Advertisement

Subsurface Interactions of Actinide Species with Microorganisms

  • Donald T. Reed
  • Randhir P. Deo
  • Bruce E. Rittmann

Abstract

Subsurface microbiological processes have an important role in defining the speciation and mobility of actinide contaminants in groundwater. The relative importance of these processes, especially when groundwater conditions support high microbiological activity, has, however, only been recognized by researchers in the field since the early 1990s. The need to mechanistically understand the key interactions between actinide species and microbial processes becomes greater as we increasingly rely on more passive, long-term containment strategies, such as natural attenuation, where microbial processes are likely to predominate (NRC, 2000a).

Keywords

Extracellular Polymeric Substance Linear Energy Transfer Terminal Electron Acceptor Acceptor Substrate Subsurface Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al Mahamid, I., Becraft, K. A., Hakem, N. L., Gatti, R. C., and Nitsche, H. (1996) Radiochim. Acta, 74, 129–34.Google Scholar
  2. Anderson R. T. and Lovley, D. R. (2002) in Interactions of Microorganisms with Radio-nuclides, chapter 7 (eds. M. J. Keith-Roach and F. R. Livens), Elsevier Science Ltd., Amsterdam.Google Scholar
  3. Andres, Y., MacCordick, H. J., and Hubert, J.-C. (1993) Appl. Microbiol. Biotechnol., 39, 413–7.Google Scholar
  4. Appanna, V. D., Finn, H., and St. Pierre, M. (1995a) FEMS Microbiol. Lett., 131, 53–6.Google Scholar
  5. Appanna, V. D., Huang, J., Prusak-Schaczewski, E., and St. Pierre, M. (1995b). Biotechnol. Prog., 11, 159–63.Google Scholar
  6. Bae, W. and Rittmann, B. E. (1996) Biotechnol. Bioeng., 49, 683–9.Google Scholar
  7. Balkwill, D. L., Murphy, E. M., Fair, D. M., Ringelberg, D. B., and White, D. C. (1998) Microb. Ecol., 35(2), 156–71.Google Scholar
  8. Banaszak, J. E., VanBriesen, J. M., and Rittmann, B. E. (1998a) Radiochim. Acta, 82, 445–51.Google Scholar
  9. Banaszak, J. E., Reed, D. T., and Rittmann, B. E. (1998b). Environ. Sci. Technol., 32, 1085–91.Google Scholar
  10. Banaszak, J. E., Rittmann, B. E., and Reed, D. T. (1999a). J. Radioanal. Nucl. Chem., 241, 385–435.Google Scholar
  11. Banaszak, J. E., Webb, S. M., Rittmann, B. E., Gaillard, J. -F., and Reed, D. T. (1999b) in Scientific Basis for Nuclear Waste Management XXII eds. D. J. Wronkiewicz and J. H. Lee), Materials Research Society, Warrendale, PA, vol. 556, pp. 1141–1149.Google Scholar
  12. Banfield, J. F. and Nealson, K. H. (eds.) (1997) Geomicrobiology: Interactions Between Microbes and Minerals, Mineralogical Society of America, Washington, D. C.Google Scholar
  13. Barnhart, B. J. (1980) “Potential microbial impact on transuranic wastes under conditions expected in the waste isolation pilot plant (WIPP)” No. LA-8297-PR, Los Alamos National Laboratory.Google Scholar
  14. Bedient, P. B., Rifai, H. S., and Newell, C. J. (1994) Ground Water Contamination-Transport and Remediation, PTR Prentice Hall, Englewood Cliffs, NJ, p. 541.Google Scholar
  15. Beech, I. B. (1996) Biodet. Biodegr., 37, 141–9.Google Scholar
  16. Behrends, T. and Cappellen, P. V. (2005) Chem. Geol., 220, 315–27.Google Scholar
  17. Bellin, C. A. and Rao, P. C. S. (1993) Appl. Environ. Microbiol., 59, 1813–20.Google Scholar
  18. Beveridge, T. J. and Doyle, R. J. (eds.) (1989) Metal Ions Bacteria, Wiley, New York.Google Scholar
  19. Binks, P. R. (1996) J. Chem. Technol. Biotechnol., 67, 319–22.Google Scholar
  20. Birch, L. and Bachofen, R. (1990) Experientia, 46, 827–34.Google Scholar
  21. Bolton, Jr. H., Li, S. W., Workman, D. J., and Girvin, D. C. (1993) J. Environ. Qual., 22, 125–32.Google Scholar
  22. Bolton, Jr. H., Girvin, D., Plymale, A., Harvey, S., and Workman, D. (1996) Environ. Sci. Technol., 30, 931–8.Google Scholar
  23. Bond, K. A., Haworth, A., Sharland, S. M., Smith, A. C., and Tweed, C. J. (1991) in Materials Research Society Symposium Proceedings, Materials Research Society, Washington, D. C., vol. 212, p. 585.Google Scholar
  24. Bosma, T.N. P. (1994) Ph.D. Thesis, Agricultural University ofWageningen, Wageningen, The Netherlands.Google Scholar
  25. Boukhalfa, H., Icopini, G. A., Reilly, S. D., and Neu, M. P. (2007) Appl. Environ. Microb., 73, 5897–903.Google Scholar
  26. Brown, M. J. and Lester, J. N. (1980) Appl. Environ. Microbiol. 40, 179–85.Google Scholar
  27. Bryan, N. D., Livens, F. R., and Horrill, A. D. (1994) J. Radioanal. Nucl.Chem., 182, 359–66.Google Scholar
