nidda, H. A. K., Skanthakumar, S., Loidl, A., Soderholm, L., and Ibers, J. A. (2007). Inorg. Chem. 46, 6992–6.Google Scholar
  65. Haessler, M., de Novion, C. H., and Damien, D. (1976). Plutonium 1975, Proc. Int. Conf., 1975, 649–57.Google Scholar
  66. Handwerk, J. H. and Kruger, O. L. (1971). Nucl. Eng. Des., 17, 397–408.Google Scholar
  67. Handwerk, J. H., White, G. D., and Shalek, P. D. (1965). Application, US Patent No. 3194745.Google Scholar
  68. Haneveld, A. J. K. and Jellinek, F. (1964). J. Inorg. Nucl. Chem. 26, 1127–8.Google Scholar
  69. Haneveld, A. J. K. and Jellinek, F. (1969). J. Less-Common Met., 18, 123–9.Google Scholar
  70. Henkie, Z., Cichorek, T., Pietraszko, A., Fabrowski, R., Wojakowski, A., Kuzhel, B. S., Kepinski, L., Krajczyk, L., Gukasov, A., and Wisniewski, P. (1998). J. Phys. Chem. Solids. 59, 385–93.Google Scholar
  71. Hess, R. F., Abney, K. D., Burris, J. L., Hochheimer, H. D., and Dorhout, P. K. (2001). Inorg. Chem. 40, 2851–9.Google Scholar
  72. Hess, R. F., Gordon, P. L., Tait, C. D., Abney, K. D., and Dorhout, P. K. (2002). J. Am. Chem. Soc., 124(7), 1327–33.Google Scholar
  73. Huang, F. Q. and Ibers, J. A. (2001). J. Solid State Chem., 159, 186–90.Google Scholar
  74. Huang, F. Q., Mitchell, K. and Ibers, J. A. (2001). Inorg. Chem. 40, 5123–6.Google Scholar
  75. Hulliger, F. (1968). J. Less-Common Met., 16, 113–17.Google Scholar
  76. Ijjaali, I., Mitchell, K., Huang, F. Q., and Ibers, J. A. (2004). J. Solid State Chem., 177, 257–61.Google Scholar
  77. Jaulmes, S., Julien-Pouzol, M., Dugue, J., Laruelle, P., Vovan, T., and Guittard, M. (1990). Acta Crystallogr. C. 46, 1205–7.Google Scholar
  78. Jaulmes, S., Julien-Pouzol, M., Guittard, M., Vovan, T., Laruelle, P., and Flahaut, J. (1986). Acta Crystallogr. C. 42, 1109–11.Google Scholar
  79. Jin, G. B., Choi, E. S., and Ibers, J. A. (2009). Inorg. Chem. 48, 8227–32.Google Scholar
  80. Julien, R., Rodier, N., and Tien, V. (1978). Acta Crystallogr. B34, 2612–4.Google Scholar
  81. Julien-Pouzol, M., Jaulmes, S., Mazurier, A., and Guittard, M. (1981). Acta Crystallogr. B37, 1901–3Google Scholar
  82. Kaczorowski, D., Noel, H., Potel, M., and Zygmunt, A. (1994). J. Phys. Chem. Solids. 55, 1363–7.Google Scholar
  83. Kaczorowski, D., Poettgen, R., Gajek, Z., Zygmunt, A., and Jeitschko, W. (1993). J. Phys. Chem. Solids. 54, 723–31.Google Scholar
  84. Kanatzidis, M. G. and Sutorik, A. C. (1995). Progr. Inorg. Chem. 43, 151–265.Google Scholar
  85. Khodadad, P. (1959). Cr. Hebd. Acad. Sci. 249, 694–6.Google Scholar
  86. Khodadad, P. (1961). Compt. Rend. 253, 1575–7.Google Scholar
  87. Kikuchi, A. and Fukuda, K. (1974). Creep strength of the uranium monocarbide containing small quantity of uranium monosulfide, Japan At. Energy Res. Inst.,Tokyo, Japan.Google Scholar
