Skip to main content

Abstract

Since the 1950s actinides have been used to benefit industry, science, health, and national security. The largest industrial application, electricity generation from uranium and thorium fuels, is growing worldwide. Thus, more actinides are being mined, produced, used and processed than ever before. The future of nuclear energy hinges on how these increasing amounts of actinides are contained in each stage of the fuel cycle, including disposition. In addition, uranium and plutonium were built up during the Cold War between the United States and the Former Soviet Union for defense purposes and nuclear energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, C. E., Farlow, N. H., and Schell, W. R. (1960) Geochim. Cosmochim. Acta, 18, 42–56.

    CAS  Google Scholar 

  • Agnew, S. F. (1995) Hanford Defined Wastes: Chemical and Radionuclide Compositions, Report LAUR 94-2657 Rev. 2, Los Alamos National Laboratory, Los Alamos, NM, pp. 143.

    Google Scholar 

  • Äikäs, T. and Anttila, P. (2008) Rev. Eng. Geol., XIX, 67–71.

    Google Scholar 

  • Al Mahamid, I. and Becraft, K. A. (1995) Radiochim. Acta, 68, 63–68.

    Google Scholar 

  • Albright, D. (2004) Separated Civil Plutonium Inventories: Current Status and Future Directions. Institute for Science and International Security. http://www.isis-online.org/global_stocks/separated_civil_pu.html.

  • Albright, D., Berkhout, F., and Walker, W. (1997) Plutonium and Highly Enriched Uranium 1996: World Inventories, Capabilities and Policies, Oxford University Press, Oxford, pp. 534.

    Google Scholar 

  • Alexander, W. R. and McKinley, L. E. (2007) Deep Geological Disposal of Radioactive Waste. Elsevier, Amsterdam, The Netherlands, pp. 273.

    Google Scholar 

  • Al-Hashimi, A., Evans, G. J., and Cox, B. (1996) Water, Air Soil Poll., 88, 83–92.

    CAS  Google Scholar 

  • Allard, B., Kipatsi, H., and Liljenzin, J. O. (1980) J. Inorg. Nucl. Chem., 42, 1015–1027.

    CAS  Google Scholar 

  • Allen, P. G., Bucher, J. J., Clark, D. L., Edelstein, N. M., Ekberg, S. A., Gohdes, J. W., Hudson, E. A., Kaltsoyannis, N., Lukens, W. W., Neu, M. P., Palmer, P. D., Reich, T., Shuh, D. K., Tait, C. D., and Zwick, B. D. (1995) Inorg. Chem., 34, 4797–4807.

    CAS  Google Scholar 

  • Allen, P. G., Bucher, J. J., Shuh, D. K., Edelstein, N. M., and Reich, T. (1997) Inorg. Chem., 36, 4676–4683.

    CAS  Google Scholar 

  • Altmaier, M., Neck, V., and Fanghänel, T. (2004) Radiochim. Acta, 92, 537–543.

    CAS  Google Scholar 

  • Alvarez, R. (2005) Sci. Global Sec., 13, 43–86.

    Google Scholar 

  • Anderson, R. T., Vrionis, H. A., Ortiz-Bernad, I., Resch, C. T., Long, P. E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D. R., Peacock, A., White, D. C., Lowe, M., and Lovley, D. R. (2003) Appl. Environ. Microbiol., 69, 5884–5891.

    CAS  Google Scholar 

  • André, C. and Choppin, G. R. (2000) Radiochim. Acta, 88, 613–616.

    Google Scholar 

  • Andreychuck, N. N., Frolov, A. A., Rotmanov, K. V., and Vasiliev, V. Y. (1990) J. Radioanal. Nucl. Chem. Art., 143, 427–432.

    Google Scholar 

  • Aragon, A., Espinosa, A., De La Cruz, B., and Fernandez, J. A. (2008) J. Environ. Radioact., 99, 1061–1067.

    CAS  Google Scholar 

  • Arai, Y., Marcus, N., Tamura, J. A., Davis, J. A., and Zachara, J. M. (2007) Environ. Sci. Technol., 41, 4633–4639.

    CAS  Google Scholar 

  • AREVA (2007) Liquid Releases Annually Report 2007. AREVA, France. http://www.areva-nc.fr/scripts/areva-nc/publigen/content/templates/show.asp?P=67&L=EN&SYNC=Y.

    Google Scholar 

  • AREVA (2008) Tricastin: AREVA to invest extra €20 million to improve environment around facilities. AREVA, France. http://www.areva-nc.com/scripts/areva-nc/publi-gen/content/templates/Show.asp?P=7936&L=EN.

    Google Scholar 

  • Arnold, L. (1995) Windscale 1957. Anatomy of a Nuclear Accident, Macmillan Press Ltd., London, pp. 264.

    Google Scholar 

  • Artinger, R., Buckau, G., Zeh, P., Geraedts, K., Vancluysen, J., Maes, A., and Kim, J. I. (2003) Radiochim. Acta, 91, 743–750.

    CAS  Google Scholar 

  • Assinder, D. J. (1999) J. Environ. Radioact., 44, 335–347.

    CAS  Google Scholar 

  • Atlas, R. M. and Bartha, R. (1993) Microbial Ecology: Fundamentals and Applications, Benjamin/Cummings Publishing Company, Redwood City, CA, pp. 576.

    Google Scholar 

  • Baade, W., Burbridge, G. R., Hoyle, F., Burbridge, E. M., Christy, R. F., and Fowler, W. A. (1956) Publ. Astron. Soc. Pacific, 68, 296–300.

    CAS  Google Scholar 

  • Baas-Becking, L. G. M., Kaplan, I. R., and Moore, D. (1960) J. Geol., 68, 243–284.

    CAS  Google Scholar 

  • Bailey, R. A., Clark, H. M., Ferris, J. P., Krause, S., and Strong, R. L. (2002) Chemistry of the Environment, Academic, San Diego, CA, pp. 835.

    Google Scholar 

  • Banaszak, J. E., Rittmann, B. E., and Reed, D. T. (1999) J. Radioanal. Nucl. Chem., 241, 385–435.

