Advertisement

Actinide Waste Forms and Radiation Effects

  • R. C. Ewing
  • W. J. Weber

Abstract

Over the past few decades, many studies of actinides in glasses and ceramics have been conducted that have contributed substantially to the increased understanding of actinide incorporation in solids and radiation effects due to actinide decay. These studies have included fundamental research on actinides in solids and applied research and development related to the immobilization of the high level wastes (HLW) from commercial nuclear power plants and processing of nuclear weapons materials, environmental restoration in the nuclear weapons complex, and the immobilization of weapons-grade plutonium as a result of disarmament activities. Thus, the immobilization of actinides has become a pressing issue for the twenty-first century (Ewing, 1999), and plutonium immobilization, in particular, has received considerable attention in the USA (Muller et al., 2002; Muller and Weber, 2001). The investigation of actinides and

Keywords

Spend Fuel Spend Nuclear Fuel Spend Nuclear Fuel Waste Form Waste Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Abdelouas, A., Crovisier, J. L., Lutze, W., Grambow, B., Dran, J. C., and Muller, R.(1997). J Nucl. Mater., 240(2), 100–11.Google Scholar
  2. Abdelouas, A., Utsunomiya, S., Suzuki, T., Grambow, B., Advocat, T., Bart, F., and Ewing, R. C. (2008). Am. Mineral., 93(1), 241–7.Google Scholar
  3. Abraham, M. M., Boatner, L. A., Finch, C. B., and Reynolds, R. W. (1971). Phys. Rev. B 3(9), 2864–2868.Google Scholar
  4. Alvarez, R. (2007). Report of the Institute for Policy Studies, Washington D.C.Google Scholar
  5. Anderson, E. B., Burakov, B. E., and Pazukhin, E. M. (1993). Radiochim. Acta, 60(2–3), 149–51.Google Scholar
  6. Audubert, F., Carpena, J., Lacout, J. L., and Tetard, F. (1997). Solid State Ionics, 95(1–2),113–9.Google Scholar
  7. Bae, I. K., Chae, S. C., Jang, Y. N., Ioudintseva, T. S., and Yudintsev, S. V. (2004). Lithos, 73, 4.Google Scholar
  8. Banba, T. (1997). Glass: Scientific Research Toward High Performance Containment, 167–80.Google Scholar
  9. Banba, T., Matsumoto, S., Muraoka, S., Yamada, K., Saito, M., Ishikawa, H., and Sasaki, N. (1995). Scientific Basis for Nuclear Waste Management XVIII, Pts 1 and 2, 353, 1397–404.Google Scholar
  10. Bates, J. K., Lam, D. J., and Steindler, M. J. (1983). Scientific Research for Nuclear Waste Management, United States, MRS, Elsevier Science Publishing Co., Amsterdam, 15, pp. 183–90.Google Scholar
  11. Bates, J. K., Emery, J. W., Hoh, J. C., and Johnson, T. R. (1995). “Performance of High Plutonium-Containing Glasess for Immobilization of Surplus Fissile Materials”, Ceramic Transactions, 61, 447–454.Google Scholar
  12. Bates, J. K., Ellison, A. J. G., Emery, J. W., and Hoh, J. C. (1996). Material Research Society Symposium Proceeding (Pittsburgh, PA), 412, p. 57.Google Scholar
  13. Begg, B. D., Vance, E. R., and Conradson, S. D. (1998a). J. Alloys Compd., 271, 221–6.Google Scholar
  14. Begg, B. D., Vance, E. R., Hunter, B. A., and Hanna, J. V. (1998b). J Mater. Res., 13(11), 3181–90.Google Scholar
  15. Begg, B. D., Hess, N. J., Weber, W. J., Conradson, S. D., Schweiger, M. J., and Ewing, R. C. (2000). J. Nucl. Mater., 278(2–3), 212–24.Google Scholar
  16. Begg, B. D., Hess, N. J., Weber, W. J., Devanathan, R., Icenhower, J. P., Thevuthasan, S., and McGrail, B. P. (2001). J. Nucl. Mater., 288(2–3), 208–16.Google Scholar
  17. Bibler, N. E., Ramsey, W. G., Meaker, T. F., and Pareizs, J. M. (1996). Scientific Basis for Nuclear Waste Management XIX, 412, 65–72.Google Scholar
  18. Bjorklund, C. W. (1957). J. Am. Chem. Soc., 79(24), 6347–50.Google Scholar
  19. Blackford, M. G., Smith, K. L., and Hart, K. P. (1992). Scientific Basis for Nuclear Waste Management XV, 257, 243–9.Google Scholar
  20. Boatner, L. A. and Abraham, M. M. (1978). Rep. Prog. Phys., 41(1), 87–155.Google Scholar
  21. Boatner, L. A. and Sales, B. C. (1988) in Radioactive Waste Forms for the Future (eds.W. Lutze and R. C. Ewing), North-Holland, Amsterdam, pp. 495–564.Google Scholar
  22. Boatner, L. A., Beall, G. W., Abraham, M. M., Finch, C. B., Huray, P. G., and Rappaz, M. (1980). Scientific Basis for Nuclear Waste Management, 2, 289–96.Google Scholar
  23. Boczar, P. G., Gagnon, M. J. N., Chan, P. S. W., Ellis, R. J., Verrall, R. A., and Dastur, A. R.(1997). Adv. Nucl. Syst. Consum. Excess Plutonium, 15, 163–79.Google Scholar
  24. Bonniaud, R. A., Francillon, N. R. J., Laude, F. L., and Sombret, C. G. (1979) in Ceramics in Nuclear Waste Management (eds. T.D. Chikalla and J.E. Mendel) National Technical Information Service, Springerfield, VA, pp. 57–61.Google Scholar
  25. Bonniaud, R. A., Jacquet-Francillon, N. R., and Sombret, C. G. (1980). Scientific Basis for Nuclear Waste Management, 2, 117–25.Google Scholar
  26. Boult, K. A., Dalton, J. T., Evans, J. P., Hall, A. R., Inns, A. J., Marples, J. A. C., and Paige, E. L. (1988). In The Preparation of Fully Active Synroc and Its Radiation Stability — Final Report, October 1988. Harwell Laboratory.Google Scholar
  27. Boyer, L., Carpena, J., and Lacout, J. L. (1997). Solid State Ionics, 95(1–2), 121–9.Google Scholar
  28. Bros, R., Carpena, J., Sere, V., and Beltritti, A. (1996). Radiochim. Acta, 74, 277–82.Google Scholar
  29. Browne, E., Dairiki, J. M., Doebler, R. E., Shihab-Eldin, A. A., Jardine, L. J., Tuli, J. K., and Buyrn, A. B. (1978). Table of Isotopes, Wiley, New York, pp. 1626.Google Scholar
  30. Bruno, J. and Ewing, R. C. (2006). Elements, 2(6), 343–9.Google Scholar
  31. Bruno, J., Duro, L., and Grive, M. (2002). Chem. Geol., 190(1–4), 371–93.Google Scholar
  32. Brutzel, L. V., Chartier, A., and Crocombette, J. P. (2008). Phys. Rev. B (Condensed Matter Mater. Phys.), 78(2), 024111.Google Scholar
  33. Buck, E. C., Finn, P. A., and Bates, J. K. (2004a). Micron, 35(4), 235–43.Google Scholar
  34. Buck, E. C., Hanson, B. D., and McNamara, B. K. (2004b). Geol. Soc., Lond. Spec.Publ., 236(1), 65–88.Google Scholar
  35. Burakov, B. E., Anderson, E. B., Rovsha, V. S., Ushakov, S. V., Ewing, R. C., Lutze, W., and Weber, W. J. (1996). Scientific Basis for Nuclear Waste Management XIX, 412, 33–9.Google Scholar
  36. Burakov, B. E., Anderson, E. B., Knecht, D. A., Zamoryanskaya, M. A., Strykanova, E.E., and Yagovkina, M. A. (1999). Scientific Basis for Nuclear Waste Management XXII, 556, 55–62.Google Scholar
  37. Burns, P. C. (2005). Can. Mineral., 43, 1839–94.Google Scholar
  38. Burns, P. C. and Finch, R. J. (1999). Rev. Mineral., 38, 679.Google Scholar
  39. Burns, P. C. and Klingensmith, A. L. (2006). Elements, 2(6), 351–6.Google Scholar
