Analytical Chemistry of Plutonium*

  • Kenton J. Moody
  • Dawn A. Shaughnessy
  • Karin Casteleyn
  • Herbert Ottmar
  • Klaus Lützenkirchen
  • Maria Wallenius
  • Thierry Wiss


In 1940, shortly after the discovery of fission, McMillan and Abelson studied the recoil range of fission products induced by neutrons incident on a thin uranium foil (McMillan, 1939; McMillan and Abelson, 1940). While fission products were mostly ejected from the foil, two activities were significantly retained, one with a half-life of 23 min and the other with a half-life of 2.3 days.


Nitric Acid Solution Thermal Ionization Mass Spectrometry Accelerator Mass Spectrometry Plutonium Oxide Plutonium Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adar, S., Sjoblom, R. K., Barnes, R. F., Fields, P. R., Hulet, E. K., and Wilson, H. D. (1963) J. Inorg. Nucl. Chem., 25, 447–52.Google Scholar
  2. Aggarwal, S. K., Chitambar, S. A., Kavimandan, V. D., Almaula, A. J., Shah, P. M., Parab, A. R., Sant, V. L., Jain, H. C., and Ramaniah, M. V. (1980) Radiochim. Acta, 27, 1–5.Google Scholar
  3. Aigner, H., Binner, R., Kuhn, E., Blohm-Hieber, U., Mayer, K., Guardini, S., Pietri, C., Rappinger, B., Mitterand, B., Reed, J., Mafra-Guidicini, O., and Deron, S. (2002) ESARDA Bull., 31, 39–68.Google Scholar
  4. Aikin, A. M. (1957) Chem. Eng. Prog., 53, 82F–5F.Google Scholar
  5. Alamelu, D., Shah, P. M., and Aggarwal, S. K. (2005) Radiochim. Acta 93: 259–63.Google Scholar
  6. Albright, D. and Kramer, K. (2004) B. Atom. Sci., 60: 14–16.Google Scholar
  7. Alcock, K., Best, G. F., Hesford, E., and McKay, H. A. C. (1958) J. Inorg. Nucl. Chem., 6, 328–33.Google Scholar
  8. Allen, W. D. (1960) Neutron Detection, George Newnes, Ltd., London, Chapter 3.Google Scholar
  9. Amelinckx, S., van Dyck, D., van Landuyt, J., and van Tendeloo, G. (1997) Handbook of Microscopy, Applications in Materials Science, Solid-State Physics and Chemistry, VCH Verlagsgesellschaft mbH, Weinheim.Google Scholar
  10. Anselin, F., Faugeras, P., and Grison, E. (1956) C R, 242, 1996–8.Google Scholar
  11. Ardenne, M. von (1938) Z. Physik., 108, 553–72.Google Scholar
  12. Asprey, L. B., Eller, P.G., and Kinkead, S.A. (1986) Inorg. Chem., 25, 670–2.Google Scholar
  13. ASTM C1030 (2000a) Standard Test Method for Determination of Plutonium Isotopic Composition by Gamma-Ray Spectrometry. ASTM International, West Consho-hocken, PA, 2000, DOI: 10.1520/C1030-03Google Scholar
  14. ASTM C1458 (2000b) Standard Test Method for Nondestructive Assay of Plutonium, Tritium and 241 Am by Calorimetric Assay, ASTM International, West Conshohocken, PA, 2000, DOI: 10.1520/C1458-09E01.Google Scholar
  15. ASTM C1206 (2002) Standard Test Method for Plutonium by Iron(II)/Chromium(VI) Amperometric Titration, ASTM International, West Conshohocken, PA, 2000, DOI: 10.1520/C1206-02.Google Scholar
  16. Aumann, D. and Mullen, G. (1974) Nucl. Inst. Meth., 115, 75–81.Google Scholar
  17. Ausloos, P. and Paulson, J. F. (1958) J. Am. Chem. Soc., 80, 5117–21.Google Scholar
  18. Bajo, S. and Eikenberg, J. (2003) Radiochem. Acta, 91, 495–7.Google Scholar
  19. Barghausen, J. J., Jonke, A. A., Levitz, N. M., Steindler, M. J., and Vogel, R. C. (1970) Process Chemistry (eds. C. E. Stevenson, E. A. Mason, and A. T. Gresky), vol. 4, Pergamon Press, Oxford, pp. 347–98.Google Scholar
  20. Bark, L. S., Duncan, G., and Graham, R. J. T. (1967) Analyst, 92, 347–57.Google Scholar
  21. Baroncelli, F., Scibona, G., and Zifferero, M. (1962) J. Inorg, Nucl. Chem. 24, 541–6.Google Scholar
  22. Barsukova, K.V. and Rodionova, G. N. (1968) Sov. Radiochem., 10, 78–9.Google Scholar
  23. Bauman, W. C., Anderson, R. E., and Wheaton, R. M. (1952) Ann. Rev. Phys. Chem., 3, 109–30.Google Scholar
  24. Baxter, M. S., Fowler, S. W., and Povinec, P. P. (1995) Appl. Radiat. Isot., 46, 1213–23.Google Scholar
  25. Bell, M. J. (1973) “ORIGEN B – The ORNL Isotope Generation and Depletion Code” ORNL-4628, Union Carbide Corp. (Nucl. Div.), Oak Ridge National Laboratory, Oak Ridge, TN.Google Scholar
  26. Bergey, C., Cesario, J., and Deniaud, S. (1980) Analysis, 8, 490–5.Google Scholar
  27. Bergstresser, K. S. and Waterbury, G. R. (1964) An Evaluation of the Amperometric Titration of Plutonium, Los Alamos Report LA-3091.Google Scholar
  28. Bernstrom, B. and Rydberg, J., (1957) Acta Chem. Scand., 11, 1173–82.Google Scholar
  29. Best, G. F., McKay, H. A. G., and Woodgate, P. R. (1957) J. Inorg. Nucl. Chem., 4, 315–20.Google Scholar
  30. Bevington, P. R. and Robinson, D. K. (2003) Data Reduction and Error Analysis for the Physical Sciences, 3rd edn, McGraw-Hill, Boston, MA.Google Scholar
  31. Biggers, R. E. and Costanzo, D. A. (1963) Oak Ridge National Laboratory Report, ORNL-TM-580.Google Scholar
  32. Bignan, G., Ruhter, W., Ottmar, H., Schubert, A., and Zimmermann, C. (1998) ESARDA Bull., 28, 1–4.Google Scholar
  33. Blaauw, M., Garcia-Toranõ, E., Woods, S., and Fazinic, S. (1999) Nucl. Instr. Meth. A., 428, 317–29.Google Scholar
  34. Blau, M. S. (1998) J. Radioanal. Nucl. Chem., 235, 41–5.Google Scholar
  35. Bochvar, A. A., Konobeevski, S. T., Kutaitsev, V. I., Men’shikova, T. A., and Chebotarev, N. T. (1958) Sov. J. At. Energy, 5, 1177–91.Google Scholar
  36. Bohr, N. (1923) Nature, 12, 29–44.Google Scholar
  37. Boldeman, J. W. (1968) J. Nucl. Energy, 22, 63–72.Google Scholar
  38. Bonner, N. A. and Kahn, M. (1951) Radioactivity Applied to Chemistry, Wiley, New York, Chapter 6.Google Scholar
  39. Bonner, T. W. (1961) Nucl. Phys., 23, 116–21.Google Scholar
  40. Boucher, R. and Quere, Y. (1981) J. Nucl. Mater., 100, 132–6.Google Scholar
  41. Bourges, J., Madic, C., Koehly, G., and Lecomte, M. (1986) J. Less-Common Met., 122, 303–11.Google Scholar
  42. Bowkowski, D. (1964) Am. Indust. Hygiene Assoc. J., 25, 59–63.Google Scholar
  43. Bracken, D. S. and Hypes, P. (2000) Solid State Calorimeter, LA-UR-00-3087.Google Scholar
  44. Brandstetter, A. P., Schmiedel, P., and Stoll, W. (1984) Atomwirtschaft, 29, 453–8.Google Scholar
  45. Bray, L. A. and Ryan, J. L. (1982) Radioact. Waste Manage., 6, 129–54.Google Scholar
  46. Brewer, L. (1953) Chem. Rev. 52, 1–75.Google Scholar
  47. Brody, J. K., Faris, J. P., and Buchanan, R. F. (1958) Anal. Chem., 30, 1909–12.Google Scholar