  28. Brynhildsen, L. and Allard, B. (1994) Biometals, 7, 163–9.Google Scholar
  29. Brynhildsen, L. and Rosswall, T. (1989) Appl. Environ. Microbiol., 55, 1375–9.Google Scholar
  30. Burgos, W. D., Fang, Y., Royer, R. A., Yeh, G-T., Stone, J. J., Jeon, B-H, J., and Dempsey, B.A. (2003) Geochim. Cosmochim. Acta, 67, 2735–48.Google Scholar
  31. Caccavo, F., Blakemore, R. P., and Lovley, D.R. (1992) Appl. Environ. Microbiol., 58, 3211–16.Google Scholar
  32. Catalano, J. G., McKinley, J. P., Zachara, J. M., Heald, S. M., and Smith S. C. (2006) Environ., Sci. Technol., 40(8), 2517–24.Google Scholar
  33. Chandler, D. P., Brockman, F. J., Bailey, T. J., and Fredrickson, J. K. (1998) Microb. Ecol., 36(1), 37–50.Google Scholar
  34. Chauhan, S., Bhupathiraju, V., Rahm, B. Sorenson, K., and West, V. K. (2002) in 102nd General Meeting of American Society for Microbiology, Salt Lake City, Utah, 102, pp. 381–2.Google Scholar
  35. Chen, J. H., Lion, L. W., Ghiorse, W. C., and Shuler, M. L. (1995) Water Res., 29, 421–30.Google Scholar
  36. Choppin, G. R. (2003) Radiochim. Aeta, 91, 645–9.Google Scholar
  37. Choppin, G. R. and Bond, A. H. (1996) J. Anal. Chem., 51, 1129–38.Google Scholar
  38. Choppin, G. R. and Rao, L. F. (1992) in Transuranium Elements – A Half Century (eds. L. R. Morss and J. Fuger), American Chemical Society, Washington, D. C., p. 262.Google Scholar
  39. Christensen, E. J. and Gordon, D. E. (1983) “Technical Summary of Ground-Water Quality Protection Program at Savannah River Plant”, Vol. 1, Site Geohydrology and Solid Hazardous Wastes, DPST-83-839, Savannah River Laboratory, Aiken, SC.Google Scholar
  40. Clark, D.L., Janecky, D. R., and Lane, L. J. (2006) Phys. Today, 59, 34–40.Google Scholar
  41. Clark, D. L., Choppin, G. R., Dayton, C. S., Janecky, D. R., Lane, L. J., and Paton, I. (2007) J. Alloys Compd., 444–445, 11–18.Google Scholar
  42. Claypool, G. E., and Kaplan, I. R. (1974) in Natural Gases in Marine Sediments (ed. I. R. Kaplan), Plenum, New York, pp. 99–139.Google Scholar
  43. Cleveland, J. M. and Mulhn, A. H. (1993) Speciation of Plutonium and Americium in Ground Waters from the Radioactive Waste Management Complex. Idaho National Engineering Laboratory, Idaho, WRI 93-4035, USGS.Google Scholar
  44. Cleveland, J. M. and Rees, T. R. (1981) Science, 212, 1506–09.Google Scholar
  45. Collins, Y. E. and Stotzky, G. (1989) in Metal Ions and Bacteria (eds. T. J. Beveridge and R. J. Doyle), Wiley, Somerset, NJ, pp. 31–90.Google Scholar
  46. Cox, J. S., Smith, D. S., Warren, L. A., and Ferris, F. G. (1999) Environ. Sci. Technol., 33, 4514–21.Google Scholar
  47. Criddle, C. S., Kitanidis, P., Fendorf, S., Wu, W., and Jardine, P. M. (2006) Report no. ERSD-1016391-2006.Google Scholar
  48. Decho, A. W. (2000) Cont. Shelf Res., 20, 1257–73.Google Scholar
  49. DiChristina, T. J., Bates, D. J., Burns, J. L., Dale, J. R., and Payne, A. N. (2006) in Past Present Water Column Anoxia. NATO ASI Series: IV, (ed. L. Neretin), Springer, Berlin, vol. 64, pp. 443–469.Google Scholar
  50. Dodge, C. J. and Francis, A. J. (1994) Environ. Sci. Technol., 28, 1300–06.Google Scholar
  51. Dozol, M., Hagemann, R., Hoffman, D. C., Adloff, J. P., Vongunten, H. R., Foos, J., Kasprzak, K. S., Liu, Y. F., Zvara, I., Ache, H. J., Das, H. A., Hagemann, R. J. C., Herrmann, G., Karol, P., Maenhaut, W., Nakahara, H., Sakanoue, M., Tetlow, J. A., Baro, G. B., Fardy, J. J., Benes, P., Roessler, K., Roth, E., Burger, K., Steinnes, E., Kostanski, M. J., Peisach, M., Liljenzin, J. O., Aras, N. K., Myasoedov, B. F., and Holden, N. E. (1993) Pure Appl. Chem., 65, 1081–102.Google Scholar
  52. Draganic, I. G. and Draganic, Z. D. (1971) The Radiation Chemistry of Water, Academic, New York.Google Scholar
  53. Druteikiene, R., and Luksiene, B. (2003) Environ. Chem. Phys., 25(4), 228–33.Google Scholar
  54. Durbin, P. W., Jeung, N., Jones, E. S., Weitl, F. L., and Raymond, K. N. (1984) Radiat. Res. 99, 85–105.Google Scholar
  55. Dykhuizen, D. E. (1998) Antonie van Leeuwenhoek Int. J. Gen.l Mol. Microbiol., 73, 25–33.Google Scholar
  56. Egli, T. (1990) Experientia, 46, 404–06.Google Scholar
  57. Egli, T. (1994) in Biochemistry of Microbial Degradation (ed. C. Ratledge), Kluwer, New York, pp. 179–95.Google Scholar
  58. Egli, T., Bally, M., and Uetz, T. (1990) Biodegradation 1, 121–32.Google Scholar
  59. Ewing, D. (1973) Int. J. Radiat. Biol., 24, 505–15Google Scholar
  60. Ewing, D. (1982a). Int. J. Radiat. Biol., 41, 203–8.Google Scholar