  40. Burns, P. C., Ewing, P. C., and Miller, M. L. (1997). J. Nucl. Mater., 245(1), 1–9.Google Scholar
  41. Burns, P. C., Deely, K. M., and Skanthakumar, S. (2004). Radiochim. Acta, 92(3), 151–9.Google Scholar
  42. Burns, W. G., Hughes, A. E., Marples, J. A. C., Nelson, R. S., and Stoneham, A. M.(1982). J. Nucl. Mater., 107(2–3), 245–70.Google Scholar
  43. Carbol, P. C.-S. J., Glatz, J. P., Ronchi, C., Rondinella, V., Wegen, D. H., Wiss T, L. A., Metz, V., Kienzler, B., Spahiu, K., Grambow, B., Quiñones, J., and Martinez, E. V. A. (2005). SKB Technical Report. S. K, pp 139.Google Scholar
  44. Carmack, W., Fielding, R., Medvedev, P., Meyer, M., Todosow, M., Hamilton, H. B., Nino, J., Philpot, S., and J, T. (2005). Idaho National Laboratory Report, pp 40.Google Scholar
  45. Carroll, D. F. (1963). J. Am. Ceram. Soc., 46(4), 194–5.Google Scholar
  46. Chakoumakos, B. C. (1984). J. Solid State Chem., 53(1), 120–9.Google Scholar
  47. Chakoumakos, B. C. (1986). McGraw-Hill Yearbook of Science and Technology 1987, McGraw-Hill, New York, pp. 393–5.Google Scholar
  48. Chakoumakos, B.C, Ewing, R. C. (1985) in Scientific Basis for Nuclear Waste Management VIII (Pittsburgh, PA), Material Research Society Symposium Proceedings, 44, pp. 641–6.Google Scholar
  49. Chartier, A., Meis, C., Crocombette, J. P., Corrales, L. R., and Weber, W. J. (2003). Phys. Rev. B, 67(17) 174102.Google Scholar
  50. Chen, F., Ewing, R. C., and Clark, S. B. (1999). Am. Mineral., 84(4), 650–64.Google Scholar
  51. Chikalla, T. D. and Turcotte, R. P. (1973). Radiat. Eff. Defects Solids, 19(2), 93–8.Google Scholar
  52. Clinard, F. W. (1986). Am. Ceram. Soc. Bull., 65(8), 1181–7.Google Scholar
  53. Clinard, F. W., Jr., Land, C. C., Peterson, D. E., Rohr, D. L., and Roof, R. B. (1982a). Scientific Basis for Nuclear Waste Management, 6, 405–412.Google Scholar
  54. Clinard, F. W., Hobbs, L. W., Land, C. C., Peterson, D. E., Rohr, D. L., and Roof, R. B. (1982b). J. Nucl. Mater., 105(2–3), 248–56.Google Scholar
  55. Clinard, F. W., Peterson, D. E., Rohr, D. L., and Hobbs, L. W. (1984a). J. Nucl. Mater., 126(3), 245–54.Google Scholar
  56. Clinard, F. W., Rohr, D. L., and Roof, R. B. (1984b). Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 229(2–3), 581–6.Google Scholar
  57. Clinard, F. W., Foltyn, E. M., and Ewing, R. C. (1991). J. Nucl. Mater., 185(2), 202–7.Google Scholar
  58. Cochran, S. G., Dunlop, W. H., Edmunds, T. A., MacLean, L. M., and Gould, T. H. (1997). ‘Fissile Materials Disposition Program — Final Immobilization Form Assessment and Recommendation’ UCRL-ID-128705.Google Scholar
  59. Crocombette, J. P. and Ghaleb, D. (2001). J. Nucl. Mater., 295(2–3), 167–78.Google Scholar
  60. Curtiss, L. F. (1927). Nature, 120, pp 406.Google Scholar
  61. Dacheux, N., Podor, R., Brandel, V., and Genet, M. (1998a). J. Nucl. Mater., 252(3), 179–86.Google Scholar
  62. Dacheux, N., Podor, R., Chassigneux, B., Brandel, V., and Genet, M. (1998b). J. Alloys Compd., 271, 236–9.Google Scholar
  63. Day, D. H., Hughes, A. E., Leake, J. W., Marples, J. A. C., Marsh, G. P., Rae, J., and Wade, B. O. (1985). Rep. Progr. Phys., 48(1), 101–69.Google Scholar
  64. Dé, A. K., Luckscheiter, B., Lutze, W., Malow, G., and Schiewer, E. (1976a). Am. Ceram. Soc. Bull., 55(5), 500–3.Google Scholar
  65. Dé, A. K., Luckscheiter, B., Lutze, W., Malow, G., Schiewer, E., and Tymochowicz, S. (1976b). In Fixation of Fission Products in Glass Ceramics. IAEA, Vienna, pp. 63–73.Google Scholar
  66. Degueldre, C. and Paratte, J. M. (1999). J. Nucl. Mater., 274(1–2), 1–6.Google Scholar
  67. Degueldre, C., Kasemeyer, U., Botta, F., and Ledergerber, G. (1996). Scientific Basis for Nuclear Waste Management XIX, 412, 15–23.Google Scholar
  68. Devanathan, R. and Weber, W. J. (2008). J. Mater. Res., 23(3), 593–7.Google Scholar
  69. Devanathan, R., Corrales, L. R., Weber, W. J., Chartier, A., and Meis, C. (2006). Mol. Simul., 32(12–13), 1069–77.Google Scholar
  70. Devine, R. A. B. (1994). Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 91(1–4), 378–90.Google Scholar
  71. Donald, I. W., Metcalfe, B. L., and Taylor, R. N. J. (1997). J. Mater. Sci., 32(22), 5851–87.Google Scholar
  72. Douglas, M., Clark, S. B., Friese, J. I., Arey, B. W., Buck, E. C., Hanson, B. D., Utsunomiya, S., and Ewing, R. C. (2005). Radiochim. Acta, 93(5), 265–72.Google Scholar
  73. Ebert, W. L., Bates, J. K., and Bourcier, W. L. (1991). Waste Manage., 11(4), 205–22.Google Scholar
  74. Ehlert, T. C., Gowda, K. A., Karioris, F. G., and Cartz, L. (1983). Radiat. Eff. Defects Solids, 70(1–4), 173–81.Google Scholar
  75. Eller, P. G., Jarvinen, G. D., Purson, J. D., Penneman, R. A., Ryan, R. R., Lytle, F. W., and Greegor, R. B. (1985). Radiochim. Acta, 39(1), 17–22.Google Scholar
  76. Ellsworth, S., Navrotsky, A., and Ewing, R. C. (1994). Phys. Chem. Min., 21(3), 140–9.Google Scholar
  77. Ewing, R. C. (1999). Proc. Natl. Acad. Sci. U. S. A., 96(7), 3432–9.Google Scholar
  78. Ewing, R. C. (2001). Can. Mineral., 39, 697–715.Google Scholar
  79. Ewing, R. C. (2005). Earth Planet. Sci. Lett., 229, 165–81.Google Scholar
  80. Ewing, R. C. (2006). Elements, 2, 321–72.Google Scholar
  81. Ewing, R. C. (2007). Prog. Nucl. Energy, 49(8), 635–43.Google Scholar
  82. Ewing, R. C., Haaker, R. F., and Lutze, W. (1982) in Scientific Basis for Nuclear Waste Management V (ed. W. Lutze), Materials Research Society, Pittsburg, PA, Vol 11, pp. 389–97.Google Scholar
  83. Ewing, R. C., Chakoumakos, B. C., Lumpkin, G. R., Murakami, T., Greegor, R. B., and Lytle, F. W. (1988). Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 32(1–4), 487–97.Google Scholar
  84. Ewing, R. C., Lutze, W., and Weber, W. J. (1995a). J. Mater. Res., 10(2), 243–6.Google Scholar
  85. Ewing, R. C., Weber, W. J., and Clinard, F. W. (1995b). Prog. Nucl. Energy, 29(2), 63–127.Google Scholar
  86. Ewing, R. C., Weber, W. J., and Lutze, W. (1996). Disposal Weapon Plutonium, 4, 65–83.Google Scholar
  87. Ewing, R. C., Meldrum, A., Wang, L. M., and Wang, S. X. (2000). Rev in Mineralogy and Geochem Transform. Process. Miner., 39, 319–61.Google Scholar
  88. Ewing, R. C., Meldrum, A., Wang, L. M., Weber, W. J., and Corrales, L. R. (2003). Rev in Mineralogy and Geochem Zircon, 53, 387–425.Google Scholar
  89. Ewing, R. C., Weber, W. J., and Lian, J. (2004). J. Appl. Phys., 95(11), 5949–71.Google Scholar
  90. Exarhos, G. J. (1984). Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 229(2–3), 538–41.Google Scholar
  91. Eyal, Y. and Ewing, R. C. (1993). Low Intermediate Level Radioact. Waste Manage., 1, 191–6.Google Scholar
  92. Fahey, J. A., Weber, W. J., and Rotella, F. J. (1985). J. Solid State Chem., 60(2), 145–58.Google Scholar