    CAS  Google Scholar 

  • Baston, G. M. N., Berry, J. A., Brownsword, M., Heath, T. G., Ilett, D. J., Tweed, C. J., and Yui, M. (1997) The Effect of Temperature on the Sorption of Technetium, Uranium, Neptunium, and Curium on Bentonite, Tuff, and Granodiorite. In Scientific Basis for Nuclear Waste Management XX (Pittsburgh, PA) (eds. W. J. Gray and I. R. Triay), Materials Research Society, pp. 805–812.

    Google Scholar 

  • Bea, F. (1999) Uranium: Element and Geochemistry, pp. 630–635. In Encyclopedia of Geochemistry (eds. R. W. Fairbridge and M. R. Rampino), Kluwer, Dordrecht, The Netherlands, pp. 645–654.

    Google Scholar 

  • Bearden, D. M. and Andrews, A. (2007) Radioactive Tank Waste from the Past Production of Nuclear Weapons: Background and Issues for Congress, Report RS21988, Congressional Research Service, The Library of Congress, Washington D.C., pp. 6.

    Google Scholar 

  • Beasley, T. M. and Ball, L. A. (1980) Nature, 287, 624–625.

    CAS  Google Scholar 

  • Beasley, T. M., Cooper, L. W., Grebmeier, J. M., Aagard, K., Kelley, J. M., and Kilius, L. R. (1998a) J. Environ. Radioact., 39, 255–277.

    CAS  Google Scholar 

  • Beasley, T. M., Kelley, J. M., Maiti, T. C., and Bond, L. A. (1998b) J. Environ. Radioact., 38, 133–146.

    CAS  Google Scholar 

  • Begg, B. D., Vance, E. R., and Conradson, S. D. (1998) J. Alloys Compd., 271273, 221–226.

    Google Scholar 

  • Berkey, E. and Zachry, T. E. (2005) Subsurface Contamination and Remediation. Accomplishments of the Environmental Management Science Program. American Chemical Society, United States, pp. 408.

    Google Scholar 

  • Bernhard, G., Geipel, G., Brendler, V., and Nitsche, H. (1998) J. Alloys Compd., 271273, 201–205.

    Google Scholar 

  • Bernkopf, M. F. and Kim, J. I. (1984) Hydrolysereaktion und Karbonatkomplexierung von dreiwertigem Americium in natürlichen aquatischen Systemen, RCM02284, Report, Technische Universität München, München, pp. 200.

    Google Scholar 

  • Berry, J. A., Yui, M., and Kitamura, A. (2007) Sorption Studies of Radioelements on Geological Materials, Report JAEA-Research — 2007-074, Japan Atomic Energy Agency, Tokai, Ibaraki, pp. 104.

    Google Scholar 

  • Berzero, A. and D’Alessandro, M. (1990) The Oklo Phenomenon as an Analog of Radioactive Waste Disposal. A Review, Report EUR 12941, Comm. Eur. Communities Eur., pp. 86.

    Google Scholar 

  • Betti, M. (2003) J. Environ. Radioact., 64, 113–119.

    CAS  Google Scholar 

  • Blyth, A., Frape, S., Ruskeeniemi, T., and Blomqvist, R. (2004) Appl. Geochem., 19, 675–686.

    CAS  Google Scholar 

  • Bodu, R., Bouzigues, H., Morin, N., and Pfiffelmann, J. P. (1972) C. R. Acad. Sci. Paris,275D, 1731–1734.

    Google Scholar 

  • Bogatov, S. S. (1998) Remediation of the Chernobyl Accident Site. In Actinides in the Environment (eds. P. A. Sterne, A. Gonis, and A. A. Borovoi), Kluwer, Dordrecht/Boston/London, pp. 391–422.

    Google Scholar 

  • Bouby, M., Billard, I., and Maccordick, H. J. (1999) Czech. J. Phys., 49, 147–150.

    CAS  Google Scholar 

  • Boukhalfa, H., Reilly, S. D., Smith, W. H., and Neu, M. P. (2004) Inorg. Chem., 43, 5816–5823.

    CAS  Google Scholar 

  • Boukhalfa, H., Reilly, S. D., and Neu, M. P. (2007) Inorg. Chem., 46, 1018–1026.

    CAS  Google Scholar 

  • Boulyga, S. F. and Becker, J. S. (2002) J. Anal. Atomic Spectrosc., 17, 1143–1147.

    CAS  Google Scholar 

  • Bradley, D. J. (1997) Behind the Nuclear Curtain: Radioactive Waste Management in the Former Soviet Union, Battelle Press, Columbus, OH, pp. 716.

    Google Scholar 

  • Brainard, J. R., Strietelmeier, B. A., Smith, P. H., Unkefer, P. J., Barr, M. E., and Ryan, R. R. (1992) Radiochim. Acta, 58/59, 357–363.

    Google Scholar 

  • Brissot, R., Heuer, D., Le Brun, C., Loiseaux, J.-M., Nifenecker, H., and Nuttin, A.(2001) Nuclear Energy With (Almost) No Radioactive Waste? Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, France. http://lpsc.in2p3.fr/gpr/english/NEWNRW/NEWNRW.html.

    Google Scholar 

  • Bros, R., Turpin, L., Gauthier-Lafaye, F., Holliger, P., and Stille, P. (1993) Geochim.Cosmochim. Acta, 57, 1351–1356.

    CAS  Google Scholar 

  • Bros, R., Hidaka, H., Kamel, G., and Ohnuki, T. (2003) Appl. Geochem., 18, 1807–1824.

    CAS  Google Scholar 

  • Bruno, J., Duro, L., and Grive, M. (2002) Chem. Geol., 190, 371–393.

    CAS  Google Scholar 

  • Buddemeier, R. W. and Hunt, J. R. (1989) Appl. Geochem., 3, 535–548.

    Google Scholar 

  • Buesseler, K. O. (1997) J. Environ. Radioact., 36, 69–83.

    CAS  Google Scholar 

  • Buesseler, K. O. and Sholkowitz, E. R. (1987) Geochim. Cosmochim. Acta, 51, 2623–2637.

    CAS  Google Scholar 

  • Bunzl, K. and Kracke, W. (1994) J. Alloys Compd., 213/214, 212–218.

    CAS  Google Scholar 

  • Büppelmann, K., Kim, J. I., and Lierse, C. (1988) Radiochim. Acta, 44/45, 65–70.

    Google Scholar 

  • Burbridge, G. R., Hoyle, F., Burbridge, E. M., Christy, R. F., and Fowler, W. A. (1956) Phys. Rev., 103, 1145–1149.