  61. Ewing, D. (1982b). Int. J. Radiat. Biol., 42, 191–4.Google Scholar
  62. Ewing, D. (1987) in Radiation Chemistry: Principles and Applications (eds. L. Farhataziz and M. A. J. Rodgers), VCH Publishers, New York, p. 501.Google Scholar
  63. Fang, Y., Yabusaki, S. B., Morrison, S. J., Amonette, J. E., and Long P. E. (2009) Geochim. Cosmochim. Acta, 73(20), 6029–51.Google Scholar
  64. Ferris, F. G., Schultze, S., Witten, T. C., Fyfe, W. S., and Beveridge, T. J. (1989) Appl. Environ. Microbiol., 55, 1249–57.Google Scholar
  65. Fisher, D. R., Frazier, M. E., and Andrews, T. K. Jr. (1985) Radiat. Protect. Dosim., 13, 223–7.Google Scholar
  66. Fliermans, C. B. and Balkwill, D. L. (1989) BioScience, 39, 370–7.Google Scholar
  67. Fortin, D., Ferris, F. G., and Beveridge, T. J. (1997) in Geomicrobiology: Interactions between Microbes and Minerals, vol. 35 (eds. J. F. Banfield and K. H. Nealson), Mineralogical Society of America, Washington, D. C., p 161.Google Scholar
  68. Fowle, D. A., Fein, J. B., and Martin, A. M. (2000) Environ. Sci. Technol., 34, 3737–41.Google Scholar
  69. Francis, A. J. (1990) Experientia, 46, 840–51.Google Scholar
  70. Francis, A. J. (1994a) J. Alloys Compd., 213, 226–31.Google Scholar
  71. Francis, A. J. (1994b) Environ. Sci. Technol., 28, 636–9.Google Scholar
  72. Francis, A. J., Dodge, C. J., Lu, F. L., Halada, G. P., and Clayton, C. R. (1994) Environ. Sci. Technol., 28(4), 636–9.Google Scholar
  73. Francis, A. J. (2001) Radioact. Environ., 1, 201–19.Google Scholar
  74. Francis, A. J. and Dodge, C. J. (1990) Environ. Sci. Technol., 24, 373–378.Google Scholar
  75. Francis, A. J. and Dodge, C. (1993) Appl. Environ. Microbiol., 59, 109–13.Google Scholar
  76. Francis, A. J., Dobbs, S., and Nine, B. J. (1980a). Appl. Environ. Microbiol., 40, 108–13.Google Scholar
  77. Francis, A. J., Iden, C. R., Nine, B. J., and Chang, C. K. (1980b). Nucl. Technol., 50, 158–63.Google Scholar
  78. Francis, A. J. Dodge, C., and Gillow, J. B. (1992). Nature, 356, 140–2.Google Scholar
  79. Francis, A. J., Joshi-Tope, G. A., and Dodge, C. J. (1996) Environ. Sci. Technol., 30, 562–8.Google Scholar
  80. Francis, A. J., Gillow, J. B., Dodge, C. J., Dunn, M., Mantione, K., Strietelmeier, B. A., Pansoy-Hjelvik, M. E., and Papenguth, H. W. (1998) Radiochim. Acta, 82, 347–54.Google Scholar
  81. Francis, A. J., Dodge, C. J., and Ohnuki, T. (2007) J. Nucl. Radiochem. Sci., 8, 121–6.Google Scholar
  82. Francis, A. J., Dodge, C. J., and Gillow, J. B. (2008) Environ. Sci.Technol., 42(7), 2355–60.Google Scholar
  83. Fredrickson, J. K., Kostandarithes, H. M., Li, S. W., Plymale, A. E., and Daly, M. J. (2000) Appl. Environ. Microbiol., 66, 2006–11.Google Scholar
  84. Fredrickson, J. K., Zachara, J. M., Balkwill, D. L., Kennedy, D., and Li, S. M. W. (2004) Appl. Environ. Microbiol., 70(7), 4230–41.Google Scholar
  85. Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V. (1979) Geochim. Cosmochim. Acta, 43, 1075–90.Google Scholar
  86. Fry, N. K., Fredrickson, J. K., Fishbain, S., Wagner, M., and Stair, D. A. (1997) Appl. Environ. Microbiol., 63, 1498–1504.Google Scholar
  87. Gee, G. W., Oostrom, M., Freshley, M. D., Rockhold, M. L., and Zachara, J. M. (2007) Vadose Zone J., 6(4), 899–905.Google Scholar
  88. Gillow, J. B., Dunn, M., Francis, A. J., Lucero, D. A., and Papenguth, H. W. (2000a) Radiochim. Acta, 88, 769–74.Google Scholar
  89. Gillow, J. B., Francis, A. J., Lucero, D. A., and Papenguth, H. W. (2000b) AIP Conference Proceedings, New Mexico, vol. 532, pp. 51–52.Google Scholar
  90. Gorby, Y. A. and Lovley, D. R. (1992) Environ. Sci. Technol., 26, 205–07.Google Scholar
  91. Gorman-Lewis, D., Fein, J. B., Soderholm, L., Jensen, M. P., and Chang, M.-H. (2005) Geochim. et Cosmochim. Acta, 69, 4837–44.Google Scholar
  92. Grubbé, E. H. (1933) Radiology, 21, 156.Google Scholar
  93. Gu, B., Watson, D. B., Wu, L., Phillips, D. H., and White, D. C. (2002) Environ. Monitor. Assess., 77(3), 293–309.Google Scholar
  94. Haas, J. R. and DiChristina, T. J. (2002) Environ. Sci. Technol., 36, 373–80.Google Scholar
  95. Haas, J. R., Dichristina, T. J., and Wade, R. Jr. (2001) Chem. Geol., 180, 33–54.Google Scholar
  96. Hafez, M. B., Ibrahim, M. Kh., Abdel-Razek, A. S., and Abu-Shady, M.R. (2001) J. Radioanal. Nuc. Chem., 252 (1), 179–85.Google Scholar
  97. He,L. M., Neu, M. P., and Vanderber, L.A. (2000) Environ. Sci. Technol., 34, 1694–1701.Google Scholar