  93. Farnan, I. and Salje, E. K. H. (2001). J. Appl. Phys., 89(4), 2084–90.Google Scholar
  94. Farnan, I., Cho, H., Weber, W. J., Scheele, R. D., Johnson, N. R., and Kozelisky, A. E. (2004). Rev. Sci. Instrum., 75(12), 5232–6.Google Scholar
  95. Farnan, I., Cho, H., and Weber, W. J. (2007). Nature, 445(7124), 190–3.Google Scholar
  96. Fellinger, A. P., Baich, M. A., Hardy, B. J., Jannik, G. T., Jones, T. M., Marra, J. E., Miller, C. B., Miller, D. H., Peeler, D. K., Snyder, T. K., Stone, M. E., and Witt, D. C. (1999). Scientific Basis for Nuclear Waste Management XXII, 556, 367–73.Google Scholar
  97. Feng, X., Surma, J. E., Whitworth, C. G., Eschenbach, R. C., and Leatherman, G. L. (1996). Glass as a Waste Form and Vitrification Technology: Summary of an International Workshop, E.68–E.69, National Academy Press, Washington, D. C.Google Scholar
  98. Feng, X., Li, H., Davis, L. L., Li, L., Darab, J. G., Schweiger, M. J., Vienna, J. D., Bunker, B. C., Allen, P. G., Bucher, J. J., Craig, I. M., Edelstein, N. M., Shuh, D. K., Ewing, R. C., Wang, L. M., and Vance, E. R. (1999). Environ. Issues Waste Manage. Technol. Ceram. Nucl. Ind. IV, 93, 409–19.Google Scholar
  99. Finch, R. J. and Ewing, R. C. (1992). J. Nucl. Mater., 190, 133–56.Google Scholar
  100. Fleischer, R. L. (1980). Science, 207(4434), 979–81.Google Scholar
  101. Fleischer, R. L. (2003). Geochim. Cosmochim. Acta, 67(24), 4769–74.Google Scholar
  102. Foltyn, E. M., Clinard, F. W., Rankin, J., and Peterson, D. E. (1985). J. Nucl. Mater., 136(1), 97–103.Google Scholar
  103. Frank, S. M., Barber, T. L., DiSanto, T., Goff, K. M., Johnson, S. G., Jue, J. F., Noy, M., O’Holleran, T. P., and Sinkler, W. (2002). Scientific Basis for Nuclear Waste Management XXV, 713, 487–94.Google Scholar
  104. Freshley, M. D. and Carroll, D. F. (1963). Trans. Am. Nucl. Soc. USA, 6, 396–7.Google Scholar
  105. Gauthier-Lafaye, F. (1997). Nature, 387(6631), pp 337.Google Scholar
  106. Gauthier-Lafaye, F., Holliger, P., and Blanc, P. L. (1996). Geochim. Cosmochim. Acta, 60(23), 4831–52.Google Scholar
  107. Gauthier-Lafaye, F., Ledoux, E., Smellie, J., Louvat, D., Michaud, V., Pérez del Villar, L., Oversby, V., and Bruno, J. (2000). EUR 19139EN, 116.Google Scholar
  108. Gong, W. L., Ewing, R. C., Wang, L. M., Vernaz, E., Bates, J. K., and Ebert, W. L. (1996). Scientific Basis for Nuclear Waste Management XIX, 412, 197–204.Google Scholar
  109. Gong, W. L., Lutze, W., and Ewing, R. C. (2000). J. Nucl. Mater., 277(2–3), 239–49.Google Scholar
  110. Gorman-Lewis, D., Burns, P. C., and Fein, J. B. (2008). J. Chem. Thermodyn., 40(3), 335–52.Google Scholar
  111. Grambow, B., Loida, A., Martinez-Esparza, A., Díaz-Arocas, P., de Pablo, J., Paul, J.-L., Glatz, J.-P., Lemmens, K., Ollila, K., and Christensen, H. (2000) Source Term for Performance Assessment of Spent Fuel as a Waste Form. EUR 19140 EN, pp 355.Google Scholar
  112. Grambow, B. (2006). Elements, 2(6), 357–64.Google Scholar
  113. Grandstaff, D. E. (1976). Econ. Geol., 71(8), 1493–506.Google Scholar
  114. Greegor, R. B., Lytle, F. W., Livak, R. J., and Clinard, F. W. (1988). J. Nucl. Mater., 152(2–3), 270–7.Google Scholar
  115. Griscom, D. L. (1990). in Glass: Science and Technology (eds. D. R. Uhlmann and N. J. Kreidl), Academic, Boston, MA, vol 4B, p. 151.Google Scholar
  116. Haire, R. G. and Stump, N. A. (1997). Scientific Basis for Nuclear Waste Management XX, 465, 39–46.Google Scholar
  117. Hall, A. R., Dalton, J. T., Hudson, B., and Marples, J. A. C. (1976). Management of Radioactive Wastes from the Nuclear Fuel Cycle, 2(IAEA-SM-207), 3–14.Google Scholar
  118. Harker, A. B. and Flintoff, J. F. (1985). J. Am. Ceram. Soc., 68(3), 159–65.Google Scholar
  119. Harker, A. B. and Flintoff, J. F. (1990). J. Am. Ceram. Soc., 73(7), 1901–6.Google Scholar
  120. Hatch, L. P. (1953). Am. Sci., 41, 410–421.Google Scholar
  121. Hawkins, H. T., Scheetz, B. E., and Guthrie, G. D., Jr. (1997) in Scientific Basis for Nuclear Waste Management XX (Pittsburgh, PA), Material Research Society Symposium Proceedings, 465, pp. 387–94.Google Scholar
  122. Hayward, P. J. (1988) in Radioactive Waste Forms for the Future (eds. W. Lutze and R. C. Ewing), North-Holland, Amsterdam 427–493.Google Scholar
  123. Hedin, A. (1997). SKB Technical Report 97–13, 60.Google Scholar
  124. Hess, N. J., Weber, W. J., and Conradson, S. D. (1998a). J. Nucl. Mater., 254(2–3), 175–84.Google Scholar
  125. Hess, N. J., Weber, W. J., and Conradson, S. D. (1998b). J. Alloys Compd., 271, 240–3.Google Scholar
  126. Hickman, B. S. and Pryor, A. W. (1964). J. Nucl. Mater., 14, 96–110.Google Scholar
  127. Hough, A. and Marples, J. A. C. (1993). The Radiation Stability of SYNROC: Final Report. AEA Technology Report, AEA-FS-0201.Google Scholar
  128. Hurtgen, C. and Fuger, J. (1977). Inorg. Nucl. Chem. Lett., 13(3–4), 179–88.Google Scholar
  129. Icenhower, J. P., Luttge, A., McGrail, B. P., Beig, M. S., Arvidson, R.S., Rodriguez, E. A., Steele, J. L., and Baum, S. R. (2003). Scientific Basis for Nuclear Waste Management XXVI, 757, 119–26.Google Scholar
  130. Imaura, A., Touran, N., and Ewing, R. C. (2009) J. Nucl. Mater., 389, 341–350.Google Scholar
  131. Inagaki, Y., Furuya, H., Idemitsu, K., Banba, T., Matsumoto, S., and Muraoka, S. (1992). Scientific Basis for Nuclear Waste Management XV, 257, 199–206.Google Scholar
  132. Inagaki, Y., Furuya, H., Ono, Y., and Idemitsu, K. (1993). Scientific Basis for Nuclear Waste Management XVI, 294, 191–8.Google Scholar
  133. Jacquet-Francillon, N., Bonniaud, R., and Sombret, C. (1978). Radiochim. Acta, 25(3–4), 231–40.Google Scholar
  134. Janeczek, J. (1999). Rev. Mineral. Geochem., 38(1), 321–92.Google Scholar
  135. Janeczek, J., Ewing, R. C., Oversby, V. M., and Werme, L. O. (1996). J. Nucl. Mater., 238(1), 121–30.Google Scholar
  136. Jantzen, C. M. and Glasser, F. P. (1979). Am. Ceram. Soc. Bull., 58(4), 459–466.Google Scholar
  137. Jensen, K. A. and Ewing, R. C. (2001). Geol. Soc. Am. Bull. 113(1), 32–62.Google Scholar
  138. Jensen, K. A., Palenik, C. S., and Ewing, R. C. (2002). Radiochim. Acta 90(9–11), 761–9.Google Scholar
  139. Johnson, L. H. and Shoesmith, D. W. (1988) Spent fuel, in Radioactive Waste Forms for the Future (eds. W. Lutze and R. C. Ewing), North-Holland, Amsterdam, 635–698.Google Scholar
  140. Johnson, L., Ferry, C., Poinssot, C., and Lovera, P. (2005). J. Nucl. Mater., 346(1), 56–65.Google Scholar
  141. Jostsons, A., Vance, E. R., Mercer, D. J., and Oversby, V. M. (1995). Scientific Basis for Nuclear Waste Management XVIII, Pts 1 and 2, 353, 775–81.Google Scholar