  88. Kim, J. Y., Gray, D. L. and Ibers, J. A. (2006). Acta Crystallogr. E62, I124–I125.Google Scholar
  89. Kohlmann, H. and Beck, H. P. (1997). Z. Anorg. Allg. Chem. 623, 785–90.Google Scholar
  90. Kohlmann, H. and Beck, H. P. (1999). Z. Kristallogr., 214, 341–5.Google Scholar
  91. Kohlmann, H., Stöwe, K., and Beck, H. P. (1997). Z. Anorg. Allg. Chem. 623, 897–900.Google Scholar
  92. Komac, M., Golic, L., Kolar, D., and Brcic, B. S. (1971). J. Less-Common Met. 24, 121–8.Google Scholar
  93. Kruger, O. L. and Moser, J. B. (1967). J. Phys. Chem. Solids 28, 2321–5.Google Scholar
  94. Kwak, J. E., Gray, D. L., Yun, H. and Ibers, J. A. (2006). Acta Crystallogr. E62, I86–I87.Google Scholar
  95. Leciejewicz, J., Zolnierek, Z., Ligenza, S., Troc, R., and Ptasiewicz, H. (1975). J. Phys. C Solid State 8, 1697–704.Google Scholar
  96. Leciejewicz, J., Zolnierek, Z., and Troc, R. (1977). Solid State Commun. 22, 697–9.Google Scholar
  97. Leciejewicz, J. and Zygmunt, A. (1972). Phys. Status Solidi A, 13, 657–60.Google Scholar
  98. Lelieveld, R. and Ijdo, D. J. W. (1980). Acta Crystallogr. B36, 2223–6.Google Scholar
  99. Lovell, G. H. B. and Van Tets, A. (1979). J. Nucl. Mater. 79, 277–301.Google Scholar
  100. Lovell, G. H. B., Van Tets, A., and Britz, E. J. (1973). J. Nucl. Mater. 48, 74–8.Google Scholar
  101. Mansuetto, M. F., Jobic, S., Ng, H. P., and Ibers, J. A. (1993). Acta Crystallogr. C 49, 1584–5.Google Scholar
  102. Mansuetto, M. F., Keane, P. M., and Ibers, J. A. (1992). J. Solid State Chem., 101, 257–64.Google Scholar
  103. Marcon, J. P. and Pascard, R. (1966). Cr. Acad. Sci. C. Chim. 262, 1679–81.Google Scholar
  104. Mattenberger, K., Scherrer, L., and Vogt, O. (1984). J. Cryst. Growth. 67, 467–71.Google Scholar
  105. Mattenberger, K. and Vogt, O. (1992). Phys. Scr. T45, 103–9.Google Scholar
  106. Mitchell, A. W. and Lam, D. J. (1970). 37, 349–52.Google Scholar
  107. Mitchell, A. W. and Lam, D. J. (1971). J. Nucl. Mater. 39, 219–23.Google Scholar
  108. Mizoguchi, H., Gray, D., Huang, F. Q., and Ibers, J. A. (2006). Inorg. Chem. 45, 3307–11.Google Scholar
  109. Mooney-Slater, R. C. L. (1977). Z. Kristallogr. Krist., 120, 278–85.Google Scholar
  110. Moseley, P. T., Brown, D., and Whittaker, B. (1972). Acta Crystallogr. B28, 1816–21.Google Scholar
  111. Narducci, A. A. and Ibers, J. A. (1998a). Chem. Mater. 10, 2811–23.Google Scholar
  112. Narducci, A. A. and Ibers, J. A. (1998b). Inorg. Chem. 37, 3798–801.Google Scholar
  113. Narducci, A. A. and Ibers, J. A. (2000). Inorg. Chem. 39, 688–91.Google Scholar