  98. Hering, J. G. and Kraemer, S. (1994) Radiochim. Acta, 66/67, 63–71.Google Scholar
  99. Hirose, K. and Tanoue, E. (2001) Mar. Environ. Res., 51, 95–112.Google Scholar
  100. Hussain, M., Orfi, S. D., Wahid, A., Aslam, M., and Jan, F. (2001) in International Conference on Management of Radioactive Waste from Non-Power Applications – Sharing the Experience. Book of Extended Synopses, 7, 62–3Google Scholar
  101. Icopini, G. A., Boukhalfa, H., and Neu, M. P. (2007) Environ. Sci. Technol., 41, 2764–9.Google Scholar
  102. Icopini, G. A., Lack, J. G., Hersman, L. E., Neu, M. P., and Boukhalfa, H. (2009) Appl. Environ. Microbiol. 75, 3641–7.Google Scholar
  103. Jardine, P. M, Jacobs, G. K, and O'Dell, J. D. (1993) Soil Sci. Soc. Am. J., 57, 954–62.Google Scholar
  104. Johansen, I. and Howard-Flanders, P. (1965) Radiat. Res., 24, 184–200.Google Scholar
  105. John, S. G., Ruggiero, C. E., Hersman, L. E., Tung, C.-S., and Neu, M. P. (2001) Environ. Sci. Technol., 35, 2942–8.Google Scholar
  106. Joshi-Tope, G. and Francis, A. J. (1995) J. Bacteriol., 177, 1989–93.Google Scholar
  107. Kaiser, J.P. and Bollag, J.M. (1990) Experientia, 46, 797–806.Google Scholar
  108. Keith-Roach, M. J. and Livens, F. R. (2002) Interactions of Microorganisms with Radio-nuclides, Elsevier Science Ltd., AmsterdamGoogle Scholar
  109. Kersting A. B., Efurd, D. W., Finnegan, D. L., Rokop, D. J., Smith, D. K., and Thompson, J. L. (1999) Nature, 397, 56–9.Google Scholar
  110. Kieft, T. L., Amy, P. S., Brockman, F. J., Fredrickson, J. K., and Bjornstad, B. N. (1993) Microb. Ecol., 26(1), 59–78.Google Scholar
  111. Kihara-Negishi, F., Yamamoto, H., Suzuki, M., Yamada, T., and Sakurai, T. (2001) Oncogene, 20, 6039–47.Google Scholar
  112. Kim, J. I., Zeh, P., and Delakowitz, B. (1992) Radiochim. Acta, 58/59, 147–4.Google Scholar
  113. Kudo, A., Fujikawa, Y., Takigami, H., Zheng, J., Asano, H., Arai, K., Yoshikawa, H., and Ito, M. (1998) in Proceedings of the 11th Pacific Basin Nuclear Conference, Banff, Canada, pp. 317–323.Google Scholar
  114. Lall, R. and Mitchell, J. (2007) Bioinformatics, 23, 2754–9.Google Scholar
  115. Lieser, K. H. (1995) Radiochim. Acta, 70/71, 355–375.Google Scholar
  116. Lins, R. D., Vorpagel, E. R., Guglielmi, M., and Straatsma, T. P. (2008) Biomacromolecules, 9, 29–35.Google Scholar
  117. Liu, C., Zachara, J. M., Gorby, Y. A., Szecsody, J. E., and Brown, C. F. (2001) Environ. Sci. Technol., 35, 1385–93.Google Scholar
  118. Liu, C., Gorby, Y.A., Zachara, J. M., and Fredrickson, J. M. (2002) Biotechnnol. Bioeng., 80, 637–49.Google Scholar
  119. Liu, Y., Zhou, J., Omelchenko, M.V., and Beliaev, A. S. (2003) Proc. Natl. Acad. Sci. U S A, 100, 4191–6.Google Scholar
  120. Lloyd, J. R. (2003)FEMS Microbiol. Rev., 27, 411–25.Google Scholar
  121. Lloyd, J. R., Yong, P., and Macaskie, L. E. (2000) Environ. Sci. Technol., 34, 1297–1301.Google Scholar
  122. Lloyd, J. R., Chesnes, J., Glasauer, S., Bunker, D. J., Livens, F. R., and Lovley, D. R. (2002) Geomicrobiol. J., 19, 103–20.Google Scholar
  123. Lloyd, J. R., Renshaw, J. C., May, I., Livens, F. R., Burke, I. T., Mortimerc, R. J. G., and Morris, K. (2005) J. Nucl. Radiochem. Sci., 6, 17–20.Google Scholar
  124. Long, P. E., McKinley, J. P., and White, D. C. (2006) Report no. ERSD-1024837-2006.Google Scholar
  125. Lovley, D. R. (1991) Microbiol. Rev., 55, 259–87.Google Scholar
  126. Lovley, D. R. (1993) Ann. Rev. Microbiol., 47, 263–90.Google Scholar
  127. Lovley, D. R. and Phillips, E. J. P. (1992a) Appl. Environ. Microbiol., 58, 850–6.Google Scholar
  128. Lovley, D. R. and Phillips, E. J. P. (1992b) Environ. Sci. Technol., 26, 2228–34.Google Scholar
  129. Lovley, D. R. and Woodward, J. C. (1996) Chem. Geol., 132, 19–24.Google Scholar
  130. Lovley, D. R., Phillips, E. J. P., and Lonergan, D. J. (1989) Appl. Environ. Microbiol., 55, 700–06.Google Scholar
  131. Lovley, D. R., Phillips, E. J. P., Gorby, Y. A., and Landa, E. R. (1991) Nature, 350, 413–6.Google Scholar
  132. Lovley, D. R., Widman, P. K., Woodward, J. C., and Phillips, E. J. P. (1993) Appl. Environ. Microbiol., 59, 3572–6.Google Scholar
  133. Luo, J., Weber, F.-A., Cirpka, O. A., Wu, W.-M., Nyman, J. L., Carley, J., Jardine, P. M., Criddle, C. S., and Kitanidis, P. K. (2007a) J. Cont. Hyd., 92, 129–48.Google Scholar
  134. Luo, W. S., Wu, W. M., Yan, T. F., Criddle, C. S., and Jardine, P. M. (2007b) Appl. Microb. Biotechnol., 77(3), 713–21.Google Scholar