  142. Karim, D. P., Lam, D. J., Diamond, H., Friedman, A. M., Coles, D. J., Bazan, F., and McVay, G. L. (1982). Material Research Society Symposium Proceedings 6, 6, p. 67.Google Scholar
  143. Keller, C. (1963). Nukleonik, 5, 41–8.Google Scholar
  144. Keller, C. and Walter, K. H. (1965). J. Inorg. Nucl. Chem., 27(6), 1247–1251.Google Scholar
  145. Kelly, K. L., Beall, G. W., Young, J. P., and Boatner, L. A. (1981). Scientific Basis for Nuclear Waste Management, Plenum Press, New York, 3, pp. 189–95.Google Scholar
  146. Kersting, A. B., Efurd, D. W., Finnegan, D. L., Rokop, D. J., Smith, D. K., and Thompson, J. L. (1999). Nature, 397(6714), 56–9.Google Scholar
  147. Kesson, S. E. and Ringwood, A. E. (1984). Radioact. Waste Manage. Nucl. Fuel Cycle, 4, 159–74.Google Scholar
  148. Klemens, P. G., Clinard, F. W., and Livak, R. J. (1987). J. Appl. Phys., 62(5), 2062–4.Google Scholar
  149. Kleykamp, H. (1979). J. Nucl. Mater., 84(1–2), 109–17.Google Scholar
  150. Kleykamp, H. (1985). J. Nucl. Mater., 131(2–3), 221–46.Google Scholar
  151. Klingensmith, A. L. and Burns, P. C. (2007). Am. Mineral., 92, 1946–51.Google Scholar
  152. Knapp, G. S., Veal, B. W., Paulikas, A. P., Mitchell, A. W., Lam, D. J., and Klippert, T. E. (1984) in 3rd International EXAFS Conference, Stanford, CA, Springer Proc. Phys. 2, pp. 305–7.Google Scholar
  153. Knecht, D. A., O’Halleran, T. P., Vinjamuri, K., Raman, S. V., and Staples, B. A. (1996) in Glass as a Waste Form and Vitrification Technology: Summary of an International Workshop, National Academy Press, Washington D.C., E.78–E.79.Google Scholar
  154. Kolbe, W., Edelstein, N., Finch, C. B., and Abraham, M. M. (1974). J. Chem. Phys., 60 (2), 607–9.Google Scholar
  155. Kot, W. K., Edelstein, N. M., Abraham, M. M., and Boatner, L. A. (1993). Phys. Rev. B, 47(6), 3412–4.Google Scholar
  156. Kubatko, K. A. H., Helean, K. B., Navrotsky, A., and Burns, P. C. (2003). Science, 302(5648), 1191–3.Google Scholar
  157. Kuramoto, K., Mitamura, H., Banba, T., and Muraoka, S. (1998). Prog. Nucl. Energy, 32(3–4), 509–16.Google Scholar
  158. Kushnikov, V. V., Matyunin, Y. I., Smelova, T. V., and Demin, A. V. (1997). Material Research Society Symposium Proceedings (Pittsburgh, PA), 465, p. 55.Google Scholar
  159. Lam, D. J., Veal, B. W., and Paulikas, A. P. (1983). ACS Symp. Ser., 216, 145–54.Google Scholar
  160. Laverov, N. P., Yudintsev, S. V., Omel’yanenko, B. I., Nikonov, B. S., and Stefanovskii, S. V. (1999). Geol. Ore Deposits, 41(2), 85–93.Google Scholar
  161. Laverov, N. P., Velichkin, V. I., Omel’yanenko, B. I., and Yudinstev, S. V. (2002). Geol. Ore Deposits, 45, 1–18.Google Scholar
  162. Laverov, N. P., Yudintsev, S. V., Yudintseva, T. S., Stefanovsky, S. V., Ewing, R. C., Lian, J., Utsunomiya, S., and Wang, L. A. (2003). Geol. Ore Deposits, 45(6), 423–51.Google Scholar
  163. Laverov, N. P., Yudintsev, S. V., Stefanovsky, S. V., Omel’yanenko, B. I., and Nikonov, B. S. (2006). Geol. Ore Deposits, 48(5), 335–56.Google Scholar
  164. Laverov, N. P., Yudinstev, S. V., Dmitriev, S. A., S.V., S., Bychkov, A. V., Lukinykh, A. N., and Ewing, R. C. (2009). Proceedings of Global 2009, Paris, France.Google Scholar
  165. Laverov, N.P., Yudinstev, S.V., Livshits, S.V., Stefanovsky, S.V., Lukinykh, A.N., and Ewing, R.C. (2010) Geochimistry International, 48(1), 1–14.Google Scholar
  166. Lee, W. E., Ojovan, M. I., Stennett, M. C., and Hyatt, N. C. (2006). Adv. Appl. Ceram., 105(1), 3–12.Google Scholar
  167. Lell, E., Kreidl, N. J., and Hensler, J. R. (1996). Progress in Ceramic Science (ed. J. Burke), Oxford, New York, Pergamon Press, vol. 4, pp. 1–93.Google Scholar
  168. Lian, J., Chen, J., Wang, L. M., Ewing, R. C., Farmer, J. M., Boatner, L. A., and Helean, K. B. (2003). Phys. Rev. B, 68(13) 134107.Google Scholar
  169. Lian, J., Wang, L. M., Ewing, R. C., Yudintsev, S. V., and Stefanovsky, S. V. (2005). J. Appl. Phys., 97(11) 113536.Google Scholar
  170. Lian, J., Helean, K. B., Kennedy, B. J., Wang, L. M., Navrotsky, A., and Ewing, R. C. (2006). J. Phys. Chem. B, 110(5), 2343–50.Google Scholar
  171. Lian, J., Yudintsev, S. V., Stefanovsky, S. V., Wang, L. M., and Ewing, R. C. (2007). J. Alloys Compd., 444, 429–33.Google Scholar
  172. Lind, S. C. (1928). Science, 68, 643–4.Google Scholar
  173. Lindberg, M. L. and Ingram, B. (1964). U.S. Geol. Surv., 501-B, 64.Google Scholar
  174. Lineweaver, J. L. (1963). J. Appl. Phys., 34(6), 1786–1791.Google Scholar
  175. Livshits, T. S. and Yudintsev, S. V. (2007). Geochim. Cosmochim. Acta, 71(15), A593.Google Scholar
  176. Lumpkin, G. R. (2001). J. Nucl. Mater., 289(1–2), 136–66.Google Scholar
  177. Lumpkin, G. R. (2006). Elements, 2(6), 365–72.Google Scholar
  178. Lumpkin, G. R. and Ewing, R. C. (1988). Phys. Chem. Miner., 16(1), 2–20.Google Scholar
  179. Lumpkin, G. R., Ewing, R. C., Chakoumakos, B. C., Greegor, R. B., Lytle, F. W., Foltyn, E. M., Clinard, F. W., Jr., Boatner, L. A., and Abraham, M. M. (1986a). J. Mater. Res., 1, 564–76.Google Scholar
  180. Lumpkin, G. R., Foltyn, E. M., and Ewing, R. C. (1986b). J. Nucl. Mater., 139(2), 113–20.Google Scholar
  181. Lumpkin, G. R., Smith, K. L., Gieré, R., and Williams, C. T. (2004) in Energy, Waste, and the Environment: A Geochemical Perspective (eds. R. Gieré and P. Stille), Geological Society Special Publications, London, vol. 236, pp. 89–111.Google Scholar
  182. Lutze, W. and Ewing, R. (1988). Radioactive Waste Forms for the Future. North-Holland, Amsterdam, pp 778.Google Scholar
  183. Malow, G. and Andresen, H. (1979). Scientific Basis for Nuclear Waste Management, Plenum Press, New York, vol. 1, pp. 109–15.Google Scholar
  184. Malow, G., Marples, J. A. C., and Sombret, C. (1980). Radioactive Waste Management and Disposal, Harwood Academic Publishers, Chur, Switzerland, pp. 341–59.Google Scholar
  185. Mardon, P. G., Hodkin, D. J., and Dalton, J. T. (1969). J. Nucl. Mater., 32(1), 126–134.Google Scholar
  186. Marples, J. A. C. (1988). Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 32(1–4), 480–6.Google Scholar
  187. Marples, J. A. C., Dalton, J. T., Hall, A. H., Hough, A., Boult, K. A., Malow, G., Beran, V., Borchardt, J., Lutze, W., Matiske, H., Jacquet-Francillon, N., Laude, F., Magnier, A., Vernaz, E., Sombret, C., Heirmerl, W., and Schutz-Lembach, G. (1981). Eur. Appl. Res. Rept.-Nucl. Sci. Technol. 3, 395.Google Scholar
  188. Marra, J. E., Baich, M. A., Fellinger, A. P., Hardy, B. J., Jones, T. M., Miller, C. B., Miller, D. H., Peeler, D. K., Snyder, T. K., Stone, M. E., Whitehouse, J. C., and Witt, D. C. (1999). Environ. Issues Waste Manage. Technol. Ceram. Nucl. Ind. IV, 93, 391–8.Google Scholar
  189. Matyunin, Y. I. and Jardine, L. J. (1998) in Investigations of Plutonium Immobilization into the Vitreous Compositions, Charleston, SC, September 8–11.Google Scholar