    CAS  Google Scholar 

  • Burkart, W. (1991) Uranium, Thorium, and Decay Products. II.33. In Metals and Their Compounds in the Environment (ed. E. Merian), VCH Verlagsgesellschaft, Weinheim, Germany, pp. 1275–1287.

    Google Scholar 

  • Burns, P. C. (1999) Rev. Mineral., 38, 23–90.

    CAS  Google Scholar 

  • Burns, P. C. and Finch, R., (eds.) (1999) URANIUM: Mineralogy, Geochemistry and the Environment. Mineralogical Society of America, Washington, D.C., pp. 679.

    Google Scholar 

  • Burns, C. J., Neu, M.P., Boukhalfa, H., Gutowski, K. E., Bridges, N. J., and Rogers, R. D.(2004a) The Actinides. In Comprehensive Coordination Chemistry II (eds. J. A. McCleverty and T. J. Meyer), Elsevier Pergamon, Amsterdam, The Netherlands, pp. 189–346.

    Google Scholar 

  • Burns, P. C., Deely, K. M., and Skanthakumar, S. (2004b) Radiochim. Acta, 92, 151–160.

    CAS  Google Scholar 

  • Canepa, J. A., Triay, I. R., Rogers, P. S. Z., Hawley, M. E., and Zyvoloski, G. A. (1994) in The Yucca Mountain Site Characterization Project: Site-Specific Research and Development on the Chemistry and Migration of Actinides. Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere, Proceedings of the Fourth International Conference, Charleston, SC, 1993, Oldenbourg Verlag, Munich, pp. 813–820.

    Google Scholar 

  • Carson, J. (1993) Sci. Global Sec., 4, 111–128.

    Google Scholar 

  • Carvalho, F. P., Madruga, M. J., Reis, M. C., Alves, J. G., Oliveira, J. M., Gouveia, J., and Silva, L. (2007) J. Environ. Radioact., 96, 39–46.

    CAS  Google Scholar 

  • Chisholm-Brause, C., Conradson, S. D., Buscher, C. T., and Eller, P. G. (1994) Geochim. Cosmochim. Acta, 58, 3625–3631.

    CAS  Google Scholar 

  • Choppin, G. R. (1983) Radiochim. Acta, 32, 43–53.

    CAS  Google Scholar 

  • Choppin, G. R. (1988) Radiochim. Acta, 43, 82–83.

    Google Scholar 

  • Choppin, G. R. (1992) Radiochim. Acta, 58/59, 113–120.

    Google Scholar 

  • Choppin, G. R., and Du, M. (1992) Radiochim. Acta, 58/59, 101–104.

    Google Scholar 

  • Choppin, G. R. and Wong, P. J. (1998) Aquatic Geochem., 4, 77–101.

    CAS  Google Scholar 

  • Choppin, G. R., Liljenzin, J.-O., and Rydberg, J. (2002) Radiochemistry and Nuclear Chemistry, Butterworth-Heinemann, Woburn, MA, pp. 709.

    Google Scholar 

  • Christensen, G. C., Romanov, G. N., Strand, P., Salbu, B., Malyshev, S. V., Bergan, T. D., Oughton, D., Drozhko, E. G., Glagolenko, Y. V., Amundsen, I., Rudjord, A. L., Bjerk, T. O., and Lind, B. (1997) Sci. Total Environ., 202, 237–248.

    CAS  Google Scholar 

  • Christensen, J. N., Dresel, P. E., Conrad, M. E., Maher, K., and DePaolo, D. J. (2004) Environ. Sci. Technol., 38, 3330–3337.

    CAS  Google Scholar 

  • Christensen, J. N., Conrad, M. E., DePaolo, D. J., and Dresel, P. E. (2007) Vadose Zone J., 6, 1018–1030.

    CAS  Google Scholar 

  • Chung, K. H., Klenze, R., Park, K. K., Paviet-Hartmann, P., and Kim, J. I. (1998) Radiochim. Acta, 82, 215–219.

    CAS  Google Scholar 

  • Ciavatta, L. (1980) Ann. Chim. (Rome), 70, 551–567.

    CAS  Google Scholar 

  • Clark, D. L., Janecky, D. R., and Lane, L. J. (2006) Phys. Today, 59, 34–40.

    CAS  Google Scholar 

  • Clark, D. L., Neu, M. P., Runde, W., and Keogh, D. W. (2007) Thorium and Thorium Compounds. In Kirk-Othmer Encyclopedia of Chemical Technology, Wiley Inter-science, New York, pp. 753–782.

    Google Scholar 

  • Cleveland, J. M. and Rees, T. F. (1981) Science, 212, 1506–1509.

    CAS  Google Scholar 

  • Cleveland, J. M. and Rees, T. F. (1982) Environ. Sci. Technol., 16, 347–439.

    Google Scholar 

  • Conradson, S. D. (1998) Appl. Spectrosc., 52, 252A–279A.

    CAS  Google Scholar 

  • Cooper, J. R., Randle, K., and Sokhi, R. S. (2003) Radioactive Releases in the Environment: Impact and Assessment, Wiley, West Sussex, pp. 473.

    Google Scholar 

  • Cowan, G. A. (1976) Sci. Am., 235/236, 36–47.

    Google Scholar 

  • CRWMS (2000a) Commercial Spent Nuclear Fuel Degradation in Unsaturated Drip Tests, Report ACC: MOL.20000107.0209, Civilian Radioactive Waste Management. System Management and Operating Contractor, Las Vegas, NV.

    Google Scholar 

  • CRWMS (2000b) Total System Performance Assessment for the Site Recommendation, Report TDF-WIS-PA-00001, Civilian Radioactive Waste Management. System Management and Operating Contractor, Las Vegas, NV.

    Google Scholar 

  • Curtis, D. B., Fabryka-Martin, J., Aguilar, R., Attrep, M., and Roensch, F. (1992) 3rd Annual International Conference Proceedings (Am. Nucl. Soc.), 1, p. 338–394

    Google Scholar 

  • Dai, M., Kelley, J. M., and Buesseler, K. O. (2002) Environ. Sci. Technol., 36, 3690–3699.

    CAS  Google Scholar 

  • De Geer, L.-E. (1977) Science, 198, 925–927.

    Google Scholar 

  • Deditius, A. P., Utsunomiya, S., and Ewing, R. C. (2007) J. Alloys Compd., 444/445, 584–589.