  135. Luo, W. S., Kelly, S. D., Kemmner, K. M., Watson, D., and Zhou, J. Z. (2009) Environ. Sci. Technol., 43(19), 7516–22.Google Scholar
  136. Luu, Y.-S. and Ramsay, J. A. (2003) World J. Microbiol. Biotechnol., 19, 215–25.Google Scholar
  137. Macaskie, L. E., Jeong, B. C., Tolley, M. R. (1994) FEMS Microbiol. Rev. 14(4): 351–67Google Scholar
  138. Macaskie, L. E., Basnakova, G. (1998) Environ. Sci. Technol., 32, 184–7.Google Scholar
  139. Macaskie, L. E., Yong, P., Doyle, T. C., Roig, M. G., Diaz, M., and Manzano, T. (1997) Biotechnol. Bioeng., 53, 100–09.Google Scholar
  140. Madden, A. S., Smith A. C., Balkwill, D. L., Fagan, L. A., and Phelps, T. J. (2007) Environ. Microbiol., 9(9), 2321–30.Google Scholar
  141. Madden, A. S., Palumbo, A. V., Ravel, B., Vishnivetskaya, T. A., and Phelps, T. J. (2009) J. Environ. Qual., 38(1), 53–60.Google Scholar
  142. Madigan, M. T., Martinko, J. M., and Parker, J. (1997) Brock Biology of Microorganisms, Prentice Hall, Upper Saddle River, NJ, p. 986.Google Scholar
  143. Markich, S. J., Brown, P. L., and Jeffree, R. A. (1996) Radiochim. Acta, 74, 321–6.Google Scholar
  144. Marley, N. A., Gaffney, J. S., Orlandini, K. A., and Cunningham, M. M. (1993) Environ. Sci. Technol., 27, 2456–61.Google Scholar
  145. Mattimore, V., Udupa, K. S., Berne, G. A., and Battista, J. R. (1995) J. Bacteriol., 177, 5232–7.Google Scholar
  146. McCarthy, J. F. and Zachara, J. M. (1989) Environ. Sci. Technol., 23, 496–502.Google Scholar
  147. McCready, R. G. L. and Lakshmanan, V. I. (1986) in Immobilization of Ions by Bio-Sorption (eds. H. Eccles and S. Hunt), Ellis Horwood Limited, Chichester, UK, pp. 219–226.Google Scholar
  148. McKinley, J. P., Zachara, J. M., Wan, J., McCready, D. E., and Heald, S. M. (2007) Vadose Zone J., 6(4), 1004–17.Google Scholar
  149. McLean, R. J. C., Firtin, D., and Brown, D. A. (1996) Can. J. Microbiol., 42, 392–400.Google Scholar
  150. Means, J. L., Crerar, D. A., and Duguid, J. O. (1978) Science, 200, 1477–81.Google Scholar
  151. Mittelman, M. W. and Geesey, G. G. (1985) Appl. Environ. Microbiol., 49, 846–51.Google Scholar
  152. Moll, H., Merroun, M.L., Hennig, C., Rossberg, A., and Selenska-Pobell, S. (2006), Radiochim. Acta, 94, 815–24.Google Scholar
  153. Moll, H., Merroun, M., Geipel, G., Rossberg, A., Hennig, C., Selenska-Pobell, S., and Bernhard, G. (2007), Report SKB-TR-07-05.Google Scholar
  154. Morel, F. M. M. and Hering, J. G. (1993) Principles and Applications of Aquatic Chemistry, Wiley, New York, p. 588.Google Scholar
  155. Murphy, E. and Zachara, J. (1995) Geoderma, 67, 103–24.Google Scholar
  156. Murray, J. W. and Coughlin, B. R. (1992) in International Symposium on Water Rock Interaction, USGS, p. 55.Google Scholar
  157. Muzarelli, R. A. A. (1977) Chitin, Pergamon, Oxford.Google Scholar
  158. Myers, C. R. and Nealson, K. H. (1988) Science, 240, 1319–21.Google Scholar
  159. Nakajima, A. and Tsuruta, T. (2003) J. Radioanal. Nuc. Chem., 260(1), 13–18.Google Scholar
  160. NRC (2000a) National Research Council Natural Attenuation for Groundwater Remediation, National Academy Press, Washington, D. C.Google Scholar
  161. NRC (2000b) National Research Council Research Needs in Subsurface Science, U.S. Department of Energy’s Environmental Science Program, National Academy Press, Washington D. C.Google Scholar
  162. Nealson, K. H. and Saffarini, D. (1994) Annu. Rev. Microbiol., 48, 311–43.Google Scholar
  163. Nealson, K. H. and Stahl, D. A. (1997) in Geomicrobiology: Interactions between Microbes and Minerals, vol. 35 (eds. J. F. Banfield and K. H. Nealson), Mineralogical Society of America, Washington, D. C., p. 5.Google Scholar
  164. Neu, M., Matonic, J., Ruggiero, C. E., and Scott, B. (2000) Angew. Chem., Int. Ed., 39, 1442–4.Google Scholar
  165. Neu, M. P., Ruggiero, C. E., and Francis, A. J. (2002) in Advances in Plutonium Chemistry 1967–2000 (ed. D. C. Hoffman), University Research Alliance and American Nuclear Society, La Grange Park, IL, pp. 169–211.Google Scholar
  166. Neu, M. P., Boukhalfa, H., Ruggiero, C. E., Lack, J. G., Hersman, L. E., and Reilly, S. D. (2003) J. Inorg. Biochem., 96, 69.Google Scholar
  167. Neu, M. P., Icopini, G. A., and Boukhalfa, H. (2005) Radiochim. Acta, 93, 705–14.Google Scholar
  168. N’Guessan, A. L., Vrionis, H. A., Resch, C. T., Long, P. E., Lovley, D. R. (2008) Environ. Sci. Technol., 42(8), 2999–3004.Google Scholar
  169. Novikov, A. P., Kalmykow, S. N., Utsunomiya, S., Ewing, R. C., Horreard, F., Merkulov, A., Clark, S. B., Tkachev, V. V., and Myansoedov, B. F. (2006) Science, 314, 638–41.Google Scholar