  48. Brown, R., Craig, R. D., and Elliot, R. M. (1963) Spark source mass spectrometry as an analytical technique. In Advances in Mass Spectrometry, vol. 2 (ed. R. M. Elliott), MacMillan Company, New York, pp. 141–56.Google Scholar
  49. Bruce, F.R. (1956) Chem. Eng. Prog., 52, 347–52.Google Scholar
  50. Brunstad, A. (1959) Indust. Eng. Chem., 51, 38–40.Google Scholar
  51. Burger, L. L. (1958a) J. Phys. Chem., 62, 590–3.Google Scholar
  52. Burger, L. L. (1958b) Process Chemistry, vol. 2. (eds. F. R. Bruce, J. M. Fletcher, and H. H. Hyman), Pergamon, New York, Chapters 7–5.Google Scholar
  53. Caldwell, C. E., Grill, L. F., Miner, F. J., and Moody, N. E. (1962) Anal. Chem., 34, 346–8.Google Scholar
  54. Campbell, W. M. (1956) Nucleonics, 14, 92–7.Google Scholar
  55. Chamberlain, O., Farwell, G. W., and Segre, E. (1954) Phys. Rev., 94, 156.Google Scholar
  56. Chesne, A., Koehly, G., and Bathellier, A. (1963) Nucl. Sci. Eng., 17, 557–65.Google Scholar
  57. Chilton, J. M. and Fardy, J. J. (1969) J. Inorg. Nucl. Chem., 31, 1171–7.Google Scholar
  58. Choppin, G. R., Bond, A. H., and Hromadka, P. M. (1997) J. Radioanal. Nucl. Chem., 219, 203–10.Google Scholar
  59. Choppin, G. R. (2006) Mar. Chem., 99, 83–92.Google Scholar
  60. Choppin, G. R. (2007) J. Radioanal. Nucl. Chem., 273, 695–703.Google Scholar
  61. Codding, J. W., Haas, W. O. Jr., and Heumann, F. K. (1958) Ind. Eng. Chem., 50, 145–52.Google Scholar
  62. Coffinberry, A. S. and Miner, W. N. (eds.) (1961) The Metal Plutonium, University of Chicago Press, Chicago, IL.Google Scholar
  63. Cohen, D. (1961) J. Inorg. Nucl. Chem., 18, 207–10.Google Scholar
  64. Coleman, C. F. (1964) At. Energy Rev., 2, 3–54.Google Scholar
  65. Coleman, C. F. and Leuze, R. E. (1978) J. Tenn. Acad. Sci., 53, 102–7.Google Scholar
  66. Comyus, A. E. (1960) Chem. Rev., 60, 115–46.Google Scholar
  67. Connick, R. E. (1949) J. Am. Chem. Soc., 71, 1528–33.Google Scholar
  68. Cook, G. T., Passo, C. J., and Carter, B. (2003) Environmental Liquid Scintillation Analysis. In Handbook of Radioactivity Analysis (ed. M. F. L’Annunziata), Academic, San Diego, CA.Google Scholar
  69. Craig, R. D., Errock, G. A., and Waldron, J. D. (1959) Determination of Impurities in Solids by Spark Source Mass Spectrometry. In Advances in Mass Spectrometry (ed. J. D. Waldron), vol. 1, Pergamon Press, New York, pp. 136–56.Google Scholar
  70. Croft, A. G. (1980) A User’s Manual for the ORIGEN2 Computer Code, ORNL/TM-7175, Union Carbide Corp. (Nucl. Div.), Oak Ridge National Laboratory, Oak Ridge, TN.Google Scholar
  71. Cromboom, O., Koch, L., and Wellum, R. (1991) J. Nucl. Mater., 178, 249–53.Google Scholar
  72. Culler, Jr., F. L., Bruce, F. R., Blanco, R. E., and Bresee, J. C. (1959) US-AEC Report CF-58-11-91.Google Scholar
  73. Cunningham, B. B. and Werner, L. B. (1949) J. Am. Chem. Soc., 71, 1521–8.Google Scholar
  74. Cunningham, B. B. and Werner, L. B. (1949b) The First Isolation of a Synthetic Element 94Pu239, in National Nuclear Energy Series IV, 14B, (eds. G. T. Seaborg, J. J. Katz, and W. M. Manning), McGraw-Hill, New York, pp. 51–78.Google Scholar
  75. Cunningham, J. G. and Miles, C. L. (1956) J. Inorg. Nucl. Chem., 3, 54–63.Google Scholar
  76. Curtis, F. W. (1950) High Frequency Induction Heating, McGraw-Hill, New York.Google Scholar
  77. Davidson, D., Verplancke, J., Vermeulen, P., Menlove, H. Wagner, H. G., Brandalise, B., and Stutz, M. (1993) in Proceedings of 15th Annual ESARDA Symposium, 11–13 May, Rome, Italy, 1993, ESARDA 26 EUR 15214 EN, pp. 585–8.Google Scholar
  78. Dawson, J.K., Mandleberg, C. J., and Davies, D. (1951) J. Chem. Soc., 2047–50.Google Scholar
  79. Deloule, E., Chaussidon, M., and Alle, P. (1992) Chem. Geol., 101, 187–92.Google Scholar
  80. Denoyer, E. R., Jacques, M. D., Debrah, E., and Tanner, S. D. (1995) At. Spectrosc, 16, 1–6.Google Scholar
  81. DIN 25704 (1993) Determination of the plutonium content in sulphuric and nitric acid solutions; potentiometric titration method with potassium dichromate, Deutsches Insti-tut für Normung e.V., Beuth Verlag, Berlin.Google Scholar
  82. Diven, B. C., Martin, H.C., Taschek, R.F., and Terrell, J.(1956) Phys. Rev., 101, 1012–15.Google Scholar
  83. Dolgov, J., Bibilashvili, Y.K., Chorokhov, N. A., Koch, L., Schenkel, R., and Schubert, A. (1997) in Proceedings of the Russian International Conference on Nuclear Material Protection, Control and Accounting, Obninsk, Russia, pp. 116–20.Google Scholar
  84. Donohue, D. L., Smith, D. H., Young, J. P., McKown, H. S., and Pritchard, C. A. (1984) Anal. Chem., 56, 379–81.Google Scholar
  85. Doriese, W. B., Ullom, J. N., Beall, J. A., Duncan, W. D., Ferreira, L., Hilton, G. C., Horansky, R. D., Irwin, K. D., Mates, J. A. B., Reintsema, C. D., Vale, L. R., Xu, Y., Zink, B. L., Rabin, M. W., Hoover, A. S., Rudy, C. R., and Vo, D. T. (2007) Appl. Phys. Lett., 90, 193508–10.Google Scholar
  86. Drummond, J. L. and Grant, R. A. (1965) Talanta, 13, 477–88.Google Scholar
  87. Drummond, J. L. and Welch, G. A. (1957) J. Chem. Soc., 4781–5.Google Scholar
  88. Drummond, J. L. and Welch, G. A. (1958) J. Chem. Soc., 3218–9.Google Scholar
  89. Dudder, G. B. (2001) IAEA Conference on Security of Material – Measures to Prevent, Intercept and Respond to Illicit Uses of Nuclear Material and Radioactive Sources, May 7–11, 2001, Stockholm, Sweden.Google Scholar
  90. Duff, M. C., Hunter, D. B., Triay, I. R., Bertsch, P. M., Reed, D. T., Sutton, S. R., Shea-McCarthy, G., Kitten, J., Eng, P., Chipera, S. J., and Vaniman, D. T. (1999) Environ. Sci. Technol., 33, 2163–9.Google Scholar
  91. Ellinger, F. H., Miner, W. N., O’Boyle, D. R., and Schonfeld, F. W. (1968) in Los Alamos report LA-3870, Los Alamos Scientific Laboratory, Los Alamos, NM, pp. 185.Google Scholar
  92. Erdmann, N., Nunnemann, M., Eberhardt, K. Herrmann, G., Huber, G., Köhler, S., Kratz, J. V., Passler, G., Peterson, J. R., Trautmann, N., and Waldek, A. (1998) J. Alloys Compd., 837, 271–3.Google Scholar
  93. Erdmann, N., Passler, G., Trautmann, N., and Wendt, K. D. A. (2008) In Analysis of Environmental Radionuclides (ed. P. Povinec), Special Volume of Radioactivity in the Environment, Vol. 11, Baxter, M. S., Ed., Elsevier, pp. 331–54.Google Scholar