  190. Matzke, H. J. (1976) in Plutonium and other Actinides, (eds. Blank, H. and Linder, R.) North-Holland, Amsterdam, pp. 801–831.Google Scholar
  191. Matzke, H. (1982). Radiat. Eff. Defects Solids, 64(1), 3–33.Google Scholar
  192. Matzke, H. (1983). Radiat. Eff. Defects Solids, 75(1–4), 317–25.Google Scholar
  193. Matzke, H. (1988). Nucl. Instrum. Methods Phys. Res. Sect. B — Beam Interact. Mater. Atoms, 32(1–4), 455–70.Google Scholar
  194. Matzke, H. (1992). Nucl. Instrum. Methods Phys. Res. Sect. B — Beam Interact. Mater. Atoms, 65(1–4), 30–9.Google Scholar
  195. Matzke, Hj. (1997). Glass: Scientific Research Toward High Performance Containment. Commissariat a l’Energie Atomique - Valrhô, Bagnols-sur-Cèze, France, pp. 149–66.Google Scholar
  196. Matzke, Hj. and Vernaz, E. (1993) J. Nucl. Mater., 201, 295–309.Google Scholar
  197. Matzke, Hj., and van Geel. J. (1996) Rodwaste Magzine, 3(2), 71–76.Google Scholar
  198. McCarthy, G. J. (1977). Nucl. Technol., 32(1), 92–105.Google Scholar
  199. McCarthy, G. J., Pepin, J. G., and Davis, D. D. (1979a). Scientific Basis for Nuclear Waste Management, Plenum Press, New York, pp. 297–306.Google Scholar
  200. McCarthy, G. J., Pepin, J. G., Pfoertsch, D. E., and Clarke, D. R. (1979b). Ceramics in Nuclear Waste Management, Springfield, Virginia, National Technical Information Service. CONF-790420, 315–20.Google Scholar
  201. McConnell, D. (1973) Apatite, Springer-Verlag, New York, pp 111.Google Scholar
  202. Meaker, T. F., Ramsey, W. G., Pareizs, J. M., Karraker, D. G., and Day, D. E. (1996). Ceram. Trans., 72, 409.Google Scholar
  203. Medvedev, P. G., Jue, J. F., Frank, S. M., and Meyer, M. K. (2006a). J. Nucl. Mater., 352 (1–3), 318–23.Google Scholar
  204. Medvedev, P. G., Lambregts, M. J., and Meyer, M. K. (2006b). J. Nucl. Mater., 349 (1–2), 167–77.Google Scholar
  205. Meis, C. (2001). J. Nucl. Mater., 289(1–2), 167–76.Google Scholar
  206. Meis, C., Delaye, J. M., and Ghaleb, D. (1999). Scientific Basis for Nuclear Waste Management XXII, 556, 345–51.Google Scholar
  207. Meis, C., Gale, J. D., Boyer, L., Carpena, J., and Gosset, D. (2000). J. Phys. Chem. A, 104(22), 5380–7.Google Scholar
  208. Meldrum, A., Boatner, L. A., Weber, W. J., and Ewing, R. C. (1998). Geochim. Cosmo-chim. Acta, 62(14), 2509–20.Google Scholar
  209. Meldrum, A., Boatner, L. A., Weber, W. J., and Ewing, R. C. (2002). J. Nucl. Mater., 300(2–3), 242–54.Google Scholar
  210. Mendelssohn, K., King, E., Lee, J. A., Rand, M. H., Griffin, C. S., and Street, R. S. (1967) in Plutonium 1965 (eds. A. E. Kay and M. B. Waldun), Chapman & Hall, London, pp. 189–204.Google Scholar
  211. Mignanelli, M. A. and Thetford, R. (2002). Advanced Reactors with Innovative Fuels, Workshop Proceedings, Chester, UK, pp. 161–71.Google Scholar
  212. Mitamura, H., Matsumoto, S., Miyazaki, T., White, T. J., Nukaga, K., Togashi, Y., Sagawa, T., Tashiro, S., Levins, D. M., and Kikuchi, A. (1990). J. Am. Ceram. Soc., 73(11), 3433–41.Google Scholar
  213. Mitamura, H., Matsumoto, S., Hart, K. P., Miyazaki, T., Vance, E. R., Tamura, Y., Togashi, Y., and White, T. J. (1992). J. Am. Ceram. Soc., 75(2), 392–400.Google Scholar
  214. Mitamura, H., Matsumoto, S., Stewart, M. W. A., Tsuboi, T., Hashimoto, M., Vance, E. R., Hart, K. P., Togashi, Y., Kanazawa, H., Ball, C. J., and White, T. J. (1994). J. Am. Ceram. Soc., 77(9), 2255–64.Google Scholar
  215. Morgan, P. E. D. and Ryerson, F. J. (1982). J. Mater. Sci. Lett., 1(8), 351–2.Google Scholar
  216. Morss, L. R. (2002). J. Chem. Thermodyn., 34(2), 229–37.Google Scholar
  217. Muller, I. and Weber, W. J. (2001). MRS Bull., 26(9), 698–706.Google Scholar
  218. Muller, I., Weber, W. J., Vance, E. R., Wicks, G., and Karraker, D. (2002) in Advances in Plutonium Chemistry 1967–2000 (ed. D. C. Hoffman), American Nuclear Society, LaGrange, IL, pp. 260–307.Google Scholar
  219. Murakami, T., Chakoumakos, B. C., Ewing, R. C., Lumpkin, G. R., and Weber, W. J. (1991). Am. Mineral., 76, 1510–32.Google Scholar
  220. Murphy, W. M. and Grambow, B. (2008). Radiochim. Acta, 96(9–11), 563–7.Google Scholar
  221. Naudet, R. (1991) in Oklo: des Réacteurs Nucléaires Fossiles, Eyrolles, Paris, pp 685.Google Scholar
  222. National Academy of Sciences (1994) in Management and Disposition of Excess Weapons Plutonium, Committee on International Security and Arms Control, National Academy Press, Washington, D. C., pp 275.Google Scholar
  223. National Academy of Sciences (1995) in Management and Disposition of Excess Weapons — Reactor-Related Options, Committee on International Security and Arms Control, National Academy Press, Washington, D. C., pp 418.Google Scholar
  224. National Academy of Sciences (2008) in Review of DOE’s Nuclear Energy Research and Development Program, Board on Energy and Environmental Systems, National Academy Press, Washington, D. C, pp 102.Google Scholar
  225. Nellis, W. J. (1977). Inorg. Nucl. Chem. Lett., 13(8), 393–8.Google Scholar
  226. Neuilly, M., Nief, G., Vendryes, G., Yvon, J., Bussac, J., and Frejaques, G. (1972). Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie D, 275 (17), 1847–1849.Google Scholar
  227. Newkirk, H. W., Hoenig, C. L., Ryerson, F. L., Tewhey, J. D., Smith, G. S., Rossington, C. S., Brackmann, A. J., and Ringwood, A. E. (1982). Ceram. Bull., 61, 559–66.Google Scholar
  228. Noé, M. and Fuger, J. (1971). Inorg. Nucl. Chem. Lett., 7, 421–30.Google Scholar
  229. Novikov, A. P., Kalmykov, S. N., Utsunomiya, S., Ewing, R. C., Horreard, F., Merkulov, A., Clark, S. B., Tkachev, V. V., and Myasoedov, B. F. (2006). Science, 314, 638–41.Google Scholar
  230. Office of Science, U. S. Department of Energy. (2006) in Basic Research Needs for Advanced Nuclear Energy Systems, July 31–August 3, pp 421.Google Scholar
  231. Office of Science, U. S. Department of Energy. (2007a) in Basic Research Needs for Geosciences: Facilitating 21st Century Energy Systems, February 21–23, pp 186.Google Scholar
  232. Office of Science, U. S. Department of Energy. (2007b) in Technology and Applied R&D Needs for Materials Under Extreme Environments, U. S. Department of Energy. Office of Basic Energy Sciences, June 11–14, pp 93.Google Scholar
  233. O’Holleran, T.P., Johnson, S.G., Frank, S.M., Meyer, M.K., Noy, M., Wood, E.L., Knecht, D.A., Vinjamuri, K., and Staples, B.A. (1997) in Scientific Basis for Nuclear Waste Management, XX (Pittsburgh, PA), Materials Research Society Symposium Proceedings, 465, pp. 1251–1258.Google Scholar
  234. Ojovan, M. I. and Lee, W. E. (2005). An Introduction to Nuclear Waste Immobilization, Elsevier, Amsterdam, pp 315.Google Scholar