    Google Scholar 

  • Deditius, A. P., Utsunomiya, S., and Ewing, R. C. (2008) Chem. Geol., 251, 33–49.

    CAS  Google Scholar 

  • Degueldre, C., Triay, I., Kim, J. I., Vilks, P., Laaksoharju, M., and Miekeley, N. (2000) Appl. Geochem., 15, 1043–1051.

    CAS  Google Scholar 

  • Dekoussar, V., Dyck, G. R., Galperin, A., Ganguly, C., Todosow, M., and Yamawaki, M. T. (2005) Thorium Fuel Cycle — Potential Benefits and Challenges, Report IAEA-TECHDOC-1450, Report, International Atomic Energy Agency, Vienna, Austria, pp. 105.

    Google Scholar 

  • deMarcillac, P., Coron, N., Dambier, G., Leblanc, J., and Moalic, J. P. (2003) Nature, 422, 876–878

    CAS  Google Scholar 

  • Demirbas, A. (2005) Energy Sour., 27, 597–603.

    CAS  Google Scholar 

  • Dhami, P. S., Gopalakrishnan, V., Kannan, R., Ramanujam, A., Salvi, N., and Udupa, S. R. (1998) Biotech. Lett., 20, 225–228.

    CAS  Google Scholar 

  • DHEC (2007) Commercial Low-Level Radioactive Waste Disposal In South Carolina, Report CR-000907, South Carolina Department of Health and Environmental Control, Columbia, South Carolina, pp. 20.

    Google Scholar 

  • Ditz, R., Sarbas, B., Schubert, P., and Töpper, W. (1990) Thorium. Suppl. Vol. A1a. Natural Occurrence. Minerals (Excluding Silicates), Springer, Berlin.

    Google Scholar 

  • DOE (1999) Groundwater/Vadose Zone Integration Project Summary Description, Report DOE/RL-98-48, Vol. I, Rev.0, U.S. Department of Energy.

    Google Scholar 

  • Donaldson, L. R., Seymour, A. H., and Nevissi, A. E. (1997) Health Physics 73, 214–222.

    CAS  Google Scholar 

  • Dozol, M. and Hagemann, R. (1993) Pure Appl. Chem., 65, 1081–1102.

    CAS  Google Scholar 

  • Duff, M. C. and Amrheim, C. (1996) Soil Sci. Soc. Am. J., 60, 1393–1400.

    CAS  Google Scholar 

  • Duff, M. C., Hunter, D. B., Triay, I. R., Bertsch, P. M., Reed, D. T., Sutton, S. R., SheaMccarthy, G., Kitten, J., Eng, P., Chipera, S. J., and Vaniman, D. T. (1999) Environ. Sci. Technol., 33, 2163–2169.

    CAS  Google Scholar 

  • Duffa, C. and Renaud, P. (2005) Sci. Total Environ., 348, 164–172.

    CAS  Google Scholar 

  • Dupuis, M.-C. (2007) International Conference on Radioactive Waste Disposal, Bern, Switzerland, p. 6.

    Google Scholar 

  • Eckhart, R. (2000) Yucca Mountain–Looking Ten Thousand Years into the Future. In Los Alamos Science (ed. N. G. Cooper), Los Alamos National Laboratory, Los Alamos, NM, pp. 464–489.

    Google Scholar 

  • Efurd, D. W., Rokop, D. J., and Perrin, R. E. (1993) Characterization of the Radioactivity in Surface-Waters and Sediments Collected at the Rocky Flats Facility, Report LA-UR-93-4373, Los Alamos National Laboratory, Los Alamos, NM, pp. 53.

    Google Scholar 

  • Efurd, D. W., Runde, W., Banar, J. C., Janecky, D. R., Kaszuba, J. P., Palmer, P. D., Roensch, F. R., and Tait, C. D. (1998) Environ. Sci. Technol., 32, 3893–3900.

    CAS  Google Scholar 

  • Espinosa, A., Aragon, A., Martinez, J., and Gutierrez, J. (1999) Experience with Environmental Behaviour of Pu at Palomares, Spain, Report IAEA-TECDOC-1148, International Atomic Energy Agency, Vienna, pp. 173–186.

    Google Scholar 

  • Essien, I. O. (1991) J. Radioanal. Nucl. Chem., 147, 269–275.

    CAS  Google Scholar 

  • Eyrolle, F., Claval, D., Gontier, G., and Antonelli, C. (2008) J. Environ. Monit., 10, 800–811.

    CAS  Google Scholar 

  • Fanghänel, T., Könnecke, T., Weger, H., Paviet-Hartmann, P., Neck, V., and Kim, J. I.(1999) J. Solut. Chem., 4, 447–462.

    Google Scholar 

  • Farr, J. D., Schulze, R. K., and Honeyman, B. D. (2000) Radiochim. Acta, 88, 675–679.

    CAS  Google Scholar 

  • Farr, J. D., Neu, M. P., Schulze, R. K., and Honeyman, B. D. (2007) J. Alloys Compd., 444/445, 533–539.

    Google Scholar 

  • Felmy, A. R., Rai, D., and Fulton, R. W. (1990) Radiochim. Acta, 50, 193–204.

    CAS  Google Scholar 

  • Fernandes, H. M., Franklin, M. R., Veiga, L. H. S., Freitas, P., and Gomiero, L. A.(1996) J. Environ. Radioact., 30, 69–95.

    CAS  Google Scholar 

  • Finch, R. and Ewing, R. (1990) Uraninite alteration in an oxidizing environment and its relevance to the disposal of spent nuclear fuel. Svensk Kärnbränslehantering AB, Report SKB TR 91-15, University of New Mexico, Albuquerque, New Mexico, pp. 132.

    Google Scholar 

  • Finn, P. A., Buck, E. C., Gong, M., Hoh, J. C., Emery, J. W., Hafenrichter, L. D., and Bates, J. K. (1994) Radiochim. Acta, 66/67, 189–195.

    CAS  Google Scholar 

  • Fish, W. (1993) Sub-Surface Redox Chemistry: A Comparison of Equilibrium and Reactor-Based Approaches. 3, In Metals in Groundwater (eds. H. E. Allen, E. M. Perdue, and D. S. Brown), Lewis Publishers, Chelsea, MI, pp. 73–102.