  170. Nuttall, H.E., Lutze, W., Barton, L. L., and Wolfrom, J. H. (1997) Bioremediation Ser., 4(1), 435–40.Google Scholar
  171. Nyman, J. L., Wu, H.-I., Gentile, M. E., Kitanidis, P. K., and Criddle, C. S. (2007) Environ. Sci. Technol., 41, 6528–33.Google Scholar
  172. Odencranz, J. E. (1992) Ph.D. Thesis, University of Illinois, Urbana, IL.Google Scholar
  173. Panak, P. J. and Nitsche, H. (2001) Radiochim. Acta, 89, 499–504.Google Scholar
  174. Panak, P. J., Booth. C. H., Caulder, D. L., Bucher, J. J., Shuh, D. K., and Nitsehe, H. (2002) Radiochim. Acta, 90, 315–21.Google Scholar
  175. Penrose, W. R., Polzer, W. L., Essington, E. H., Nelson D. M., and Orlandini, K. A. (1990) Environ. Sci. Technol., 24, 228–34.Google Scholar
  176. Peretrukhin, V. F., Khizhnyak, T. V., Lyalikova, N. N., and German, K. E. (1996) Radiochemistry, 38, 440–3.Google Scholar
  177. Phelps, T. and Balkwill, D. (2006) Report no. ERSD-1024906-2006.Google Scholar
  178. Phillips, E. J. P., Landa, E. R., and Lovley, D. R. (1995) J. Ind. Microbiol., 14, 203–07.Google Scholar
  179. Piron, E., Accominotti, M., and Domard, A. (1997) Langmuir, 13, 1653–8.Google Scholar
  180. Plummer, E. J. and Macaskie, L. E. (1990) Bull. Environ. Contam. Toxicol., 44, 173–80.Google Scholar
  181. Press, W. H., Teukolsky, S. A., Vettering, W. T., and Flannery, B. P. (1992) Numerical Recipes in FORTRAN: The Art of Scientific Computing, Cambridge University Press, New York.Google Scholar
  182. Puck, T. T. and Marcus, P. I. (1956) J. Exp. Med., 103, 653–66.Google Scholar
  183. Quiroz, N. G. A., Hung, C., and Santschi, P. H. (2006) Mar. Chem., 100, 337–53.Google Scholar
  184. and Durbin, P. W. (1982) in Actinides in Perspective (ed. N. M. Edelstein), Pergamon Press, Oxford, p. 491.Google Scholar
  185. Raymond, J. R., Eddy, P. A., Wallace, R. W., Foley, M. G., Bierschenk, W. H., and Harrison, R. P. (1989) Review of Information on Hydrology and Radionuclide Migration at the Nevada Test Site 1976–1988, and Annotated Bibliography, PNL-7101, Pacific Northwest Laboratory, Richland, WA.Google Scholar
  186. Reed, D. T., Zachara, J. M., Wildung, R. E., and Wobber, F. J. (1991) in Materials Research Society Symposium Proceedings, Materials Research Society, Washington, D. C., vol. 212, p. 765.Google Scholar
  187. Reed, D. T., Okijama, S., Brush, L. H., and Molecke, M. A. (1993) in Materials Research Society Symposia Proceedings, Materials Research Society, Washington, D. C., vol. 294, p. 431.Google Scholar
  188. Reed, D. T., Okajima, S., and Richmann, M. K. (1994) Radiochim. Acta, 66/67, 95–101.Google Scholar
  189. Reed, D. T., Aase, S., Wygmans, D., and Banaszak, J. E. (1997) in Migration ’97 – Chemistry and Migration Behavior of Actinides and Fission Products in the Geosphere, Sendai, Japan.Google Scholar
  190. Reed, D. T., Aase, S. B., Wygmans, D., and Banaszak, J. E. (1998) Radiochim. Acta, 82, 109–14.Google Scholar
  191. Reed, D. T., Vojta, Y., Quinn, J. W., and Richmann, M. K. (1999) Biodegradation, 10, 251–60.Google Scholar
  192. Reed, D. T., Lucchini, J. F., Aase, S. B., and Kropf, A. J. (2006) Radiochim. Acta, 94, 591–7.Google Scholar
  193. Reed, D. T., Pepper, S. E., Richmann, M. K., Smith, G., Deo, R., and Rittmann, B. E. (2007) J. Alloys Compd., 444–445, 376–82.Google Scholar
  194. Riley, R. G., Zachara, J. M., and Wobber, F. J. (1992) “Chemical Contaminants on DOE lands and Selection of Contaminant Mixtures for Subsurface Science Research”, DOE/ER-0547T, Office of Energy Research, U.S. Department of Energy, Washington, D. C.Google Scholar
  195. Rittmann, B. E. (1993) Water Resour. Res. 29, 2195–202.Google Scholar
  196. Rittmann, B. E. and McCarty, P. L. (1981) J. Environ. Eng., 107, 831–49.Google Scholar
  197. Rittmann, B. E. and McCarty, P. L. (2001) Environmental Biotechnology: Principles and Applications, McGraw-Hill, New York, NY.Google Scholar
  198. Rittmann, B. E. and VanBriesen, J. M. (1996) in Reviews in Mineralogy, vol. 34 (eds. P. C. Lichtner, Steefel, C. I., and Oelkers, E. H.), Mineralogical Society of America, Washington, DC.Google Scholar
  199. Rittmann, B. E., Banaszak, J. E., and Reed, D. T. (2002a) Biodegradation, 13, 329–42.Google Scholar
  200. Rittmann, B. E, Banaszak, J. E., VanBriesen, J. M., and Reed, D. T. (2002b). Biodegra-dation, 13, 239–50.Google Scholar
  201. Roberts, K. A., Santschi, P. H., and Honeyman, B. D. (2008) Radiochim. Acta, 96, 739–45.Google Scholar