  94. Ewing, G. W. (1975) Instrumental Methods of Chemical Analysis, McGraw-Hill International, Maidenhead, UK.Google Scholar
  95. Fardy, J. J. and Chilton, J. M. (1969) J. Inorg. Nucl. Chem., 31, 3247–54.Google Scholar
  96. Faris, J.P. and Buchanan, R. F. (1964) Anal. Chem., 36, 1157–8.Google Scholar
  97. Farwell, G. W., Roberts, J. E., and Wahl, A. C. (1954) Phys. Rev., 94, 363–4.Google Scholar
  98. Feldman, C. (1960) Anal. Chem., 32, 1727–8.Google Scholar
  99. Ferguson, J. W., Richard, J. J., O’Laughlin, J.W., and Banks, C. V. (1964) Anal. Chem., 36, 796–9.Google Scholar
  100. Fifield, L.K., Cresswell, R.G., Di Tada, M.L., Ophel, T.R., Day, J.P., Clacher, A.P., King, S.J., and Priest, N.D. (1996) Nucl. Instr. Meth. B, 117, 295–303.Google Scholar
  101. Fifield, L.K. (2008) Quat. Geochron., 3, 276–90.Google Scholar
  102. Firestone, R. B. and Shirley, V. S. (eds) (1996) Table of Isotopes, 8th edn, Wiley, New York.Google Scholar
  103. Fleischer, R. L. and Price, P. B. (1964) J. Geophys. Res., 69, 331–9.Google Scholar
  104. Fleischer, R. L., Price, P. B., and Walker, R. M. (1968) Charged Particle Tracks: Tools for geochronology and meteorite studies. In Radiometric Dating for Geologists (eds. E. Hamilton and R. M. Farquhar), Wiley Interscience, New York, pp. 417–35.Google Scholar
  105. Fleischer, R. L., Price, P. B., and Walker, R. M. (1975) Nuclear Tracks in Solids, University of California Press, Berkeley, CA.Google Scholar
  106. Florin, A. E., Tannenbaum, I. R., and Lemons, J. F. (1956) J. Inorg. Nucl. Chem., 2, 368–79.Google Scholar
  107. Fomin, V. V., Kartushove, R. E., and Rudenko, T. I. (1957) J. Nucl. Energy, 4, 247–52.Google Scholar
  108. Fred, M., Nactrieb, R., and Tompkins, F. (1947) J. Opt. Soc. Am., 37, 279–85.Google Scholar
  109. Freedberg, N. A., Antonelli, D., Bloch, L., and Rosenfield, T. (1992) Pacing Clin. Electrophysiol., 15, 1639–41.Google Scholar
  110. Fremont-Lamouranne, R., Legoux, Y., Merini, J., Zhuikov, B. L., and Eichler, B. (1985) in Handbook on the Physics and Chemistry of the Actinides (eds. A. J. Freeman and C. Keller), North-Holland, Amsterdam, vol. 3, Chapter 8.Google Scholar
  111. Fuger, J. and Matzke, H.J. (1991) in Handbook on the Physics and Chemistry of the Actinides, 1991 (eds. A. J. Freeman and C. Keller), North Holland, Amsterdam, Vol. 6, p. 641.Google Scholar
  112. Gal, I. and Ruvarac, A. (1964) J. Chromatogr, 13, 549–55.Google Scholar
  113. Ganivet, M. (1960) French Report CEA-1592. English Transl. USAEC Report HW-TR-53.Google Scholar
  114. Gautier, D. C., Kline, J. L., Flippo, K. A., Gaillard, S. A, Letzring, S. A., and Hegelich, B. M. (2008) Rev. Sci. Instrum., 79, 10E536.Google Scholar
  115. Gel’man, A. D., Matorina, N. N., and Moskvin, A. I. (1957) Sov. J. At. Energy, 3, 1115–20.Google Scholar
  116. Gel’man, A. D. and Moskvin, A. I. (1958) Dokl. AN SSSR, 117, 88–91.Google Scholar
  117. Gel’man, A. D., Moskvin, A. I., Zaitsev, L. M., and Mefod’eva, S. (1962) The Complex Compounds of the Transuranium Elements, Consultant Bureau, New York.Google Scholar
  118. Gilman, W. S. (1965) A Review of the Dissolution of Plutonium Dioxide, Mound Lab report MLM-1264, Miamisburg, OH.Google Scholar
  119. Girardi, F. (1969) Modern Trends in Activation Analysis, U. S. National Bureau of Standards Special Publication 312, vol. 1, pp. 577.Google Scholar
  120. Girardi, F. and Pietra, R. (1976) At. Energy Rev., 14, 521–65.Google Scholar
  121. Glocker, R. and Frohnmayer, W. (1925) Ann. Phys., 76, 369–95.Google Scholar
  122. Gol’din, L. L. and Tret’yakov, E. F. (1956) Izvestiya AN SSSR, Phys. Ser. 20, 859.Google Scholar
  123. Gordon, B. M. and Wahl, A. C. (1958) J. Am. Chem. Soc., 80, 273–6.Google Scholar
  124. Grahame, D. C. and Seaborg, G. T. (1938) J. Am. Chem. Soc., 60, 2524–8.Google Scholar
  125. Grainger, L. (1958) Uranium and Thorium, George Newnes Ltd., London.Google Scholar
  126. Griffin, P. M. and McNally, Jr., J. R. (1955) J. Opt. Soc. Am., 45, 63.Google Scholar
  127. Guillaumont, R., Adloff, J. P., and Peneloux, A. (1989) Radiochim. Acta, 46, 169–76.Google Scholar
  128. Gunnink, R., Meyer, R. A., Niday, J. B., and Anderson, R. P. (1968) Nucl. Inst. Meth., 65, 26–30.Google Scholar
  129. Gunnink, R. and Niday, J. B. (1972) Lawrence Livermore National Laboratory Report UCRL-51061, volume 1.Google Scholar
  130. Gunnink, R. (1980) Determination of Plutonium Isotopic Abundances by Gamma-Ray Spectrometry, UCRL-52879.Google Scholar
  131. Gwozdz, R. and Siekierski, S. (1960) Nukleonika, 5, 671–6.Google Scholar
  132. Hahn, O. (1936) Applied Radiochemistry, Cornell University Press, Ithaca, NY.Google Scholar
  133. Hamaker, J. W. and Koch, C. W. (1949) in The Transuranium Elements (eds. G. T. Seaborg, J. J. Katz, and W. H. Manning), NNES, IV, 14B, McGraw Hill, New York, pp. 666–81.Google Scholar
  134. Hamelin, B., Manhes, G., Albarede, F., and Allegre, C. J. (1985) Geochim. Cosmochim. Acta, 49, 173–82.Google Scholar
  135. Handwerk, J. H., Kruger, O. L., and Moser, J. B. (1965) in Plutonium 1965 (eds. A. E. Kay and M. B. Waldron), Chapman & Hall, London, pp. 739–50.Google Scholar
  136. Hardy, C. J. (1958) in Progress in Nuclear Energy, Series III, vol. 2 (eds. F. R. Bruce, J. M. Fletcher, and H.H. Hyman), Pergamon Press, Oxford, p. 357.Google Scholar
  137. Harvey, G. B., Heal, H. G., Maddock, A. G., and Rowley, E. L. (1947) J. Chem. Soc., 1, 1010–21.Google Scholar
  138. Healy, T. V. and McKay, H. A. G. (1956) Trans. Faraday Soc., 52, 633–42.Google Scholar
  139. Hecker, S. S. and Timofeeva, L. F. (2000) Los Alamos Science, vol. 26, p. 244.Google Scholar
  140. Heisig, D. L. and Hicks, T. E. (1952) Lawrence Radiation Laboratory Report UCRL-1664.Google Scholar
  141. Helbig, W. (1961) Z. Anal. Chem., 182, 15–9.Google Scholar
  142. Helly, M. V. and Gardner, A. W. (1958) J. Inorg. Nucl. Chem., 7, 245–56.Google Scholar
  143. Herrmann, G. and Trautmann, N. (1982) Ann. Rev. Nucl. Part. Sci., 32, 117–47.Google Scholar
  144. Heumann, K. G. (1988) in Inorganic Mass Spectrometry (eds. F. Adams, R. Gijbels, and R. van Grieben), Wiley, New York, p. 301.Google Scholar