  114. Neimark, L. A. and Carlander, R. (1964). IMD Special Rep. Ser., 10, 753–64.Google Scholar
  115. Noel, H. (1973). C. R. Acad. Sci. C. Chim 277, 463–4.Google Scholar
  116. Noel, H. (1974). C. R. Acad. Sci. C. Chim. 279, 513–15.Google Scholar
  117. Noel, H. (1980). J. Less-Common Met. 72, 45–9.Google Scholar
  118. Noel, H. (1984). Mater. Res. Bull., 19, 1171–5.Google Scholar
  119. Noel, H. (1985a). Physica B and C, 130, 499–500Google Scholar
  120. Noel, H. (1985b). Inorg. Chim. Acta, 109, 205–7.Google Scholar
  121. Noel, H. (1986). J. Less-Common Met., 121, 265–70.Google Scholar
  122. Noel, H. and le Marouille, J. Y. (1984). J. Solid State Chem. 52, 197–202Google Scholar
  123. Noel, H. and Levet, J. C. (1989). J. Solid State Chem. 79, 28–33.Google Scholar
  124. Noel, H. and Padiou, J. (1976a). Acta Crystallogr. B32, 1593–5.Google Scholar
  125. Noel, H. and Padiou, J. (1976b). Acta Crystallogr. B32, 605–6.Google Scholar
  126. Noel, H., Padiou, J., and Prigent, J. (1971). Cr. Acad. Sci. C. Chim. 272, 206–8.Google Scholar
  127. Noel, H., Padiou, J., and Prigent, J. (1975b). Cr. Acad. Sci. C. Chim. 280, 123–6.Google Scholar
  128. Noel, H. and Potel, M. (1982). Acta Crystallogr. B38, 2444–5.Google Scholar
  129. Noel, H. and Potel, M. (1985). J. Less-Common Met., 113, 11–5.Google Scholar
  130. Noel, H., Potel, M., and Padiou, J. (1975a). Acta Crystallogr., B31, 2634–7.Google Scholar
  131. Noel, H., Potel, M., Shlyk, L., Kaczorowski, D., and Troc, R. (1995). J. Alloy. Compd., 217, 94–6.Google Scholar
  132. Noel, H., Potel, M., Troc, R., and Shlyk, L. (1996). J. Solid State Chem. 126, 22–6.Google Scholar
  133. Noel, H. and Prigent, J. (1980). Physica B and C, 102, 372–9.Google Scholar
  134. Olsen, J. S., Gerward, L., Benedict, U., Luo, H., and Vogt, O. (1988). High Temp. - High Press. 20, 553–9.Google Scholar
  135. Padiou, J. and Guillevi.J. (1969). Cr. Acad. Sci. C. Chim. 268, 822–4.Google Scholar
  136. Pearson, W. B. (1985). Z. Kristallogr., 171, 23–39.Google Scholar
  137. Pietraszko, D. and Lukaszewicz, K. (1975). Bull. Acad. Pol. Sci. Chim., 23(4), 337–40.Google Scholar
  138. Potel, M., Brochu, R., and Padiou, J. (1975). Mater. Res. Bull., 10, 205–8.Google Scholar
  139. Potel, M., Brochu, R., Padiou, J., and Grandjea.D. (1972). CR. Acad. Sci. C. Chim. 275, 1419–21.Google Scholar
  140. Ptasiewicz-Bak, H., Leciejewicz, J., and Zygmunt, A. (1978). Phys. Status Solidi A, 47, 349–56.Google Scholar
  141. Rocker, F. and Tremel, W. (2001). Z. Anorg. Allg. Chem. 627, 1305–8.Google Scholar
  142. Rodier, N. and Tien, V. (1976). Acta Crystallogr. B32, 2705–7.Google Scholar
  143. Sato, N., Nakajima, T., Yamada, K., and Fujino, T. (1999). Korean J. Ceram. 5, 348–52.Google Scholar