  235. Omel’yanenko, B. I., Livshits, T. S., Yudintsev, S. V., and Nikonov, B. S. (2007). Geol. Ore Deposits, 49(3), 173–93.Google Scholar
  236. Orlova, A. I., Volkov, Y. F., Melkaya, R. F., Masterova, L. Y., Kulikov, I. A., and Alferov, V. A. (1994). Radiochemistry, 36(4), 322–5.Google Scholar
  237. Osaka, M., Kurosaki, K., and Yamanaka, S. (2007). J. Alloys Compd., 428(1–2), 355–61.Google Scholar
  238. Oversby, V. M. (1994) in Nuclear Waste Materials (eds. R. W. Cahn, P. Hassen, and E. J. Kramer), vol. 10B, VCH Verlagsgesellschaft mbH, Weiheim, pp. 391–442.Google Scholar
  239. Oversby, V. M. (1999). SKB Technical Report 99–22, 35.Google Scholar
  240. Oversby, V. M., McPheeters, C. C., Degueldre, C., and Paratte, J. M. (1997). J. Nucl. Mater., 245(1), 17–26.Google Scholar
  241. Park, B., Weber, W. J., and Corrales, L. R. (2001). Phys. Rev. B, 64, 174108.Google Scholar
  242. Parks, G. A. and Pohl, D. C. (1988). Geochim. Cosmochim. Acta, 52(4), 863–75.Google Scholar
  243. Paul, A. (1990). Chemistry of Glasses. Chapman & Hall, London, New York.Google Scholar
  244. Perevalov, S. A., Stefanovsky, S. V., Yudintsev, S. V., Mokhov, A. V., and Ptashkin, A. G. (2006). Radiochim. Acta, 94(9–11), 509–14.Google Scholar
  245. Peters, M. T. and Ewing, R. C. (2007). J. Nucl. Mater., 362(2–3), 395–401.Google Scholar
  246. Peterson, D. E. and Clinard, F. W., Jr. (1983) in Scientific Basis for Nuclear Waste Management VI (Pittsburgh, PA), Material Research Society Symposium Proceedings, 15, pp. 465–71.Google Scholar
  247. Peuget, S., Cachia, J. N., Jegou, C., Deschanels, X., Roudil, D., Broudic, V., Delaye, J. M., and Bart, J. M. (2006a). J. Nucl. Mater., 354(1–3), 1–13.Google Scholar
  248. Peuget, S., Noel, P. Y., Loubet, J. L., Pavan, S., Nivet, P., and Chenet, A. (2006b). Nucl. Instrum. Methods Phys. Res. Sect. B – Beam Interact. Mater. Atoms, 246(2), 379–86.Google Scholar
  249. Peuget, S., Broudic, V., Jegou, C., Frugier, P., Roudil, D., Deschanels, X., Rabiller, H., and Noel, P. Y. (2007). J. Nucl. Mater., 362(2–3), 474–9.Google Scholar
  250. Piet, S. J., Matthern, G. E., Jacobson, J. J., Laws, C. T., Cadwallader, L. C., Yacout, A. M., Hill, R. N., Smith, J. D., Goldmann, A. S., and Bailey, G. (2006) in Fuel Cycle Scenario Definition, Evaluation, and Trade-Offs, Idaho National Laboratory, Fission and Fusion Systems Department, Idaho Falls, ID, p. 299.Google Scholar
  251. Plodinec, M. J. (1979) in Development of Glass Compositions for Immobilization of SRP Waste. Savannah River Site, South Carolina.Google Scholar
  252. Poinssot, C., Ferry, C., Kelm, M., Grambow, B., Martinez-Esparza, A., Johnson, L., Andriambololona, Z., Bruno, J., Cachoir, C., Cavedon, J. M., Christensen, H., Corbel, C., Jegou, C., Lemmens, K., Loida, A., Lovera, P., Miserque, F., de Pablo, J., Poulesquen, A., Quiñones, J., Rondinella, V., Spahiu, K., and Wegen, D. (2005a). Final Report of the European Project: Spent Fuel Stability under Repository Conditions.Google Scholar
  253. Poinssot, C., Ferry, C., Lovera, P., Jegou, C., and Gras, J. M. (2005b). J. Nucl. Mater., 346(1), 66–77.Google Scholar
  254. Poirot, I. S., Kot, W. K., Edelstein, N. M., Abraham, M. M., Finch, C. B., and Boatner, L. A. (1989). Phys. Rev. B, 39(10), 6388–94.Google Scholar
  255. Primak, W. (1975). Compacted States of Vitreous Silica, Gordon & Breach, New York, pp. 83–128.Google Scholar
  256. Raman, S. V., Bopp, R., Batcheller, T. A., and Yan, Q. (1996). Scientific Basis for Nuclear Waste Management XIX, 412, 113–21.Google Scholar
  257. Ramsey, W. G., Bibler, N. E., and Meaker, T. F. (1995). In Compositions and Durabilities of Glasses for Immobilization of Plutonium and Uranium, presented at Waste Manage-ment ’95, Tucson, AZ, February 26–March 2.Google Scholar
  258. Ringwood, A. E. (1982). Am. Sci., 70, 201–7.Google Scholar
  259. Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W. O., and Major, A. (1979). Geochem. J., 13(4), 141–65.Google Scholar
  260. Ringwood, A. E., Oversby, V. M., Kesson, S. E., Sinclair, W., Ware, N., Hibberson, W., and Major, A. (1981). Nucl. Chem. Waste Manage., 2, 287–305.Google Scholar
  261. Ringwood, A. E., Kesson, S. E., Reeve, K. D., Levins, D. M., and Ramm, E. J. (1988) in Radioactive Waste Forms for the Future (eds. W. Lutze and R. C. Ewing), North-Holland, Amsterdam, pp. 233–334.Google Scholar
  262. Roberts, F. P., Jenks, G. H., and Bopp, C. D. (1976). Radiation Effects in Solidified High-Level Wastes – Part 1, Stored Energy, Pacific Northwest National Laboratory, Richland, WA.Google Scholar
  263. Rondinella, V. V., Matzke, H., Cobos, J., Wiss, T. (2000). Radiochim. Acta, 88(9–11), 527–531.Google Scholar
  264. Routbort, J. L., Offermann, P., and Matzke, Hj. (1983) in Scientific Basis for Nuclear Waste Management VI (Pittsburgh, PA), Material Research Society Symposium Proceedings, 15, 415–22.Google Scholar
  265. Roy, R., Vance, E. R., and Alamo, J. (1982). Mater. Res. Bull., 17(5), 585–9.Google Scholar
  266. Rutherford, E., Chadwick, J., and Ellis, C. D. (1930). Radiation from Radioactive Substances, Cambridge University Press, London, 187 pp.Google Scholar
  267. Sahin, S., Yildiz, K., Sahin, H. M., Acir, A., Sahin, N., and Altinok, T. (2006). Ker- ntechnik, 71(5–6), 247–57.Google Scholar
  268. Sali, S. K., Kulkarni, N. K., Sampath, S., and Jayadevan, N. C. (1994). J. Nucl. Mater., 217(3), 294–9.Google Scholar
  269. Sali, S. K., Sampath, S., and Venugopal, V. (2000). J. Nucl. Mater., 277(1), 106–12.Google Scholar
  270. Sato, S., Furuya, H., Kozaka, T., Inagaki, Y., and Tamai, T. (1988). J. Nucl. Mater., 152(2–3), 265–9.Google Scholar
  271. Sato, S., Furuya, H., Morikawa, K., Sugisaki, M., and Inagaki, Y. (1990). J. Nucl. Sci. Technol., 27, 343–349.Google Scholar
  272. Scheetz, B. E. and Roy, R. (1988) in Radioactive Waste Forms for the Future (eds. W. Lutze and R. C. Ewing), North-Holland, Amsterdam, pp. 596–9.Google Scholar
  273. Scheffler, K., Riege, U., and Walker, C. T. (1978). KfK 2552, EUR 5750e.Google Scholar
  274. Schindler, M. and Hawthorne, F. C. (2004). Can. Mineral., 42, 1601–27.Google Scholar
  275. Schindler, M., Mandaliev, P., and Hawthorne, F. C. (2005). Geochim. Cosmochim. Acta, 69(10), A475.Google Scholar
  276. Schindler, M., Mandaliev, P., Hawthorne, F. C., and Putnis, A. (2006). Can. Mineral., 44, 415–31.Google Scholar
  277. Schuske, C. L. and McCarthy, J. D. (1975). Nucl. Technol., 26(3), 254–64.Google Scholar
  278. Shoesmith, D. W. (2000). J. Nucl. Mater., 282(1), 1–31.Google Scholar
  279. Shoup, S. S. and Bamberger, C. E. (1997). Scientific Basis for Nuclear Waste Manage- ment XX, 465, 379–86.Google Scholar