  145. Hickmann, U., Greulich, N., Trautmann, N., Gäggeler, H., Gäggeler-Koch, H., Eichler, B., and Herrmann, G. (1980) Nucl. Instr. Meth., 174, 507–13.Google Scholar
  146. Hildenbrand, G. (1984) Atomwirtschaft, 29, 414–21.Google Scholar
  147. Hindman, J. C. (1949) The Transuranium Elements, Natl. Nucl. Energy Ser. Div. IV, 14B, Papers 4.4, 4.5, and 4.7.Google Scholar
  148. Höfer, H., Langemeier, U., Rojahn, Th., and Schmitt, G. (2003) atw, 48, 28–34.Google Scholar
  149. Hoffman, D. C., Lawrence, F. O., Mewherter, J. L., and Rourke, F. M. (1971) Nature, 234, 132–4.Google Scholar
  150. Holland, M. K., Weiss, J. R., and Pietri, C. E. (1978) Anal. Chem., 50, 236–40.Google Scholar
  151. Holstein, U., Hoogma, A. H. M., and Kooi, J. (1962) Health Phys., 8, 49–59.Google Scholar
  152. Hopkins, Jr., H. H. (1949) in The Transuranium Elements (eds. G. T. Seaborg, J. J. Katz, and W. H. Manning), NNES, IV, 14B, McGraw Hill, New York, pp. 949–51.Google Scholar
  153. Horansky, R. D., Ullom, J. N., Beall, J. A., Hilton, G. C., Irwin, K. D., Dry, D. E., Hastings, E. P. Lamont, S. P., Rudy, C. R., and Rabin; M. W., (2008) Appl. Phys. Lett., 93, 123504–6.Google Scholar
  154. Horwitz, E. P., Chiarizia, R., Dietz, M. L., Diamond, H., and Nelson, D. M. (1993) Anal. Chim. Acta, 281, 361.Google Scholar
  155. Horwitz, E. P., Dietz, M. L., Chiarizia, R., Diamond, H., Maxwell III, S. L., and Nelson, M. R. (1995) Anal. Chim. Acta, 310, 63–78.Google Scholar
  156. Horner, D. E. and Coleman, C. F. (1961) US-AEC Report ORNL-3051.Google Scholar
  157. Houk, R. S., Fassel, V. A., Flesch, G. D., Svec, H. J, Gray, A. L., and Taylor, C. E. (1980) Anal. Chem., 52, 2283–9.Google Scholar
  158. Hulet, E. K. (1964) J. Inorg. Nucl. Chem. 26, 1721–6.Google Scholar
  159. Hultgren, A. (1970) in Process Chemistry, vol. 4 (eds. C. E. Stevenson, E. A. Mason, and A. T. Gresky), Pergamon Press, Oxford, pp. 287.Google Scholar
  160. Hunter, G. J. and Chenley, R. B. (1959) U. K. Atomic Energy Agency Report AERE-AM-19.Google Scholar
  161. Hurst, R. and Hall, G. R. (1952) Analyst, 77, 790–800.Google Scholar
  162. Hyde, E. K. (1954) in The Actinide Elements (eds. G. T. Seaborg and J. J. Katz), National Nuclear Energy Series, Div. IV, 14A, McGraw Hill, New York, Chapter 15.Google Scholar
  163. Hyde, E. K. (1956) in Proceedings of the International Conference on the Peaceful Used of Atomic Energy, Geneva, 1955, A/CONF. 8/7, United Nations, New York, p. 281. IAEA (2006) Nuclear Security Series No.2.Google Scholar
  164. ISO 8298 (2000) Nuclear fuel technology – Determination of milligram amounts of plutonium in nitric acid solutions – Potentiometric titration with potassium dichromate after oxidation by Ce(IV) and reduction by Fe(II). International Organisation for Standardization, Geneva (Switzerland).Google Scholar
  165. Inghram, M. G. and Chupka, P. (1953) Rev. Sci. Instrum., 24, 518–20.Google Scholar
  166. James, D. B. (1963) J. Inorg. Nucl. Chem., 25, 711–2.Google Scholar
  167. James, D. B. (1966) Nucl. Appl., 2, 379–89.Google Scholar
  168. James, D. B. (1967) US-AEC Report LA-3499.Google Scholar
  169. James, R. B., Schlesinger, T. E., Siffert, P., and Franks, L. (1993) Semiconductors for Room-Temperature Radiation Detector Applications, Materials Research Society Proceedings, vol. 302, Materials Research Society, Pittsburgh, PA.Google Scholar
  170. Johnson, A. J. and Vejvoda, E. (1959) Anal. Chem., 31, 1643–6.Google Scholar
  171. Jones, M. M. (1953) Hanford Works Report HW-30384.Google Scholar
  172. Jonke, A. A., Levenson, M., Levitz, N.M., Steindler, M. J., and Vogel, R. C. (1967) Nucleonics, 25, 58–63.Google Scholar
  173. Jutier, F., Griveau, J.-C., van der Beek, C.J., Colineau, E., Wastin, E., Rebizant, J., Boulet, P., Wiss, T., Thiele, H., and Simoni, E. (2007) Europhys. Lett., 78, 57008.Google Scholar
  174. Katz, J. J. and Seaborg, G. T. (1957) The Chemistry of the Actinide Elements, Wiley, New York.Google Scholar
  175. Keck, P. and Loeb, L. B. (1933) Rev. Sci. Instrum., 4, 486–90.Google Scholar
  176. Keder, W. E., Sheppard, J. C., and Wilson, J. S., (1960) J. Inorg. Nucl. Chem., 12, 327–35.Google Scholar
  177. Keder, W. E. (1962) J. Inorg. Nucl. Chem., 24, 561–70.Google Scholar
  178. Keeney-Kennicutt, W. L., and Morse, J. W. (1985) Geochim. Cosmochim. Acta, 49, 2577–88.Google Scholar
  179. Keller, C. (1971) The Chemistry of the Transuranium Elements, Verlag Chemie, Weinheim/Bergstr., Germany, p. 455.Google Scholar
  180. Kennedy, J. W., Seaborg, G. T., Segre, E., and Wahl, A. C. (1941) Phys. Rev., 70, 555–6.Google Scholar
  181. Khlebnikov, G. I. and Dergunov, E. P. (1958) Sov. J. At. Energy, 4, 494–6.Google Scholar
  182. King, E. L. (1946) Argonne National Laboratory Report ANL-JJK-14B-45.Google Scholar
  183. Klygin, A. E. and Pavlova, V. K. (1961) Zh. Neorgan. Khim., 6, 1050–4.Google Scholar
  184. Knighton, J. B. and Steunenberg, R. K. (1965) J. Inorg. Nucl. Chem., 27, 1457–62.Google Scholar
  185. Knoch, W. (1961) Z. Naturforschg, 169, 525–7.Google Scholar
  186. Knoll, G. F. (2000) Radiation Detection and Measurement, 3rd edn, Wiley, New York.Google Scholar
  187. Ko, R. (1956) Anal. Chem., 28, 274.Google Scholar
  188. Ko, R. (1957) Nucleonics, 15(1), 72–7.Google Scholar
  189. Koch, C. W. (1949) The Transuranium Elements, N.N.E.S. Series, Div. IV, vol. 14B, McGraw Hill, New York, pp. 1337–8.Google Scholar
  190. Koshland, Jr., D. E., Kroner, J. C., and Spector, L. M. (1949) in The Transuranium Elements (eds. G. T. Seaborg, J. J. Katz, J. J., and W. H. Manning), NNES, IV, 14B, McGraw Hill, New York, pp. 731–739.Google Scholar
  191. Kraus, K. A. and Dam, J. R. (1949) in The Transuranium Elements (eds. G. T. Seaborg, J. J. Katz, J. J., and W. H. Manning), NNES IV, 14B, McGraw-Hill, New York, pp. 478–99.Google Scholar
  192. Kressin, I. K. and Waterburg, G. R. (1962) Anal. Chem., 34, 1598–1601.Google Scholar
  193. Kressin, I. K. (1977) Anal. Chem., 49, 842–5.Google Scholar
  194. Krot, N. N. and Gel’man, A. D. (1967) Dokl. Akad. Nauk SSSR, 177, 124–6.Google Scholar
  195. Kruger, O. L. and Moser, J. B. (1966) J. Am. Ceram. Soc., 49, 661–7.Google Scholar
  196. Kuca, L. (1962) Collect. Czech. Chem. Commun., 27, 2372–9.Google Scholar