  202. Robinson, A. V., Garland, T. R., Schneiderman, G. S., and Wildung, R. E. (1986) “Microbial Transformation of Plutonium.” BNWL-SA-5531, Battelle Pacific Northwest Labs, Richland, WA.Google Scholar
  203. Roden, E. E. and Scheibe, T. D. (2005) Chemosphere, 59, 617–28.Google Scholar
  204. Rogers, H. J. (1983) Aspects of Microbiology 6: Bacterial Cell Structure, American Society for Microbiology, Washington, D. C.Google Scholar
  205. Rudd, T., Sterritt, R. M., and Lester, J. N. (1984) Water Res. 18, 379–84.Google Scholar
  206. Ruggiero, C. E., Boukhalfa, H., Forsythe, J. H., Lack, J. G., Hersonan, L. E., and Neu, M. P. (2007) Env. Micro., 7(1), 88–97.Google Scholar
  207. Rusin, P. A., Quintana, L., Brainard, J. R., Strieteimeler, B. A., Tait, C. D., Ekberg, S. A., Palmer, P. D., Newton, T. W., and Clark, D. L. (1994) Environ. Sci. Technol., 28, 1686–90.Google Scholar
  208. Sandaa, R. A., Torsvik, V., Enger, O., Daae, F. L., Gastberg, T., and Hann, D. (1999) Microbiol. Ecol., 30, 237–51.Google Scholar
  209. Santo Domingo, J. W., Berry, D. J., Summer, M., and Fliersman, C. B. (1998) Curr. Microbiol., 37(6), 387–94.Google Scholar
  210. Santschi, P., Hohener, P., Benoit, G., and Buchholtztenbrink, M. (1990) Mar. Chem., 30, 269–315.Google Scholar
  211. Santschi, P. H., Roberts, K. A., and Guo, L. D. (2002) Environ. Sci. Technol., 36, 3711–19.Google Scholar
  212. Sasaki, T., Kauri, T., and Kudo, A. (2001) Appl. Radiat. Isotopes, 55, 427–31.Google Scholar
  213. Scala, D. J., Hacherl, E. L., Cowan, R., Young, L. Y., and Kosson, D. S. (2006) Res. Microbiol., 157(8), 772–83.Google Scholar
  214. Scheibe, T. D., Fang, Y., Murray, C. J., Roden, E. E., Chen, J., Chien, Y.-J., Brooks, S. C., and Hubbard, S. S. (2006) Geosphere, 2, 220–35.Google Scholar
  215. Schiewer, S. and Volesky, B. (1997) Environ. Sci. Technol., 31, 2478–85.Google Scholar
  216. Schultze-Lam, S., Fortin, D. A., Davis, B. S., and Beveridge, T. J. (1996) Chem. Geol., 132, 171–81.Google Scholar
  217. Schwarz, A. O. and Rittmann, B. E. (2007a). Biodegradation, 18, 675–92.Google Scholar
  218. Schwarz, A. O. and Rittmann, B. E. (2007b). Biodegradation 18, 693–701.Google Scholar
  219. Scott, J. A., Parlmer, S. J., and Ingham, J. (1986) in Immobilization of Ions by Bio-Sorption (eds. H. Eccles and S. Hunt), Ellis Horwood, Chichester, UK, pp. 81–88.Google Scholar
  220. Seltmann, G. and Holst, O. (2002) The Bacterial Cell Wall, Springer, Berlin/Heidelberg/ Germany.Google Scholar
  221. Shukla, M., Chaturvedi, R., Tamhane, D., Vyas, P., Archana, G., Apte, S., Bandekar, J., and Desai, A. (2007) Curr. Microbiol., 54, 142–8.Google Scholar
  222. Silva, R. J. and Nitsche, H. (1995) Radiochim. Acta, 70/71, 377–96.Google Scholar
  223. Silver, G. L. (1994) J. Radioanal. Nucl. Chem., 182, 291–4.Google Scholar
  224. Silver, S. (1996) Gene 179, 9–19.Google Scholar
  225. Sinsabaugh, R. L., Saiya-Cork, K., Long, T., Osgood, M.P., and Neher, D. A. (2003) Appl. Soil Ecol., 24(3), 263–71.Google Scholar
  226. Small, T. D., Warren, L. A., Roden, E. E., and Ferris, F. G. (1999) Environ. Sci. Technol., 33, 4465–70.Google Scholar
  227. Smit, E., Leeflang, P., and Wernars, K. (1997) Microbiol. Ecol., 23, 249–61.Google Scholar
  228. Soderholm, L., Williams, C. W., Antonio, M. R., Tischler, M. L., and Markos, M., (2000) Materials Research Society Symposia Proceedings, Materials Research Society, Washington, D. C., vol. 590, pp. 27–33.Google Scholar
  229. Songkasiri, W. (2003) Ph.D. Dissertation, Northwestern University, Evanston, IL.Google Scholar
  230. Songkasiri, W., Reed, D. T., and Rittmann, B. E. (2002) Radiochim. Acta 90, 785–9.Google Scholar
  231. Spear, J. R., Figueroa, L. A., and Honeyman, B. D. (1999) Environ. Sci. Technol., 33, 2667–75.Google Scholar
  232. Spear, J. R., Figueroa, L. A., and Honeyman, B. D. (2000) Appl. Environ. Microbiol., 66, 3711–21.Google Scholar
  233. Spinks, J. W. T. and Woods, R. J. (1990) An Introduction to Radiation Chemistry, Wiley, New York.Google Scholar
  234. Spor, H., Trescinski, M., and Libert, M. M. F. (1993) in Materials Research Society Symposia Proceedings, Materials Research Society, Washington, D. C., vol. 294, p. 771.Google Scholar
  235. Sterritt, R. M. and Lester, J. N. (1986) in Immobilization of Ions by Bio-Sorption (eds. H. Eccles and S. Hunt), Ellis Horwood, Chichester, UK, pp. 121–34.Google Scholar
  236. Stumm, W. and Morgan, J. J. (1996) Aquatic Chemistry, Wiley, New York, p. 1022.Google Scholar