  280. Shoup, S. S., Bamberger, C. E., and Haire, R. G. (1996). J. Am. Ceram. Soc., 79(6), 1489–93.Google Scholar
  281. Shoup, S. S., Bamberger, C. E., Haverlock, T. J., and Peterson, J. R. (1997). J. Nucl. Mater., 240(2), 112–7.Google Scholar
  282. Sickafus, K. E., Hanrahan, R. J., McClellan, K. J., Mitchell, J. N., Wetteland, C. J., Butt, D. P., Chodak, P., Ramsey, K. B., Blair, T. H., Chidester, K., Matzke, H., Yasuda, K., Verrall, R. A., and Yu, N. (1999). Am. Ceram. Soc. Bull., 78(1), 69–74.Google Scholar
  283. Sickafus, K. E., Minervini, L., Grimes, R. W., Valdez, J. A., Ishimaru, M., Li, F., McClellan, K. J., and Hartmann, T. (2000). Science, 289(5480), 748–51.Google Scholar
  284. Smith, K. L., Colella, M., Cooper, R., and Vance, E. R. (2003). J. Nucl. Mater., 321(1), 19–28.Google Scholar
  285. Sobolev, I. A., Stefanovsky, S. V., Ioudintsev, S. V., Nikonov, B. S., Omelianenko, B. I., and Mokhov, A. V. (1997). Mater. Res. Soc. Symp. Proc., 465, 363–370.Google Scholar
  286. Solomah, A. G., Richardson, P. G., and McIlwain, A. K. (1987). J. Nucl. Mater., 148(2), 157–65.Google Scholar
  287. Stefanovsky, S. V., Yudintsev, S.V., Gieré, R., and Lumpkin, G. R. (2004). Energy, Waste, and the Environment: A Geochemical Perspective (eds. G. R and S. P), Geological Society Special Publications, London, vol. 236, pp. 37–63.Google Scholar
  288. Stefanovsky, S. V., Yudintsev, S. V., Nikonov, B. S., Mokhov, A. V., Perevalov, S. A., Stefanovsky, O. I., and Ptashkin, A. G. (2006). Actinides 2005 – Basic Sci. Appl. Technol., 893, 429–34.Google Scholar
  289. Stefanovsky, S. V., Yudintsev, S. V., Perevalov, S. A., Startseva, I. V., and Varlakova, G. A. (2007). J. Alloys Compd., 444, 618–20.Google Scholar
  290. Stoneham, A. M. (1994). Nucl. Instrum. Methods Phys. Res. Sect. B – Beam Interact. Mater. Atoms, 91(1–4), 1–11.Google Scholar
  291. Stout, P. J., Lumpkin, G. R., Ewing, R. C., and Eyal, Y. (1988) in Scientific Basis for Nuclear Waste Management XI (Pittsburgh, PA), Material Research Society Symposium Proceedings, 112, pp. 495–504.Google Scholar
  292. Strachan, D. M., Scheele, R. D., Buck, E. C., Icenhower, J. P., Kozelisky, A. E., Sell, R. L., Elovich, R. J., and Buchmiller, W. C. (2005). J. Nucl. Mater., 345(2–3), 109–35.Google Scholar
  293. Strachan, D. M., Scheele, R. D., Buck, E. C., Kozelisky, A. E., Sell, R. L., Elovich, R. J., and Buchmiller, W. C. (2008). J. Nucl. Mater., 372(1), 16–31.Google Scholar
  294. Stump, N. A., Haire, R. G., and Dai, S. (1997). Scientific Basis for Nuclear Waste Management XX, 465, 47–54.Google Scholar
  295. Tinivella, G. and Stoneham, A. M. (1980). Harwell Laboratory, Harwell, UK. AERE M-3142.Google Scholar
  296. Todd, B. J., Lineweaver, J. L., and Kerr, J. T. (1960). J. Appl. Phys., 31(1), 51–5.Google Scholar
  297. Tuck, D. G., Cutts, E. J., and Knowles, D. R. (1964). Int. J. Appl. Radiat. Isot., 15(2), 49–57.Google Scholar
  298. Turcotte, R. P. (1976). Radiation Effects in Solidification High-Level Wastes – Part 2, Helium Behavior, Pacific Northwest National Laboratory, Richland, WA. BNWL-2051.Google Scholar
  299. Turcotte, R. P. and Chikalla, T. D. (1973). Radiat. Eff., 19, 99–108.Google Scholar
  300. Turcotte, R. P., Wald, J. W., Roberts, F. P., Rusin, J. M., and Lutze, W. (1982). J. Am. Ceram. Soc., 65(12), 589–93.Google Scholar
  301. U. S. Department of Energy (1997a). In Progammatic Environmental Impact Statement. U. S. Department of Energy. Record of Decision for the Storage and Disposition of Weapons-Usable Fissile Materials.Google Scholar
  302. U. S. Department of Energy (1997b). In Strategic Plan, Storage and Disposition of Weapons Usable Fissile Materials, US Department of Energy.Google Scholar
  303. Urusov, V. S., Organova, N. I., Karimova, O. V., Yudintsev, S. V., and Stefanovskii, S. V. (2005). Dokl. Earth Sci., 401(2), 319–25.Google Scholar
  304. Utsunomiya, S., Wang, L. M., Douglas, M., Clark, S. B., and Ewing, R. C. (2003a). Am. Mineral., 88(1), 159–66.Google Scholar
  305. Utsunomiya, S., Yudintsev, S., Wang, L. M., and Ewing, R. C. (2003b). J. Nucl. Mater., 322, 180–8.Google Scholar
  306. Utsunomiya, S., Ewing, R. C., and Wang, L. M. (2005). Earth Planet. Sci. Lett.., 240(2), 521–8.Google Scholar
  307. Utsunomiya, S., Kersting, A., and Ewing, R. C. (2009) Environ. Sci. Technol., 43, 1293–1296.Google Scholar
  308. Van Brutzel, L., Rarivomanantsoa, M., and Ghaleb, D. (2006). J. Nucl. Mater., 354(1–3), 28–35.Google Scholar
  309. Van Brutzel, L and Vincent-Aublante, E. (2008) J. Nucl. Mater., 377, 28–35.Google Scholar
  310. Van Iseghem, P. M., Aertsens, S., Gin, D., Deneele, B., Grambow, P., McGrail, D., Strachan, G., and Wicks, G. (2007). Glamor Project: A critical evaluation of the dissolution mechanisms of high level waste glasses in conditions of relevance for geological disposal. Final Report 2001–2004. EUR 23097.Google Scholar
  311. Vance, E. R. (1994). MRS Bull., 19(12), 28–32.Google Scholar
  312. Vance, E. R., Angel, P. J., Begg, B. D., and Day, R. A. (1994a) in Scientific Basis for Nuclear Waste Management XVIII (Pittsburgh, PA), Material Research Society Symposium Proceedings, 333, pp. 293–8.Google Scholar
  313. Vance, E. R., Ball, C. J., Day, R. A., Smith, K. L., Blackford, M. G., Begg, B. D., and Angel, P. J. (1994b). J. Alloys Compd., 213, 406–9.Google Scholar
  314. Vance, E. R., Stewart, M. W. A., Day, R. A., Hart, K. P., Hambley, M. J., and Brownscombe, A. (1997). ANSTO Report. No R97m030.Google Scholar
  315. Vance, E. R., Jostsons, A., Moricca, S., Stewart, M. W. A., Day, R. A., Begg, B. D., Hambley, M. J., Hart, K. P., and Ebbinghaus, B. B. (1999) in Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries IV, 93, 323–9.Google Scholar
  316. Vance, E. R., Carter, M. L., Begg, B. D., Day, R.A. and Leung, S. H. F. (2000) in Scientific Basis for Nuclear Waste Management XXIII (Warrendale, PA), Material Research Society Symposium Proceedings 608, 431–436.Google Scholar
  317. Vernaz, E. (2008) In A presentation at the GNEP Workshop, Ann Arbor, MI.Google Scholar
  318. Vernaz, E., Loida, A., Malow, G., Marples, J. A. C., and Matzke, H. J. (1991). Proceedings of the 3rd EC Conference on Radioactive Waste Management and Disposal, Elsevier, London, 302 pp.Google Scholar
  319. Vienna, J. D., Alexander, D. L., Li, H., Schweiger, M. J., Peeler, D. K., and Meaker, T. F. (1996) Plutonium Dioxide Dissolution in Glass, Pacific Northwest National Laboratory. PNNL-113446.Google Scholar
  320. Vogel, W. (1994). Glass Chemistry, 2nd edition Springer-Verlag, Berlin, pp 464.Google Scholar
  321. Wald, J. W. and Weber, W. J. (1984) in Nuclear Waste Management Advances in Ceramics (eds. G. G. Wicks and W. A. Ross), The American Ceramic Society, Columbus, OH, vol 8, pp. 71–5.Google Scholar