  197. Kuvik, V., Lecouteux, G., Doubek, N., Jammet, G., Bagliano, G., and Deron, S. (1992) Anal. Chem. Acta, 256, 163–76.Google Scholar
  198. Kuznetsov, V. I. and Bol’shakova, L. I. (1960) Zhurnal Analyt. Khimii, 15, 523–7.Google Scholar
  199. Lange, R. G. and Mastal, E. F. (1994) in A Critical Review of Space Nuclear Power and Propulsion 1984–1993 (eds. M. S. El-Genk), American Institute of Physics, AIP Press, New York, pp. 1–20.Google Scholar
  200. Larsen, R. P. and Seils, C. A. Jr. (1960) Anal. Chem., 32, 1863–6.Google Scholar
  201. Lavrukhina, A. K., Malysheva, T. V., and Pavlotskaya, F. I. (1967) Chemical Analysis of Radioactive Materials, Chemical Rubber Co., Cleveland, OH.Google Scholar
  202. Lawroski, S. (1955) Chem. Eng. Prog., 51, 461–6.Google Scholar
  203. Lawroski, S. and Levenson, M. (1958) in Process Chemistry, vol. 2 (eds. F. R. Bruce, J. M. Fletcher, and H. H. Hyman), Pergamon, New York, Chapter 7-2.Google Scholar
  204. Laxminarayanan, T. S., Patil, S.K., and Sharma, H. D. (1964) J. Inorg. Nucl. Chem., 26, 1301–9.Google Scholar
  205. Leary, J. A., Morgan, A. N., and Maraman, W. J. (1959) Ind. Eng. Chem., 51, 27–31.Google Scholar
  206. Lee, M. H., Yoon, Y. Y., Clark, S. B., and Glover, S. E. (2004) Radiochim. Acta, 92, 671–5.Google Scholar
  207. Lemire, R. J., Fuger, J., Nitschke, H., Potter, P. E., Rand, M. H., Rydberg, J., Spahiu, K., Sullivan, J. C., Ullman, W. J., Vitorge, P., and Wanner, H. (2001) Chemical Thermodynamics of Neptunium and Plutonium, Nuclear Energy Agency Data Bank, Organization for Economic Cooperation, Development, Ed, vol. 4, Chemical Thermodynamics, North-Holland, Amsterdam.Google Scholar
  208. Lerner, M. W. (1966) New Brunswick Laboratory Report NBL-231, pp. 107.Google Scholar
  209. Levine, C. A. and Seaborg, G. T. (1951) J. Am. Chem. Soc., 73, 3278–83.Google Scholar
  210. Lindner, M., Dupzyk, R. J., Hoff, R. W., and Nagle, R. J. (1981) J. Inorg. Nucl. Chem., 43, 3071–80.Google Scholar
  211. Loehlin, I. H. and Siddall, T. H. (1957) US-AEC Report DP-219.Google Scholar
  212. Lützenkirchen, K. and Mayer, K. (2007) Nature, 445, 256.Google Scholar
  213. Macdonald, A. and Savage, D. J. (1978) in Proceedings of the IAEA Conference on Nuclear Safeguards Technology, Vienna, 2–6 October, 1978, pp. 651–3.Google Scholar
  214. Mainland, E. W., Orth, D. A., Field, E. L., and Radke, J. H. (1961) Ind. Eng. Chem., 53, 685–94.Google Scholar
  215. Malm, J. G., Eller, P. G., and Asprey, L. B. (1984) J. Am. Chem. Soc., 106, 2726–7.Google Scholar
  216. Mandleberg, C. J., Rae, H. K., Hurst, R., Long, G., Davies, D., and Francis, K. E. (1956) J. Inorg. Nucl. Chem., 2, 358–67.Google Scholar
  217. Marcus, Y. (1963) Chem. Rev., 63, 139–70.Google Scholar
  218. Marshall, J. L. (ed.) (1998) NIST Calibration Services Users Guide 1998, National Institute of Standards and Technology Special Publication 250, U. S. Department of Commerce, U. S. government printing office, Washington, DC.Google Scholar
  219. Martin, B., Ockenden, D. W., and Foreman (1961) J. Inorg. Nucl. Chem., 21, 96–107.Google Scholar
  220. Martz, J. C., Haschke, J. M., and Stakebake, J. L. (1994) J. Nucl. Mater., 210, 130–42.Google Scholar
  221. Maxwell III, S. L. (1997) Radioact. Radiochem., 8, 36–44.Google Scholar
  222. McAninch, J. E., Hamilton, T. F., Brown, T. A., Jokela, T. A., Knezovich, J. P., Ognibene, T. J., Proctor, I. D., Roberts, M. L., Sideras-Haddad, E., Southon, J. R., and Vogel, J. S. (2000) Nucl. Instr. Meth. B, 172, 711–6.Google Scholar
  223. McCreary, W. J. (1955) J. Am. Chem. Soc., 77, 2113–4.Google Scholar
  224. McKay, H. A. C. and Streeton, R. J. W. (1965) J. Inorg. Nucl. Chem., 27, 879–84.Google Scholar
  225. McKay, H. A. C., Schulz, W. W., Navratil, J. D., Burger, L. L., and Bender, K. P. (1990) In Science and Technology of Tributyl Phosphate, vol. 3 (eds. W. W. Schulz, J. D. Navratil, L. L. Burger, and K. P. Bender), CRC Press, Boca Raton, FL, pp. 1–9.Google Scholar
  226. McMillan, E. (1939) Phys. Rev., 55, 510.Google Scholar
  227. McMillan, E. and Abelson, P. H. (1940) Phys. Rev., 57, 1185–6.Google Scholar
  228. McNally, J. R. Jr. (1955) J. Opt. Soc. Am., 45, 901.Google Scholar
  229. Meitner, L., Hahn, O., and Strassmann, F. (1937) Z. Phys., 106, 249–70.Google Scholar
  230. Merinis, J., Legoux, Y., and Bouissieres, G. (1970) Radiochem. Radioanalyt. Lett., 3/4, 255–61.Google Scholar
  231. Metz, C. F. (1957) Anal. Chem., 29, 1748–56.Google Scholar
  232. MGA (1990) A Gamma-Ray Spectrum Analysis Code for Determining Plutonium Isotopic Abundances, UCRL-LR-103220, Vols. 1 and 2.Google Scholar
  233. Milyukova, M. S., Guser, N. I., Sentyurin, I. G., and Skylarenko, I. S. (1967) Analytical Chemistry of Plutonium, Israel Program for Scientific Translations, Jerusalem, pp. 125–35.Google Scholar
  234. Mitchell, R. F. (1960) Anal. Chem., 32, 326–8.Google Scholar
  235. Moiseenko, E. I. and Rozen, A. M. (1960) Radiokhimiya, 2, 274–80.Google Scholar
  236. Moiseev, I. V., Borodina, N.N., and Tsvetkova, V. G. (1961) Zh. Neorgan. Khim., 6, 543–8.Google Scholar
  237. Montaser, A., Minnich, M. G., McLean, J. A., Liu, H., Caruson, J.A., and McLeod, C. W. (1998) in Inductively Coupled Plasma Mass Spectrometry (eds. A. Montaser), Wiley, New York, Chapter 3.Google Scholar
  238. Moore, F. L. (1952) A New Anionic Solvent Extraction Technique, USAEC Report ORNL-1314.Google Scholar
  239. Moore, F. L. and Smith, G. W. (1955) Nucleonics, 13, 66–9.Google Scholar
  240. Moore, F. L. and Hudgens, J. E. (1957) Anal. Chem., 29, 1767–70.Google Scholar
  241. Moore, F. L. (1960) Anal. Chem., 32, 1075–9.Google Scholar
  242. Moore, K. T., Wall, M. A., Schwartz, A. J., Chung, B.W., Shuh, D. K., Schulze, R. K., and Tobin, J. G. (2003) Phys. Rev. Lett., 90, 196404.Google Scholar
  243. Morrison, G. H. and Freiser, H. (1957) Solvent Extraction in Analytical Chemistry, Wiley, New York.Google Scholar
  244. Morse, J. W. and Choppin, G. R. (1986) Mar. Chem., 20, 73–89.Google Scholar
  245. Mrochek, J. R. and Banks, C. F (1965) J. Inorg. Chem., 27, 589–601.Google Scholar
  246. Mullen, G. and Aumann, D. (1975) Nucl. Inst. Meth., 128, 425–8.Google Scholar