  144. Selby, H. D., Chan, B. C., Hess, R. F., Abney, K. D., and Dorhout, P. K. (2005). Inorg. Chem., 44(18), 6463–9.Google Scholar
  145. Shlyk, L., Stepien-Damm, J., Troc, R., and Kaczorowski, D. (1995a). J Alloys Compds., 219, 264–6.Google Scholar
  146. Shlyk, L., Troc, R., and Kaczorowski, D. (1995b). J. Magn. Magn. Mater., 140–144, 1435–6.Google Scholar
  147. Simon, A., Peters, K., and Peters, E. M. (1982). Z. Anorg. Allg. Chem., 491, 295–300.Google Scholar
  148. Slovyanskikh, V. K., Kuznetsov, N. T., and Gracheva, N. V. (1984). Zh. Neorg. Khim., 29, 1676–8.Google Scholar
  149. Stocks, K., Eulenberger, G., and Hahn, H. (1981). Z. Anorg. Allg. Chem., 472, 139–48.Google Scholar
  150. Stöwe, K. (1996a). Z. Anorg. Allg. Chem., 622, 1419–22.Google Scholar
  151. Stöwe, K. (1996b). Z. Anorg. Allg. Chem., 622, 1423–7.Google Scholar
  152. Stöwe, K. (1997). Z. Anorg. Allg. Chem., 623, 749–54.Google Scholar
  153. Stöwe, K. and Appel-Colbus, S. (1999). Z. Anorg. Allg. Chem., 625, 1647–51.Google Scholar
  154. Sunshine, S. A., Kang, D., and Ibers, J. A. (1987). J. Am. Chem. Soc., 109, 6202–4.Google Scholar
  155. Suski, W., Gibinski, T., Wojakowski, A., and Czopnik, A. (1972). Phys. Stat. Solidi A, 9, 653–8.Google Scholar
  156. Sutorik, A. C., Albritton-Thomas, J., Hogan, T., Kannewurf, C. R., and Kanatzidis, M. G. (1996). Chem. Mater., 8, 751–61.Google Scholar
  157. Sutorik, A. C. and Kanatzidis, M. G. (1997a). Polyhedron, 16, 3921–7.Google Scholar
  158. Sutorik, A. C. and Kanatzidis, M. G. (1997b). Chem. Mater., 9, 387–98.Google Scholar
  159. Sutorik, A. C. and Kanatzidis, M. G. (1997c). J. Am. Chem. Soc., 119, 7901–2.Google Scholar
  160. Sutorik, A. C., Patschke, R., Schindler, J., Kannewurf, C. R., and Kanatzidis, M. G. (2000). Chem. Eur. J., 6, 1601–7.Google Scholar
  161. Szytula, A. and Suski, W. (1973). Acta Phys. Polonica, A, 43, 631–2.Google Scholar
  162. Tien, V., Guittard, M., Flahaut, J., and Rodier, N. (1975). Mater. Res. Bull., 10, 547–54.Google Scholar
  163. Tougait, O., Andre, G., Bouree, F., and Noel, H. (2001). J. Alloy. Compd., 317–318, 227–32.Google Scholar
  164. Tougait, O., Daoudi, A., Potel, M., and Noel, H. (1997b). Mater. Res. Bull., 32(9), 1239–45.Google Scholar
  165. Tougait, O., Potel, M., Levet, J. C., and Noel, H. (1998a). Eur. J. Solid State Inorg. Chem., 35, 67–76.Google Scholar
  166. Tougait, O., Potel, M., and Noel, H. (1998b). Inorg. Chem., 37, 5088–91.Google Scholar
  167. Tougait, O., Potel, M., and Noel, H. (1998c). J. Solid State Chem., 139, 356–61.Google Scholar
  168. Tougait, O., Potel, M., and Noel, H. (2002). J. Solid State Chem., 168, 217–23.Google Scholar
  169. Tougait, O., Potel, M., Padiou, J., and Noel, H. (1997a). J. Alloy. Compd., 262–263, 320–4.Google Scholar