  322. Walker, C. T. and Riege, U. (1979). Ceramics in Nuclear Waste Management (eds. T. D. Chikalla and J. E. Mendel), National Technical Information Service, Springfield, VI. CONF-790420, 198–202.Google Scholar
  323. Wang, L. M. and Ewing, R. C. (1992). MRS Bull., 17(5), 38–44.Google Scholar
  324. Wang, L. M. and Weber, W. J. (1999). Philosophical Magazine A-Physics of Condensed Matter Structure Defects and Mechanical Properties, 79(1), 237–53.Google Scholar
  325. Wang, L. M., Cameron, M., Weber, W. J., Crowley, K. D., and Ewing, R. C. (1994). Hydroxyapatite and Related Materials, CRC Press, London, pp. 243–9.Google Scholar
  326. Wang, S. X., Begg, B. D., Wang, L. M., Ewing, R. C., Weber, W. J., and Kutty, K. V. G. (1999a). J. Mater. Res., 14(12), 4470–3.Google Scholar
  327. Wang, S. X., Wang, L. M., Ewing, R. C., and Kutty, K. V. G. (1999b). Proc. Mater. Res. Soc., 540, 355–60.Google Scholar
  328. Weber, W. J. (1981). J. Nucl. Mater., 98(1–2), 206–15.Google Scholar
  329. Weber, W. J. (1982). J. Am. Ceram. Soc., 65(11), 544–8.Google Scholar
  330. Weber, W. J. (1983). Radiat. Eff. Defects Solids, 77(3–4), 295–308.Google Scholar
  331. Weber, W. J. (1988). Nucl. Instrum. Methods Phys. Res. Sect. B – Beam Interact. Mater. Atoms 32(1–4), 471–9.Google Scholar
  332. Weber, W. J. (1990). J. Mater. Res., 5(11), 2687–97.Google Scholar
  333. Weber, W. J. (1991). JOM – J. Miner. Metals Mater. Soc., 43(7), 35–9.Google Scholar
  334. Weber, W. J. (1993). J. Am. Ceram. Soc., 76(7), 1729–38.Google Scholar
  335. Weber, W. J. (2000). Nucl. Instrum. Methods Phys. Res. Sect. B – Beam Interact. Mater. Atoms, 166, 98–106.Google Scholar
  336. Weber, W. J. and Ewing, R. C. (2000). Science, 289(5487), 2051–2.Google Scholar
  337. Weber, W. J. and Ewing, R. C. (2002). Scientific Basis for Nuclear Waste Management XXV, 713, 443–54.Google Scholar
  338. Weber, W. J. and Matzke, H. (1986). Mater. Lett., 5(1–2), 9–16.Google Scholar
  339. Weber, W. J. and Roberts, F. P. (1983). Nucl. Technol., 60(2), 178–98.Google Scholar
  340. Weber, W. J. and Wang, L. M. (1994). Nucl. Instrum. Methods Phys. Res. Sect. B – Beam Interact. Mater. Atoms, 91(1–4), 63–6.Google Scholar
  341. Weber, W. J., Turcotte, R. P., Bunnell, L. R., Roberts, F. P., and Westsik, J. H. (1979) in Ceramics in Nuclear Waste Management (eds. T. D. Chikalla and J. E. Mendel), National Technical Information Service, Springfield, VI. CONF-790420, 294–9.Google Scholar
  342. Weber, W. J., Turcotte, R. P., and Roberts, F. P. (1982). Radioact. Waste Manage., 2, 295–319.Google Scholar
  343. Weber, W. J., Wald, J. W., and Matzke, H. (1985a). Mater. Lett., 3(4), 173–80.Google Scholar
  344. Weber, W. J., Wald, J. W. and McVay, G. L. (1985b). J. Am. Ceram. Soc., 68(9), C253–C5.Google Scholar
  345. Weber, W. J., Wald, J. W., and Matzke, H. (1986). J. Nucl. Mater., 138(2–3), 196–209.Google Scholar
  346. Weber, W. J., Eby, R. K., and Ewing, R. C. (1991). J. Mater. Res., 6(6), 1334–45.Google Scholar
  347. Weber, W. J., Ewing, R. C., and Wang, L. M. (1994). J. Mater. Res., 9(3), 688–98.Google Scholar
  348. Weber, W. J., Ewing, R. C., Angell, C. A., Arnold, G. W., Cormack, A. N., Delaye, J. M.,Griscom, D. L., Hobbs, L. W., Navrotsky, A., Price, D. L., Stoneham, A. M., and Weinberg, W. C. (1997a). J. Mater. Res., 12(8), 1946–78.Google Scholar
  349. Weber, W. J., Ewing, R. C., and Meldrum, A. (1997b). J. Nucl. Mater., 250(2–3), 147–55.Google Scholar
  350. Weber, W. J., Hess, N. J., Conradson, S. D., and Vienna, J. D. (1997c). Plutonium Futures – The Science, Los Alamos National Laboratory, Los Alamos, NM. Conference LA-13338-C, 25–6.Google Scholar
  351. Weber, W. J., Ewing, R. C., Catlow, C. R. A., de la Rubia, T. D., Hobbs, L. W., Kinoshita, C., Matzke, H., Motta, A. T., Nastasi, M., Salje, E. K. H., Vance, E. R., and Zinkle, S. J. (1998). J. Mater. Res., 13(6), 1434–84.Google Scholar
  352. Weber, W. J., Icenhower, J. P., and Hess, N. J. (2003) in Plutonium Futures – The Science (ed. G. D. Jarvinen), AIP Conference Proceedings, Melville, NY, 673, pp. 57–8.Google Scholar
  353. Weber, W. J., Navrotsky, A., Stefanovskii, S. V., and Vance, E. R. (2009). MRS Bull., 34, 46–53.Google Scholar
  354. Wellman, D. M., Icenhower, J. P., and Weber, W. J. (2005). J. Nucl. Mater., 340(2–3), 149–62.Google Scholar
  355. Westsik, J. H. and Harvey, C. O. (1981). High-Temperature Leaching of a Simulated High-Level Waste Glass, Pacific Northwest National Laboratory, Richland, WA. PNL-3172.Google Scholar
  356. Williford, R. E., Devanathan, R., and Weber, W. J. (1998). Nucl. Instrum. Methods Phys. Res. Sect. B – Beam Interact. Mater. Atoms, 141(1–4), 94–8.Google Scholar
  357. Williford, R. E., Begg, B. D., Weber, W. J., and Hess, N. J. (2000). J. Nucl. Mater., 278 (2–3), 207–11.Google Scholar
  358. Wiss, T. A. G., Hiernaut, J. P., Damen, P. M. G., Lutique, S., Fromknecht, R., and Weber, W. J. (2006). J. Nucl. Mater., 352(1–3), 202–8.Google Scholar
  359. Wiss, T., Deschanels, X., Hiernaut, J. P., Roudil, D., Peuget, S., and Rondinella, V. V. (2007). J. Nucl. Mater., 362(2–3), 431–7.Google Scholar
  360. Wronkiewicz, D. J. and Buck, E. C. (1999). Rev. Mineral. (eds. P. C. Burns and R. Finch), 38, 475–97.Google Scholar
  361. Wronkiewicz, D. J., Wolf, S. F., and DiSanto, T. S. (1996). Scientific Basis for Nuclear Waste Management XIX, 412, 345–52.Google Scholar
  362. Yudintsev, S. V., Osherova, A. A., Dubinin, A. V., Zotov, A. V., and Stefanovsky, S. V. (2004) in Materials Research Society Symposium Proceedings XXVIII (eds. J. M. Hanchar, S. Stroes-Gascoyne, and L. Browning), Materials Research Society, War- rendale, PA, 824, 287–292.Google Scholar
  363. Yudintsev, S. V., Stefanovsky, S. V., and Ewing, R. C. (2007a) in Structural Chemistry of Inorganic Actinide Compounds (eds. S. V. Krivovichev, P. C. Burns, and I. G. Tana-naev), Elsevier, Amsterdam, pp. 457–90.Google Scholar
  364. Yudintsev, S. V., Stefanovsky, S. V., Nikonov, B. S., Maslakov, K. I., and Ptashkin, A. G. (2007b). J. Alloys Compd., 444, 606–9.Google Scholar
  365. Yudinsev, S. V., Lukinykh, A. N., Tomilin, S. V., Lizin, A. A., and Stefanovsky, S. V.(2009) J. Nucl. Mater. 389, 200–203.Google Scholar
  366. Ziegler, J. F. (2000). http://www.srim.org/.
  367. Ziegler, J. F., Biersack, J. P., and Littmark, U. (1985). The Stopping and Range of Ions in Solids. Pergamon, New York.Google Scholar
  368. Zyryanov, V. N. and Vance, E. R. (1997). Scientific Basis for Nuclear Waste Management XX 465, 409–15.Google Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • R. C. Ewing
  • W. J. Weber

There are no affiliations available

Personalised recommendations