  247. Mullins, L. J., Beaumont, A. J., and Leary, J. A. (1968) J. Inorg. Nucl. Chem., 30, 147–56.Google Scholar
  248. Myasoedov, B. F. (1987) Talanta, 34, 31–40.Google Scholar
  249. Myers, R. J., Metzler, D. E., and Swift, E. H. (1950) J. Am. Chem. Soc., 72, 3767–71.Google Scholar
  250. Nebel, E. and Nebel, D. (1961) Kernenergie, 4, 15–8.Google Scholar
  251. Nelson, F. and Michelson, D. C. (1966) J. Chromatogr., 25, 414–41.Google Scholar
  252. Nelson, F., Murase, T., and Kraus, K. A. (1964a) J. Chromatogr., 13, 503–35.Google Scholar
  253. Nelson, F., Michelson, D. C., and Holloway, J. H. (1964b) J. Chromatogr., 14, 258–60.Google Scholar
  254. Newton, T. W., Hobart, D. E., and Palmer, P. D. (1986) Radiochim. Acta, 39, 139–47.Google Scholar
  255. Nigon, J. P., Penneman, R. A., Staritzky, E., Keenan, T. K., and Asprey, L. B. (1954) J. Phys. Chem., 58, 403–4.Google Scholar
  256. Nikitina, G. P., Ivanov, Y. E., Listopadev, A. A., and Shpunt, L. B. (1997) Radiochem-istry, 39, 12–25, 109–22.Google Scholar
  257. Nikol’skii, V. D., Pozharskaya, M. E., and Pozharskii, B. G. (1960) Radiokhimiya, 2, 320–9.Google Scholar
  258. Noé, M. and Fuger, J. (1974) Inorg. Nucl. Chem. Lett., 10, 7–19.Google Scholar
  259. Nygren, U., Ramebäck, H., and Nilsson, C. (2007) J. Radioanal. Nucl. Chem., 272(1), 45–51.Google Scholar
  260. Ockenden, D. W. and Welch, G. A. (1956) J. Chem. Soc., 3358–63.Google Scholar
  261. Ottmar, H., Eberle, H., and Koch, L., (1986) J. Inst. Nucl. Mat. Manag., XV, 632.Google Scholar
  262. Ottmar, H., Eberle, H., Matussek, P., and Michel-Piper, I. (1987) in Advances in X-Ray Analysis 30, International Center for Diffraction Data, Newtown Square, PA (eds. C. S. Barrett, J. V. Gilfrich et al.), Plenum Pub. Corp., pp. 285–92.Google Scholar
  263. Ottmar, H. and Eberle, H. (1991) Forschungszenturm Karlsruhe Report KfK 4590.Google Scholar
  264. Ottmar, H., Eberle, H., Daures, P., Janssens, W., Ougier,M., Peerani, P., Blohm-Hieber,U., and MacLean, F. (1997) in Proceedings of the 19th Annual ESARDA Symposium, 13–15 May, Montpellier, France, pp. 211–9.Google Scholar
  265. Ottmar, H., van Belle, P., Croft, S., Chard, P. M. J., Bourva, L. C-A., and Blohm-Hieber, U. (1999) in Proceedings of the 21st Annual ESARDA Symposium, 4–6 May, Sevilla, Spain, pp. 311–9.Google Scholar
  266. Ottmar, H., Abousahl, S., van Belle, P., Morgenstern, A., and Vincent, M.-C. (2003) in Proceedings of the 25th Annual ESARDA Symposium, 13–15 May, Stockholm, Sweden, 12 p.Google Scholar
  267. Overholt, D. C., Tober, F. W., and Orth, D. A. (1952) An Ion Exchange Process for Plutonium Isolation and Purification, AEC Oak Ridge Report ORNL-1357.Google Scholar
  268. Pages, M. (1962) J. Chim. Phys., 59, 63–77.Google Scholar
  269. Palágyi, S. (1991) in CRC Handbook of Radioanalytical Chemistry. vol. I (eds. J. Tölgyessy and E. Bujdos00F3;), CRC Press, Boca Raton, FL, pp. 79–93.Google Scholar
  270. Palei, P. N. and Milyukova, M. S. (1967) Analytical Chemistry of Plutonium. Academy of Sciences USSR, Israel Program for Scientific Translations, Jerusalem, Oldbourne Press, London, p. 257.Google Scholar
  271. Parker, W., deCroess, M., and Sevier, Jr., K. (1960) Nucl. Instr. Meth., 7, 22–36.Google Scholar
  272. Partridge, J. A. and Wheelwright, E. J. (1975) Plutonium Recovery from Incinerator Ash and Centrifuge Sludge by Peroxide Fusion, Battelle, Pacific Northwest Laboratories Report BNWL-B-419, pp. 15.Google Scholar
  273. Payne, R. F., LaMont, S. P., Filby, R. H., and Glover, S. E. (2001) J. Radioanal. Nucl. Chem., 248, 449–52.Google Scholar
  274. Pekarek, V. and Marhol, M. (1991) in Inorganic Ion Exchangers in Chemical Analysis (eds. M. Qureshi and K. G. Varshney), CRC Press, Boca Raton, FL, pp. 1–32.Google Scholar
  275. Peppard, D. F., Gergel, M. V., Mason, G. W., Sullivan, J. C., and Mech, J. F. (1951) J. Am. Chem. Soc., 73, 2529–31.Google Scholar
  276. Peppard, D. F., Mason, G. W., Driscoll, W. J., and Sironen, R. J. (1958) J. Inorg. Nucl. Chem., 7, 276–85.Google Scholar
  277. Peretrukhin, V. F., Shilov, V. P., and Pikaev, A. K. (1995) Westinghouse Hanford Co. Report WHC-EP-0817, 171 pp.Google Scholar
  278. Perrin, R. E., Knobeloch, G. W., Armijo, V. M., and Efurd, D. W. (1985) Int. J. Mass Spectrom. Ion Processes, 64, 17–24.Google Scholar
  279. Petrov, K. A., Shevchenko, V. B., Timoshev, V. G., Maklyaev, F. A., Fokin, A. V., Rodionov, A. V., Balandina, V. V., El’kina, A., Nagnibeda, Z.I., and Volkova, A. A. (1960) Russ. J. Inorganic Chem., 5, 237–9.Google Scholar
  280. Peuser, P., Herrmann, G., Rimke, H. Sattelberger, P., Trautmann, N., Ruster, W., Ames, F., Bonn, J., Kluge, H.-J., Kroenert, U., and Otten, E.-W. (1985) Appl. Phys., 38B, 249–53.Google Scholar
  281. Phillips, G. (1958) Analyst, 83, 75–9.Google Scholar
  282. Popov, N. I., Medvedovskii, V. I., and Bakh, N. A. (1958) Sov. J. At. Energy, 4, 203–10.Google Scholar
  283. Portier, S., Brémier, S., and Walker, C. T. (2007) Int. J. Mass Spectrom., 263, 113–26.Google Scholar
  284. Price, P. B., Moody, K. J., Hulet, E. K., Bonetti, R., and Migliorino, C. (1991) Phys. Rev. C, 43, 1781–8.Google Scholar
  285. Pushlenkov, M. F., Shumkov, V. G., Zemlyanukhin, V. I., Zilberman, B. Ya., Shuvalov, O. N., Voden, V. G., and Shchepetilnikov, N. N. (1970) in Process Chemistry, vol. 4 (eds. C. E. Stevenson, E. A. Mason, and A. T. Gresky), Pergamon Press, Oxford, pp. 215–231.Google Scholar
  286. Rainey, R. H. (1959) Oak Ridge National Laboratory Report, CF-59-12-95.Google Scholar
  287. Ranebo, Y., Hedberg, P. M. L., Whitehouse, M. J., Ingeneri, K., and Littmann, S. (2009) J. Anal. At. Spectrom., 24, 277–87Google Scholar
  288. Ray, I.L.F., Wiss, T., and Thiele, H. (2002) Recent Developments and Case Studies in Nuclear Forensic Science, IAEA Conference on Advances in Destructive and Non-destructive Analysis for Environmental Monitoring and Nuclear Forensics, Karlsruhe, Germany, 21–23 October 2002, IAEA-CN-98/2/05.Google Scholar
  289. Reilly, D., Ensslin, N., Smith, H. Jr., and Kriner, S., (eds.) (1991) Passive Nondestructive Assay of Nuclear Materials. Nuclear Regulatory Commission publication NUREG/ CR-5550, U.S. Government Printing Office, Washington D.C.Google Scholar