  237. Sutherland, I. W. (1984) Crit. Rev. Microbiol., 10, 173–201.Google Scholar
  238. Suzuki, Y., Kelly, S. D., Kemner, K. M., and Banfield, J. F. (2004) Radiochim. Acta, 92, 11–16.Google Scholar
  239. Suzuki, Y, Kelly, S. D., Kemner, K. M, and Banfield, J. F. (2005) Appl. Environ. Microbiol., 71, 1790–7Google Scholar
  240. Tabak, H. H., Lens, P., van Hullebusch, E. D., and Dejonghe, W. (2005) Rev. Environ. Sci. Bio/Technol., 4, 115–56.Google Scholar
  241. Tanaka, S. and Nagasaki, S. (1997) Nucl. Technol., 118, 58–68.Google Scholar
  242. Tebo, B. M. and Obraztsova, A. Y. (1998) FEMS Microbiol. Lett., 162, 193–8.Google Scholar
  243. Thomas, R. A. P. and Macaskie, L. E. (1996) Environ. Sci. Technol., 30, 2371–5.Google Scholar
  244. Truex, M. J., Peyton, B. M., Valentine, N. B., and Gorby, Y. A. (1997) Biotechnol. Bioeng., 55, 490–96.Google Scholar
  245. Tsezos, M., Georgousis, Z., and Remoudaki, E. (1997a). Biotechnol. Bioeng., 55, 16–27.Google Scholar
  246. Tsezos, M., Georgousis, Z., and Remoudaki, E. (1997b). J. Chem. Technol. Biotechnol., 70, 198–206.Google Scholar
  247. Tsuruta, T. (2004) Water Air Soil Pollut., 159, 35–47.Google Scholar
  248. Tsuruta, T. (2006) J. Alloys Compd., 408–412, 1312–15.Google Scholar
  249. van der Kooij, D. (1995) in The Handbook of Environmental Chemistry, vol. 5B (ed. J. Hrubec), Springer, Berlin, p. 89.Google Scholar
  250. VanBriesen, J. M. and Rittmann, B. E. (1999) Biodegradation, 10, 315–30.Google Scholar
  251. VanBriesen, J. M. and Rittmann, B. E. (2000) Biotechnol. Bioeng., 67, 35–52.Google Scholar
  252. VanBriesen, J. M., Rittmann, B. E., Xun, L., Girvin, D. C., and Bolton, H. Jr. (2000) Environ. Sci. Technol., 34, 3346–53.Google Scholar
  253. Von Gunten, H. R. and Benes, P. (1995) Radiochim. Acta, 69, 1–29.Google Scholar
  254. Vreeland, R. H. (2000) Nature, 407, 897–900.Google Scholar
  255. Wang, S., Jaffe, P. R., Li, G., Wang, S. W., and Rabitz, H. A. (2003) J. Contam. Hydrol., 64, 283–307.Google Scholar
  256. Weiss, A. J., Francis, A. J., and Colombo, P. (1979) in Management of Low-Level Radioactive Waste (eds. M. W. Carter, A. A. Moghissi, B. Kahn), Pergamon Press, New York.Google Scholar
  257. White, D. C. and Ringelberg, D. B. (1991) Report DOE-ER/60988-T1.Google Scholar
  258. Whitman, W. B., Coleman, D. C., and Wiebe, W. J. (1998) Proc. Natl. Acad. Sci.U S A., 95, 6578–83.Google Scholar
  259. Wildung, R. E. and Garland, T. R. (1980) in Transuranium Elements in the Environment (ed. W. C. Hanson), DOE/TIC-22800, Washington, D. C.Google Scholar
  260. Wildung, R. E. and Garland, T. R. (1982) Appl. Environ. Microbiol., 43, 418–23.Google Scholar
  261. Wildung, R. E., Garland, T. R., and Rogers, J. E. (1987) in Environmental Research on Actinide Elements (eds. J. E. Pinder, J. J. Alberts, K. W. McLeod, and R. G. Schreckhise), Hilton Head, SC, p. 1.Google Scholar
  262. Willecke, K., Gries, E.-M., and Oehr, P. (1973) J. Biol. Chem. 248, 807–14.Google Scholar
  263. Xue, H. B., Sigg, L., and Kari, F. G. (1995) Environ. Sci. Technol., 29, 59–68.Google Scholar
  264. Yabusaki, S. B., Fang, Y., Long, P. E., Resch, C. T., Peacock, A. D., Komlos, J., Jaffe, P. R., Morrison, S. J., Dayvault, R. D., While, D. C., and Anderson, R. T. (2007) J. Contam. Hydrol., 93, 216–35.Google Scholar
  265. Yakubu, N. A. and Dudeney, A. W. L. (1986) in Immobilization of Ions by Bio-Sorption (eds. H. Eccles and S. Hunt), Ellis Horwood, Chichester, UK, pp. 183–200.Google Scholar
  266. Yong, P. and Macaskie, L. E. (1995) J. Chem. Technol. Biotechnol., 64, 87–95.Google Scholar
  267. Zachara, J. M., Davis, J. A., Liu, C., McKinley, J. P., and Qafoku, N. (2005) Report no. PNNL-1521.Google Scholar
  268. Zachara, J. M., Christensen, J. N., Dresel, P. E., Kelly, S. D., and Liu, C. (2007) Report no. PNNL-17031.Google Scholar
  269. Zajic, J. E. (1969) Microbial Biogeoehemistry, Academic, New York, p. 345.Google Scholar
  270. Zavilgelsky, G. B., Abilev, S. K., Sukhodolets, V. V., and Ahmad, S. I. (1998) J. Photochem Photobio. B: Biol., 43, 152–7.Google Scholar
  271. Zhou, P. and Gu, B. H. (2005) Environ. Sci. Technol., 39(12), 4435–40.Google Scholar
  272. Zouboulis, A., Rousou, E. G., Matis, K. A., and Hancock, I. C. (1999) J. Chem. Technol. Biotechnol. 74, 429–36.Google Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Donald T. Reed
  • Randhir P. Deo
  • Bruce E. Rittmann

There are no affiliations available

Personalised recommendations