    Google Scholar 

  • Fletcher, M. and Murphy, E. (2001) Transport of microorganisms in the subsurface: The role of attachment and colonization of particle surfaces. In Subsurface Microbiology Biogeochemistry (eds. J. K. Fredrickson and M. Fletcher), Wiley, New York, NY, pp. 39–68.

    Google Scholar 

  • Fowle, D. A., Fein, J. B., and Martin, A. M. (2000) Environ. Sci. Technol., 34, 3737–3741.

    CAS  Google Scholar 

  • Froidevaux, P., Geering, J.-J., Valley, J.-F., and Volkle, H. (1999) Strahlenschutz Praxis, 5, 31–33.

    CAS  Google Scholar 

  • Frondel, C. (1955) Intern. Conf. Peaceful Uses of Atomic Energy, Geneva, United Nations, 6, pp. 568–577.

    Google Scholar 

  • Gadd, G. M. (2004) Geoderma, 122, 109–119.

    CAS  Google Scholar 

  • Galperin, A., Reichert, P., and Radkowsky, A. (1997) Sci. Global Sec., 6, 265–290.

    Google Scholar 

  • Garland, J. A. and Wakeford, R. (2007) Atmos. Environ., 41, 3904–3920.

    CAS  Google Scholar 

  • Gauthier-Lafaye, F., Pourcelot, L., Eikenberg, J., Beer, H., Le Roux, G., Rhikvanov, L. P., Stille, P., Renaud, P., and Mezhibor, A. (2008) J. Environ. Radio-act., 99, 680–693.

    CAS  Google Scholar 

  • Geckeis, H. and Rabung, T. (2008) J. Contam. Hydrol., 102, 187–195.

    CAS  Google Scholar 

  • Ghiorso, A., Thompson, S. G., Higgins, G. H., Seaborg, G. T., Studier, M. H., Fields, P. R., Fried, S. M., Diamond, H., Mech, J. F., Pyle, G. L., Huizenga, J. R., Hirsch, A., Manning, W. M., Browne, C. I., Smith, H. L., and Spence, R. W. (1955) Phys. Rev., 99, 1048–1049.

    CAS  Google Scholar 

  • Gillow, J. B., Dunn, M., Francis, A. J., Lucero, D. A., and Papenguth, H. W. (2000) Radiochim. Acta, 88, 769–774.

    CAS  Google Scholar 

  • Gmelin (1972) Uranium. Main Volume (With an Appendix Covering the Transuranium Elements), Springer, Berlin, Germany, pp. 279.

    Google Scholar 

  • Gmelin (1978) Thorium. Main Volume, Springer, Berlin, Germany, pp. 406.

    Google Scholar 

  • Gmelin (1979) Uranium. Deposits. Suppl. A1, Springer, Berlin, Germany, pp. 280.

    Google Scholar 

  • Gmelin (1981) Uranium. Technology, Use. Suppl. A3, Springer, Berlin, Germany, pp. 297.

    Google Scholar 

  • Gmelin (1988) Thorium. Technology, Uses, Irradiated Fuel, Reprocessing. Suppl. A3, Springer, Berlin, Germany, pp. 215.

    Google Scholar 

  • Gmelin (1990) Thorium. Natural Occurrence, Minerals (excluding Silicates). Suppl. A1a, Springer, Berlin, Germany, pp. 391.

    Google Scholar 

  • Gmelin (1991) Thorium. Minerals (Silicates), Deposits, Mineral Index. Suppl. A 1b, Springer, Berlin, Germany, pp. 440.

    Google Scholar 

  • Goff, G. S., Brodnax, L. F., Cisneros, M. R., Peper, S. M., Field, S. E., Scott, B. L., and Runde, W. (2008) Inorg. Chem., 47, 1984–1990.

    CAS  Google Scholar 

  • Gorby, Y. A. and Lovley, D. R. (1992) Environ. Sci. Technol., 26, 205–207.

    CAS  Google Scholar 

  • Grambow, B., Loida, A., Dressler, P., Geckeis, H., Gago, J., Casas, I., DePablo, J., Gimenez, J., and Torrerro, M. E. (1997) Chemical Reaction of Fabricated and High-Burnup Spent UO2 Fuel with Saline Brine, Report EUR-17111EN, and Wissenschaf-tliche Berichte, Forschungszentrum Karlsruhe, Germany, Report FZK-5702 (1996), European Commission, Brussels, pp. 181.

    Google Scholar 

  • Gray, J., Jones, S. R., and Smith, A. D. (1995) J. Radiol. Protect., 15, 99–131.

    CAS  Google Scholar 

  • Grenthe, I. and Puigdomenech, I. (1997) Modelling in Aquatic Chemistry, OECD/NEA, Paris, France, pp. 724.

    Google Scholar 

  • Grenthe, I., Fuger, J., Konings, R. J. M., Lemire, R. J., Muller, A. B., Nguyen-Trung, C., and Wanner, H. (1992) Chemical Thermodynamics of Uranium. North-Holland Elsevier Science Publishers b.V., Amsterdam, The Netherlands, pp. 716.

    Google Scholar 

  • Grown, G. E. J. and Sturchio, N. C. (2002) Rev. Miner. Geochem., 49, 1–115.

    Google Scholar 

  • Haas, J. R., Dichristina, T. J., and Wade, R. (2001) Chem. Geol., 180, 33–54.

    CAS  Google Scholar 

  • Hakem, N. L., Allen, P. G., and Sylwester, E. R. (2001) J. Radioanal. Nucl. Chem., 250, 47–53.

    CAS  Google Scholar 

  • Hamilton, D. L. (1963) Bull. At. Sci., 19, 36–40.

    Google Scholar 

  • Hamilton, T. F. (2004) Linking legacies of Cold War to arrival of anthropogenic radio-nuclides in the oceans through the 20th century. In Marine Radioactivity (ed. H. D.Livingston), Elsevier, Amsterdam, The Netherlands, pp. 23–78.

    Google Scholar 

  • Hanson, B., McNamara, B., Buck, E., Friese, J., Jenson, E., Krupka, K., and Arey, B.(2005) Radiochim. Acta, 93, 159–168.

    CAS  Google Scholar 

  • Hardy, E. P., Krey, P. W., and Volchek, H. L. (1973) Nature, 241, 444–445.

    CAS  Google Scholar 

  • Harper, R. M., Kantar, C., and Honeyman, B. D. (2008) Radiochim. Acta, 96, 753–762.