  290. Rieman, W. and Walton, H. F. (1970) Ion Exchange in Analytical Chemistry, Pergamon, Oxford.Google Scholar
  291. Rinehart, G. H. (2001) Prog. Nucl. Energy, 39, 305–19.Google Scholar
  292. Roepenack, H., Schneider, V. W., and Druckenbrodt, W. G. (1984) Am. Ceram. Soc. Bull., 63, 1051–3.Google Scholar
  293. Rost, G. A. (1961) Anal. Chem., 33, 736–8.Google Scholar
  294. Routti, J. T. and Prussin, S. G. (1969) Nucl. Inst. Meth., 72, 125–42.Google Scholar
  295. Rozen, A.M. and Moisenko, E. I. (1959) Russ. J. Inorg. Chem., 4, 547–50.Google Scholar
  296. Ruska, E. and Knoll, M., (1931) Z. techn. Physik., 12, 389–400.Google Scholar
  297. Russell, R. D. (1971) J. Geophys. Res., 76, 4949–55.Google Scholar
  298. Ruzicki, J. (1968) Stoichiometry in Radiochemical Analysis, Pergamon, New York.Google Scholar
  299. Ryan, J. L. and Wheelwright, E. J. (1958) Recovery, purification, and concentration of plutonium by anion exchange in nitric acid, Hanford Report HW-55893.Google Scholar
  300. Ryan, J. L. and Wheelwright, E. J. (1959) Ind. Eng. Chem., 51, 60–5.Google Scholar
  301. Ryan, J. L. (1960) J. Phys. Chem., 64, 1375–85.Google Scholar
  302. Rydberg, J. (1955) Acta Chem. Scand., 9, 1252–60.Google Scholar
  303. Samartseva, A. G. (1961) Sov. J. At. Energy, 8, 279–83.Google Scholar
  304. Sampson, T. E., Nelson, G. E., and Kelly, T.A. (1989) FRAM: A Versatile Code for Analyzing the Isotopic Composition of Plutonium from Gamma-Ray Pulse Height Spectra, LA-11720-MS.Google Scholar
  305. ScheIDhauer, J. and Messainguiral, L. (1961) Chim. Anal. (Paris), 43, 462–4.Google Scholar
  306. Schwartz, A.J., Wall, M.A., Zocco, T.G., and Wolfer, W.G. (2005) Phil. Mag., 85, 479–88.Google Scholar
  307. Schwendiman, L. C. and Healy, J. W. (1958) Nucleonics, 16, 78–82.Google Scholar
  308. Seaborg, G. T. (1944) Metallurgical Project Report CK-1986 (A-2845).Google Scholar
  309. Seaborg, G. T., Wahl, A. C., and Kennedy, J. W. (1946) Phys. Rev., 69, 367.Google Scholar
  310. Seaborg, G. T. and Wahl, A. C. (1948) J. Am. Chem. Soc., 70, 1128–34.Google Scholar
  311. Seaborg, G. T. and Katz, J. J. (1954) ActinIDe Elements, McGraw-Hill, New York.Google Scholar
  312. Seaborg, G. T. and Loveland W. D. (1990) The Elements Beyond Uranium, Wiley, New York.Google Scholar
  313. Seils, C. A., Larsen, R. P., and Meyer, R. J. (1963) Anal. Chem., 35, 1673–5.Google Scholar
  314. Seyb, K. E. and Herrmann, G. (1960) Z. Electrochem., 64, 1065–72.Google Scholar
  315. Shannon, R. D. (1976) Acta Cryst., A32, 751–67.Google Scholar
  316. Sheppard, J. C. (1957) The Extraction of Neptunium (IV) and Plutonium (IV) from Nitric AcID Solution with Tri-n-Octylamine, USAEC Report HW-51958.Google Scholar
  317. Shevchenko, V. B., SchmIDt, V. S., and Mezhov, E. A. (1960a) Russ. J. Inorg. Chem., 5, 929–30.Google Scholar
  318. Shevchenko, V. B., Timoshev, V. G., and Volkova, A. A. (1960b) Sov. J. At. Energy, 6, 293–6.Google Scholar
  319. Shevchenko, V.B. and Zhdanov, Y. F. (1961) Radiokhimiya, 3, 676–84.Google Scholar
  320. Shim, J. H., Haule, K., and Kotliar, G. (2007) Nature (London), 446, 513–6.Google Scholar
  321. Shvetsov, I. K. and Yorobyev, A. M. (1955) in Proceedings International Conference on Peaceful Uses of Atomic Energy, paper 674, Geneva.Google Scholar
  322. SIDdall, T. H. (1960) J. Inorg. Nucl. Chem., 13, 151–5.Google Scholar
  323. SIDdall, T. H. (1963) in Aqueous Reprocessing Chemistry for Irradiated Fuels, OECD-European Nuclear Energy Agency, Paris, p. 57.Google Scholar
  324. Siegbahn, K. (ed.) (1964) Alpha-, Beta- and Gamma-Ray Spectroscopy, volumes 1 and 2, North-Holland, Amsterdam.Google Scholar
  325. Silk, E. C. H. and Barnes, R. H. (1959) Phil. Mag., 4, 970–2.Google Scholar
  326. Sill, C. W. and Williams, R. L. (1981) Anal. Chem., 53, 412–5.Google Scholar
  327. Sill, C. W. (1987) Nucl. Chem. Waste Manage., 7, 201–15.Google Scholar
  328. Silva, R. J. and Nitsche, H. (1995) Radiochim. Acta, 70, 377–96.Google Scholar
  329. Sinitsyna, G. S., Fadeev, S. A., and Sukhodolov, G. M. (1959) Radiokhimiya, 1, 295–9.Google Scholar
  330. Smith, D. H. and Carter, J. A. (1981) Int. J. Mass Spectrom. Ion Phys., 40, 211–5.Google Scholar
  331. Smith, D. H., Duckworth, D. C. Bostick, D. T., Coleman, R. M., McPherson, R. L., and McKown, H. S. (1994) in Proceedings of the 42nd ASMS Conference on Mass Spec-trometry and Allied Topics, Chicago, IL, p. 839.Google Scholar
  332. Smith, D. K., Kristo, M. J., Niemeyer, S., and Dudder, G. D. (2008) J. Radioanal. Nucl. Chem., 276(2), 413–9.Google Scholar
  333. Smith, G. F. (1965) The Wet Chemical OxIDation of Organic Compositions Employing Perchloric AcID, G. Frederick Smith Chemical Co., Columbus, OH.Google Scholar
  334. Soderlind, P. (1998) Adv. Phys., 47, 959–98.Google Scholar
  335. Sokhina, L. P. and Gel’man, A. D. (1960) Zh. Neorgan. Khim., 5, 1013–5.Google Scholar
  336. Solovkin, A. S., Ivantsov, A. I., and Renard, E.V. (1959) Russ. J. Inorg. Chem., 4, 1307–8.Google Scholar
  337. Spriet, B. (1965) J. Nucl. Mater., 15, 220–30.Google Scholar
  338. Stakebake, J. L., Larsen, D. T., and Haschke, J. M. (1993) J. Alloys Compd., 202, 251–63.Google Scholar
  339. Starik, I. E., Ratner, A. P., Pasvik, M. A., and Ginzburg, F.L. (1959) Radiokhimiya, 1, 545–7.Google Scholar
  340. Storm, E. and Israel, H. (1970) Nucl. Data Tables, A7, 565–681.Google Scholar
  341. Swanson, J. L. (1990) in Science and Technology of Tributyl Phosphate, vol. 3 (eds. W. W. Schulz, J. D. Navratil, L. L. Burger, and K. P. Bender), CRC Press, Boca Raton, FL, pp. 55–79.Google Scholar
  342. Swarup, R. and Patil, S. K. (1976) J. Inorg. Nucl. Chem., 38, 1203–6.Google Scholar
  343. Swarup, R. and Patil, S. K. (1977) Radiochem. Radioanal. Lett., 29, 73–81.Google Scholar
  344. Sydenham, P. H. (ed.) (1982) Handbook of Measurement Science, vol. 1, Theoretical Fundamentals, Wiley, Chichester.Google Scholar
  345. Tait, W. H. (1980) Radiation Detection, Butterworths, London, Chapter 7.Google Scholar
  346. Tallent, O.K. and Mailen, J. C. (1977) Nucl. Tech., 32, 167–75; 34, 416–9.Google Scholar
  347. Thompson, S. G., Cunningham, B. B., and Seaborg, G. T. (1950) J. Am. Chem. Soc., 72, 2798–801.Google Scholar