  170. Troc, R., Kaczorowski, D., Shlyk, L., Potel, M., and Noel, H. (1994). J. Phys. Chem. Solids, 55(9), 815–23.Google Scholar
  171. Trzebiatowski, W., Niemiec, J., and Sepichowska, A. (1961). Bull. Acad. Pol. Sci. Chim., 9, 373–7.Google Scholar
  172. Van Lierde, W. and Bressers, J. (1966). J. Appl. Phys., 37, 444.Google Scholar
  173. Vogt, O., Mattenberger, K., and Lohle, J. (2001). J. Magn. Magn. Mater., 231, 199–212.Google Scholar
  174. Vovan, T. and Rodier, N. (1979). Cr. Acad. Sci. C. Chim., 289, 17–20.Google Scholar
  175. Wastin, F., Spirlet, J. C., and Rebizant, J. (1995). J. Alloy. Compd., 219, 232–7.Google Scholar
  176. Wawryk, R., Wojakowski, A., Pietraszko, A., and Henkie, Z. (2005). Solid State Commun., 133, 295–300.Google Scholar
  177. Wedgwood, F. A. and Kuznietz, M. (1972). J. Phys. C Solid State, 5, 3012–20.Google Scholar
  178. Wells, D. M., Skanthakumar, S., Soderholm, L., Ibers, J. A. (2009) Acta Crystallogr., E65, i14.Google Scholar
  179. Wolfers, P. and Fillion, G. (1977). Physica B and C, 86, 896–8.Google Scholar
  180. Wu, E. J., Pell, M. A., and Ibers, J. A. (1997). J. Alloy. Compd., 255, 106–9.Google Scholar
  181. Yao, J. and Ibers, J. A. (2008). Anorg. Allg. Chem., 634, 1645–7.Google Scholar
  182. Yao, J., Malliakas, C. D., Jin, G. B., Wells, D. M., Balasubramanian, M., Kanatzidis, M. G., and Ibers, J. A. (2010). Unpublished.Google Scholar
  183. Yao, J., Wells, D. M., Chan, G. H., Zeng, H.-Y., Ellis, D. E., Van Duyne, R. P., and Ibers, J. A. (2008). Inorg. Chem., 47, 6873–9.Google Scholar
  184. Yoshihara, K., Kanno, M., and Mukaibo, T. (1967). J. Nucl. Sci. Technol.-T, 4, 578–81.Google Scholar
  185. Zachariasen, W. H. (1949a). Acta Crystallogr., 2, 288–91.Google Scholar
  186. Zachariasen, W. H. (1949b). Acta Crystallogr., 2, 57–60Google Scholar
  187. Zachariasen, W. H. (1949c). Acta Crystallogr., 2, 60–2.Google Scholar
  188. Zachariasen, W. H. (1949d). Acta Crystallogr., 2, 291–6.Google Scholar
  189. Zeng, H. Y., Yao, J., and Ibers, J. A. (2008). J. Solid State Chem., 181, 552–5.Google Scholar
  190. Zogal, O. J. and Zygmunt, A. (1982). J. Magn. Magn. Mater., 27, 293–7.Google Scholar
  191. Zumbusch, M. (1940). Z. Anorg. Allg. Chem., 243, 322–9.Google Scholar
  192. Zygmunt, A., Ligenza, S., Ptasiewicz, H., and Leciejewicz, J. (1974a). Phys. Status Solidi A, 25, 77–80Google Scholar
  193. Zygmunt, A., Murasik, A., Ligenza, S., and Leciejew.J. (1974b). Phys. Status Solidi A, 22, 75–9.Google Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Emmanouil Manos
  • Mercouri G. Kanatzidis
  • James A. Ibers

There are no affiliations available

Personalised recommendations