    CAS  Google Scholar 

  • Hart, E. J. (1954) Radiat. Res., 1, 53–61.

    CAS  Google Scholar 

  • Hartmann, E., Geckeis, H., Rabung, T., Lutzenkirchen, K., and Fanghänel, T. (2008) Radiochim. Acta, 96, 699–707.

    CAS  Google Scholar 

  • Harvie, C. E., Möller, N., and Weare, J. H. (1984) Geochim. Cosmochim. Acta, 48, 723–751.

    CAS  Google Scholar 

  • Hasan, S. E. (2007) International practice in high-level nuclear waste management. 4. In Development in Environmental Science (eds. D. Sarkar, R. Datta, and R. Hannigan), Elsevier Ltd., Kansas City, MO, pp. 57–78.

    Google Scholar 

  • Haveman, S. A. and Pedersen, K. (2002) J. Contamin. Hydrol., 55, 161–174.

    CAS  Google Scholar 

  • He, L. M., Neu, M. P., and Vanderberg, L. A. (2000) Environ. Sci. Technol., 34, 1694–1701.

    CAS  Google Scholar 

  • Hedrick, J. B. (2004) Thorium. In: Minerals Yearbook Volume I. — Metals and Minerals, U.S. Geological Survey, Washington, D.C., pp. 76.1–76.3.

    Google Scholar 

  • Heylin, M. (1990) Chem. Eng. News, 68, 7–11.

    Google Scholar 

  • Hidaka, H. (2007) J. Nucl. Radiochem. Sci., 8, 99–103.

    CAS  Google Scholar 

  • Hill, F. C. (1999) Rev. Mineral., 38, 635–679.

    Google Scholar 

  • Hirose, K., Aoyama, M., Kim, C. S., Kim, C. K., and Povinec, P. P. (2006) Radioact. Environ., 8, 67–82.

    CAS  Google Scholar 

  • Hirose, K., Igarashi, Y., and Aoyama, M. (2008) Appl. Rad. Isot., 66, 1675–1678.

    CAS  Google Scholar 

  • Hisamatsu, S., and Sakanoue, M. (1978) Health Phys., 35, 301–307.

    CAS  Google Scholar 

  • Ho, C. H. and Miller, N. H. (1985) J. Coll. Interface Sci. 106, 281–288.

    CAS  Google Scholar 

  • Hoffman, D. C., Lawrence, F. O., Mewherter, J. L., and Rourke, F. M. (1971) Nature, 234, 132–134.

    CAS  Google Scholar 

  • Holleman, J. W., Quiggins, P. A., Chilton, B. D., Uziel, M. S., Pfuderer, H. A., and Longmire, J. A. (1987) Worldwide Fallout of Plutonium from Nuclear Weapons Tests, Report ORNL-6315, Oak Ridge National Laboratory, Oak Ridge, TN, pp. 295.

    Google Scholar 

  • Holm, E. (1995) Appl. Radiat. Isot., 46, 1225–1229.

    CAS  Google Scholar 

  • Holm, E. and Persson, B. R. R. (1978) Nature, 273, 289–290.

    CAS  Google Scholar 

  • Hrkal, Z., Gadalia, A., and Rigaudiere, P. (2006) Environ. Geol., 50, 717–723.

    CAS  Google Scholar 

  • Hummel, W., Anderegg, G., Rao, L., Puigdomenech, I., and Tochiyama, O. (2005) Chemical Thermodynamics of Compounds and Complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with Selected Organic Ligands, Elsevier Science B.V., Amsterdam, The Netherlands, pp. 1088.

    Google Scholar 

  • Hvinden, T. (1978) Sivilt Beredskap, 21, 2–4.

    Google Scholar 

  • IAEA (1995) The Principles of Radioactive Waste Management, Report Safety Series 111-F, International Atomic Energy Agency, Vienna, Austria, pp. 25.

    Google Scholar 

  • IAEA (1998) The Radiological Accident in the Reprocessing Plant at Tomsk, ISBN 92-0-103798-8, Report, International Atomic Energy Agency, Vienna, Austria, pp. 77.

    Google Scholar 

  • IAEA (2008) Spent Fuel Reprocessing Options, IAEA-TECDOC-1587, Report ISBN 978-92-0-103808-1, International Atomic Energy Agency, Vienna, Austria, pp. 151.

    Google Scholar 

  • Ibrahim, S. A. and Morris, R. C. (1997) J. Radioanal. Nucl. Chem., 226, 217–220.

    CAS  Google Scholar 

  • Inman, M. (2005) Science, 309, 1179.

    CAS  Google Scholar 

  • IRSN (2008a) Accidental uranium release at the SOCATRI plant : Water restrictions lifted and new, extended monitoring plan implemented. Institut de Radioprotection et de Sûreté Nucléaire, France. http://www.areva-nc.com/scripts/areva-nc/publigen/content/templates/Show.asp?P=7936&L=EN.

    Google Scholar 

  • IRSN (2008b) Incident at the SOCATRI plant on the Tricastin site on July 7, 2008. Institut de Radioprotection et de Sûreté Nucléaire, France. http://www.irsn.eu/en/index.php?position=socatri_tricastin_en.

  • Izrael, Y. A., Stukin, E. D., and Tsaturov, Y. S. (1994) Meteor. Gidrol., 11, 5–14.

    Google Scholar 

  • Janeczek, J. and Ewing, R. C. (1992) J. Nucl. Mater., 190, 157–193.

    CAS  Google Scholar 

  • Jarvis, N. V. and Hancock, R. D. (1991) Inorg. Chim. Acta, 182, 229–232.

    CAS  Google Scholar 

  • Jenne, E. A. (1998) Adsorption of Metals by Geomedia. Variables, Mechanisms, and Model Applications, Academic, San Diego, CA, pp. 583.

    Google Scholar 

  • Jernström, J., Eriksson, M., Simon, R., Tamborini, G., Bildstein, O., Carlos Marquez, R., Kelhl, S. R., Hamilton, T. F., Ranebo, Y., and Betti, M. (2006) Spectrochim. Acta Part B, 61, 971–979.

    Google Scholar 

  • John, S., Ruggiero, C. E., Hersman, L., Tung, C., and Neu, M. P. (2001) Environ. Sci. Technol., 35, 2942–2948.