  348. Thompson, S. G. and Seaborg, G. T. (1956) in Progress in Nuclear Energy, Series 3, Process Chemistry (eds. F. R. Bruce, J. M. Fletcher, H. H. Hyman, and J. J. Katz), Pergamon Press, Oxford, pp. 163–71.Google Scholar
  349. Tillman, W.L. (1987) J Forensic Sci., 32, 62–71.Google Scholar
  350. Timofeeva, L. F. (2003) J. Metals, 55, 51–4.Google Scholar
  351. Torstenfelt, B., Rundberg, R. S., and Mitchell, A. J. (1988) Radiochim. Acta, 44, 111–7.Google Scholar
  352. Travnikov, S. S., Davydov, A. V., and Myasoedov, B. F. (1976) Radiochem. Radioanalyt. Lett., 24, 281–9.Google Scholar
  353. Trautmann, N., Passler, G., and Wendt, K.D.A. (2004) Anal. Bioanal. Chem., 378, 348–55.Google Scholar
  354. Tuck, D. G. (1958) J. Inorg. Nucl. Chem., 6, 252–6.Google Scholar
  355. Umezawa, H. (1960) At. Energy (Japan), 2, 478–82.Google Scholar
  356. Usami, T., Kurata, M., Inoue, T., Sims, H. E., Beetham, S. A., and Jenkins, J. A. (2002) J. Nucl. Mater., 300, 15–26.Google Scholar
  357. Van Belle, P. and Ottmar, H. (2001) in Proceedings of the 23rd Annual ESARDA Symposium, 8–10 May, Bruges, Belgium, pp. 496–508.Google Scholar
  358. Van der Berg, M. and Klinkenberg, P. F. A. (1954) .Physica 20: 461–80.Google Scholar
  359. Vdovenko, V. M., Lipovskii, A. A., and Nikitina, S.A. (1961) Sov. Radiochem., 3, 169.Google Scholar
  360. Vo, D.T. and Li, T.K. (2001) in Proceedings of the 23rd Annual ESARDA Symposium, 8–10 May, Bruges, Belgium, pp. 222–8.Google Scholar
  361. Vockenhuber, C., Ahmad, I., Golser, R., Kutschera, W., Liechtenstein, V., Priller, A., Steier, P., and Winkler, S. (2003) Intl. J. Mass Spectrom., 223–224, 713–32.Google Scholar
  362. Vol’skii, A. N. and Sterlin, Ya. M. (1970) Metallurgy of Plutonium, Israel Program for Scientific Translation, Jerusalem.Google Scholar
  363. Waber, J. T., Olson, W. M., and Roof, R. B. (1961) J. Nucl. Mater., 3, 201–15.Google Scholar
  364. Waldek, A., Erdmann, N., Gruning, C., Huber, G., Kunz, P., Kratz, J. V., Lassen, J., Passler, G., and Trautmann, N. (2001) RIMS Measurements for the Determination of the First Ionization Potential of the ActinIDes Actinium up to Einsteinium, American Institute of Physics, Melville, N Y, AIP Conference Proceedings, 584, 219–24.Google Scholar
  365. Walker, R. L., Eby, R. E., Pritchard, C. A., and Carter J. A. (1974) Anal. Lett., 7, 563–74.Google Scholar
  366. Wallenius, M. and Koch, L. (2000) J. Radioanal. Nucl. Chem., 246, 317–21.Google Scholar
  367. Wallenius, M. and Mayer, K. (2000) Fresen. J. Anal. Chem., 366, 234–8.Google Scholar
  368. Wallenius, M., Tamborini, G., and Koch, L. (2001) Radiochim. Acta, 89, 55–8.Google Scholar
  369. Wallenius, M., Mayer, K., and Ray, I.L.F. (2006) Forensic Sci. Int., 156, 55–62.Google Scholar
  370. Wallenius, M., Mayer, K., Ray, I., Aldave de las Heras, L., Betti, M., Cromboom, O., Hild, M., Koch, L., Lützenkirchen, K., Lynch, B., Nicholl, A., Ottmar, H., Rasmus-sen, G., Schubert, A., Tamborini, G., Thiele, H., Wagner, W., Walker, C., and Zuleger, E., (2007) J. Alloys Compd., 444–445, 57–62.Google Scholar
  371. Wallner, C., Faestermann, T., Gerstmann, U., Hillebrandt, W., Knie, K., Korschinek, G., Lierse, C., Pomar, C., and Rugel, G., (2000) Nucl. Instr. Meth. B, 172, 333–7.Google Scholar
  372. Wang, S., Barwick, S. W., Ifft, D., Price, P.B., and Westphal, A. J. (1988) Nucl. Instr. Meth. B, 35, 43–9.Google Scholar
  373. Ward, J. W., Cox, L. E., Smith, J. L., Stewart, G. R., and Wood, J. H. (1979) J. Phys. (Paris) 40, Suppl. 4, 15–7.Google Scholar
  374. Waterbury, G. R. and Metz, C. F. (1959) Anal. Chem., 31, 1144–8.Google Scholar
  375. Waterbury, G. R. and Metz, C. F. (1964) Comparison of Four Titrimatric Methods for Assaying Plutonium, Los Alamos Report LA-3554.Google Scholar
  376. Waterbury, G. R., Douglass, R.M., and Metz, C. F. (1961) Anal. Chem., 33, 1018–23.Google Scholar
  377. Watt, B. E. (1952) Phys. Rev., 87, 1037–41.Google Scholar
  378. Weaver, B. and Kappelmann, F. A. (1968) J. Inorg. Nucl. Chem. 30, 263–72.Google Scholar
  379. Webster, R. K. (1960) in Methods in Geochemistry (eds. A. A. Smales and L. R. Wager), Interscience, New York, p. 202.Google Scholar
  380. Weinstock, B. and Malm, J. G. (1956) J. Inorg. Nucl. Chem., 2, 380–94.Google Scholar
  381. Wendt, K., and Trautmann, N. (2005) Int. J. Mass Spectrom., 242, 161–8.Google Scholar
  382. Wheelwright, E. J., Bray, L. A., and Ryan, J. L. (1988) Development of the CEPOD Process for Dissolving Plutonium OxIDe and Leaching Plutonium from Scraps and Waste, Pacific Northwest Lab report PNL-6483.Google Scholar
  383. Wick, O. J. (ed.) (1967) Plutonium Handbook, vol. 1, Gordon & Breach, New York.Google Scholar
  384. Williams, D.B. and Carter, C.B. (2009) Transmission Electron Microscopy: A Textbook for Materials Science, 2nd edn, Springer, Berlin.Google Scholar
  385. Winchester, R. S. (1957) Aqueous Decontamination of Plutonium from Fission Product Elements, USAEC Report LA-2170.Google Scholar
  386. Wish, L. (1959) Anal. Chem., 31, 326–30.Google Scholar
  387. Wiss, T., Deschanels, X., Hiernaut, J.-P., Roudil, D., Peuget, S., and Rondinella, V.V. (2007a) J. Nucl. Mater., 362, 431–8.Google Scholar
  388. Wiss. T., Thiele, H., Cremer, B., and Ray, I. (2007b) Microsc. Microanal., 13, 1–8.Google Scholar
  389. Worden, E. F., Carlson, L. R., Johnson, S. A., Paisner, J. A., and Solarz, R. W. (1993) J. Opt. Soc. Am., B10, 1998–2005.Google Scholar
  390. Yaffe, L. (1962) Ann. Rev. Nucl. Sci., 12, 153–8.Google Scholar
  391. Yakovlev, G. N., Chulkov, P. M., Dedov, V. B., Kosyakov, V.N., and Sobolev, Yu. P. (1956) At. Energy, 1, 813–5.Google Scholar
  392. Zocco, T.G. and Schwartz, A.J. (2003) J. Min. Met. Mater. Soc., 55, 24–27.Google Scholar
  393. Zhang, H.T., Zhu, F.R., Xu, J., Dai, Y.H., Li, D.M., Yi, X.W., Zhang, L.X., and Zhao, Y.G. (2008) Radiochim. Acta, 96, 327–31.Google Scholar
  394. Zvara, I. and Tarasov, L. K. (1962) Zh. Neorgan. Khim., 7, 2665–70.Google Scholar
  395. Zvarova, T. S. and Zvara, I. (1970) J. Chromatogr., 49, 290–2.Google Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Kenton J. Moody
  • Dawn A. Shaughnessy
  • Karin Casteleyn
  • Herbert Ottmar
  • Klaus Lützenkirchen
  • Maria Wallenius
  • Thierry Wiss

There are no affiliations available

Personalised recommendations