    CAS  Google Scholar 

  • Johnson, C. A., Kitchen, K. P., and Nelson, N. (2007) Atm. Environ. 41, 3921–3937.

    CAS  Google Scholar 

  • Johnsson, A., Arlinger, J., Pederson, K., Odegaard-Jensen, A., and Albinsson, Y. (2006) Geomicrobiol. J., 23, 621–630.

    CAS  Google Scholar 

  • Jones, S. (2008) J. Environ. Radioact., 99, 1–6.

    CAS  Google Scholar 

  • Jones, S. R. and McDonald, P. (1994) The Inventory of Long Lived Artificial Radio-nuclides in the Irish Sea and Their Radiological Significance, Report XI-5027/94, European Commission, pp. 153–206.

    Google Scholar 

  • Jones, S. R., Williams, S. M., Smith, A. D., Cawse, P. A., and Baker, S. J. (1996) Sci. Total Environ., 183, 213–229.

    CAS  Google Scholar 

  • Kalmykov, S. N., Kriventsov, V. V., Teterin, Y. A., and Novikov, A. P. (2007) C.R. Chim., 10, 1060–1066.

    CAS  Google Scholar 

  • Kalmykov, S. N., Schäfer, T., Claret, F., Perminova, I. V., Petrova (Khasanova), A. B., Shcherbina, N.S., and Teterin, Y. A. (2008) Radiochim. Acta, 96, 685–690.

    CAS  Google Scholar 

  • Kaplan, D. I., Bertsch, P. M., Adriano, D. C., and Orlandini, K. A. (1994) Radiochim. Acta, 66/67, 181–187.

    CAS  Google Scholar 

  • Kaszuba, J. P. and Runde, W. (1999) Environ. Sci. Technol., 33, 4427–4433.

    CAS  Google Scholar 

  • Kaul, A. and Röthemeyer, H. (1997) Nucl. Eng. Des., 176, 83–88.

    CAS  Google Scholar 

  • Keeney-Kennicutt, W. L., and Morse, J. W. (1985) Geochim. Cosmochim. Acta, 49, 2577–2588.

    CAS  Google Scholar 

  • Keiling, C. and Marx, G. (1991) Radiochim. Acta, 287–290.

    Google Scholar 

  • Keiling, C., Esser, V., and Marx, G. (1988) Radiochim. Acta, 44/45, 277–281.

    Google Scholar 

  • Kelley, J. M., Bond, L. A., and Beasley, T. M. (1999) Sci. Total Environ., 237/238, 483–500.

    CAS  Google Scholar 

  • Kelm, M., Pashalidis, I., and Kim, J. I. (1999) Appl. Radiat. Isot., 51, 637–642.

    CAS  Google Scholar 

  • Kersting, A. B., Efurd, D. W., Finnegan, D. L., Rokop, D. J., Smith, D. K., and Thompson, J. L. (1999) Nature, 397, 56–59.

    CAS  Google Scholar 

  • Kessler, J. (1999) Colloid Transport and Deposition in Water-Saturated and Unsaturated Sand and Yucca Mountain Tuff. Center, E. D., Report TR-110546, Pacific Northwestern Laboratory and Washington State University, Tri Cities, pp. 64.

    Google Scholar 

  • Khalturin, V. I., Rautian, T. G., Richards, P. G., and Leith, W. S. (2005) Sci. Global Sec., 13, 1–42.

    Google Scholar 

  • Kikuchi, M., Hidaka, H., and Horie, K. (2008) Phys. Chem. Earth, 33, 978–982.

    Google Scholar 

  • Kim, J. I. (1991) Radiochim. Acta, 52/53, 71–81.

    Google Scholar 

  • Kim, J.-I. (1993) The chemical behavior of transuranium elements and barrier functions in natural aquifer systems. In Scientific Basis for Nuclear Waste Management (Pittsburgh, PA), Materials Research Society Symposium Proceedings, Materials Research Society, pp. 3–21.

    Google Scholar 

  • Kim, J. I., Buckau, G., Li, G. H., Duschner, H., and Psarros, N. (1990) Fresenius J. Anal. Chem., 338, 245–252.

    CAS  Google Scholar 

  • Kim, J. I., Zeh, P., and Delakowitz, B. (1992) Radiochim. Acta, 58/59, 147–154.

    Google Scholar 

  • Kim, J. I., Klenze, R., Wimmer, H., Runde, W., and Hauser, W. (1994) J. Alloys Compd., 213/214, 333–340.

    CAS  Google Scholar 

  • Kim, J. I., Gompper, K., Closs, K. D., Kessler, G., and Faude, D. (1996) J. Nucl. Mater., 238, 1–10.

    CAS  Google Scholar 

  • Knopp, R., Neck, V., and Kim, J. I. (1999) Radiochim. Acta, 86, 101–108.

    CAS  Google Scholar 

  • Koide, M., Bertine, K. K., Chow, T. J., and Goldberg, E. D. (1985) Earth Planet. Sci. Lett., 72, 1–8.

    CAS  Google Scholar 

  • Komarov, E. V. (1959) Zh. Neorg. Khim., 4, 1313–1323.

    CAS  Google Scholar 

  • Komura, K., Sakanoue, M., and Yamamoto, M. (1984) Health Phys., 46, 1213–1219.

    CAS  Google Scholar 

  • Kraus, K. A. and Nelson, F. (1950) J. Am. Chem. Soc., 72, 3901–3906.

    CAS  Google Scholar 

  • Krey, P. W., Hardy, E. P., Pachucky, C., Rourke, F., Coluzza, J., and Benson, W. K.(1976) Mass isotopic composition of global fall-out plutonium in soil. In Transuranium Nuclides in the Environment, International Atomic Energy Agency, Vienna, Austria, pp. 671–678.

    Google Scholar 

  • Krey, P. W., Leifer, R., Benson, W. K., Dietz, L. A., Hendrikson, H. C., and Coluzza, J. L. (1979) Science, 205, 583–585.

    CAS  Google Scholar 

  • Krishnaswami, S. (1999) Thorium. In Encyclopedia of Geochemistry (eds. C. P. Marshall and R. W. Fairbridge), Kluwer, Dordrecht, The Netherlands, pp. 630–635.

    Google Scholar 

  • Kubatko, K.-A. H., Helean, K. B., Navrotsky, A., and Burns, P. C. (2003) Science, 302, 1191–1193.

    Google Scholar 

  • Kuroda, P. K. (1982) The Origin of the Chemical Elements and the Oklo Phenomenon, Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Kuroda, P. K. (1996) J. Radioanal. Nucl. Chem., 203, 591–599.

    CAS  Google Scholar 

  • Kuroda, P. K., and Myers, W. A. (1994) Radiochim. Acta, 64, 167–174.

    CAS  Google Scholar 

  • Lagus, T. (2005) J. Eng. Public Policy, 9. http://www.wise-intern.org.

    Google Scholar 

  • Landa, E. R. (2004) J. Environ. Radioact., 77, 1–27.

    CAS  Google Scholar 

  • Langmuir, D. (1997) Aqueous Environmental Chemistry, Prentice Hall, Upper Saddle River, NJ, pp. 600.

    Google Scholar 

  • Lansard, B., Charmasson, S., Gasco, C., Anton, M. P., Grenz, C., and Arnaud, M.(2007) Sci. Total Environ., 376, 215–227.

    CAS  Google Scholar 

  • Lee, M. H. and Clark, S. B. (2005) Environ. Sci. Technol., 39, 5512–5516.

    CAS  Google Scholar 

  • Lee, M. H. and Lee, C. W. (1999) J. Radioanal. Nucl. Chem., 239, 471–476.

    CAS  Google Scholar 

  • Lemire, R. J. and Garisto, F. (1989) The solubility of U, Np, Pu, Th, and Tc in a geological disposal vault for used nuclear fuel, Report AECL-10009, Pinawa, Atomic Energy of Canada, Ltd., Manitoba, pp. 131.

    Google Scholar 

  • Lemire, R. J., Fuger, J., Nitsche, H., Potter, P., Rand, M. H., Rydberg, J., Spahiu, K., Sullivan, J. C., Ullman, W. J., Vitorge, R., and Wanner, H. (2001) Chemical Thermodynamics of Neptunium and Plutonium, Elsevier Science B.V., Amsterdam, The Netherlands, pp. 845.

    Google Scholar 

  • Lgotin, V. and Makushin, Y. (1998) Groundwater monitoring to assess the influence of injection of liquid radioactive waste on the Tomsk public groundwater supply, Western Siberia, Russia. In Groundwater Contaminants and Their Migration (eds. J. Mather, D. Banks, S. Dumpleton, and M. Fermor), Geological Society, London, pp. 255–264.

    Google Scholar 

  • Lieser, K. H. and Mohlenweg, U. (1988) Radiochim. Acta, 43, 27–35.

    CAS  Google Scholar 

  • Leslie, B. W., Pickett, D. A., and Pearcy, E. C. (1999) Materials Research Society Symposium Proceedings, 556, p. 833–842.

    Google Scholar 

  • Lin, A. (1997) Sci. Total Environ., 198, 13–31.

    CAS  Google Scholar 

  • Lind, O. C., Salbu, B., Janssens, K., Proost, K., and Dahlgaard, H. (2005) J. Environ. Radioact., 81, 21–32.

    CAS  Google Scholar 

  • Lindahl, P., Roos, P., Holm, E., and Dahlgaard, H. (2005) J. Environ. Radioact., 82, 285–301.

    CAS  Google Scholar 

  • Livens, F. R. and Singleton, D. L. (1991) J. Environ. Radioact., 13, 323–329.

    CAS  Google Scholar 

  • Livens, F. R. Morris, K., Parkman, R. and Moyes, L. (1996) Nucl. Energy (British Nuclear Energy Society), 35, 331–337.

    CAS  Google Scholar 

  • Livingston, H. D. (ed.) (2004) Marine Radioactivity, Elsevier, Oxford, UK, pp. 310.

    Google Scholar 

  • Lloyd, J. R. (2003) FEMS Microbiol. Rev., 27, 411–425.

    CAS  Google Scholar 

  • Lloyd, J. R., Yong, P., and Macaskie, L. E. (2000) Environ. Sci. Technol., 34, 1297–1301.

    CAS  Google Scholar 

  • Loiseaux, J.-M., David, S., Heuer, D., and Nuttin, A. (2002) C R Phy., 3, 1023–1034.

    CAS  Google Scholar 

  • LoPresti, V., Conradson, S. D., and Clark, D. L. (2007) J. Alloys Compd., 444/445, 540–543.

    Google Scholar 

  • Loss, R. (2005) Oklo Fossil Reactors. Curtin University of Technology, Australia. http://www.oklo.curtin.edu.au/Where/index.cfm

    Google Scholar 

  • Lovley, D. R., Phillips, E. J. P., Gorby, Y. A., and Landa, E. R. (1991) Nature (London), 350, 413–416.

    CAS  Google Scholar 

  • Lu, N., Reimus, P. W., Parker, G. R., Conca, J. L., and Triay, I. R. (2003) Radiochim. Acta, 91, 713–720.

    CAS  Google Scholar 

  • Lujaniene, G., Motiejunas, S., and Sapolaite, J. (2007) J. Radioanal. Nucl. Chem., 274, 345–353.

    CAS  Google Scholar 

  • Lutze, W. and Ewing, R. C. (1988) Radioactive Waste Forms for the Future, North-Holland, Amsterdam, The Netherlands, pp. 778.

    Google Scholar 

  • Macaskie, L. E., Jeong, B. C., and Tolley, M. R. (1994) FEMS Microbiol. Rev., 14, 351–368.

    CAS  Google Scholar 

  • MacKenzie, A. B., Stewart, A., cook, G. T., Mitchell, L., Ellet, D. J., and Griffiths, C. R. (2006) Sci. Total Environ., 369, 256–272.

    CAS  Google Scholar 

  • Maes, N., Wang, L., Hicks, T., Bennett, D., Warwick, P., Hall, T., Walker, G., and Dierckx, A. (2006) Phys. Chem. Earth, 31, 541–547.

    Google Scholar 

  • Magirius, S., Carnall, W. T., and Kim, J. I. (1985) Radiochim. Acta, 38, 29–32.

    CAS  Google Scholar 

  • Markham, O. D., Puphal, W., and Filer, T. D. (1978) J. Environ. Qual., 7, 421–428.

    Google Scholar 

  • Mathieu, R., Zetterstrom, L., Cuney, M., Gauthier-Lafaye, F., and Hidaka, H. (2001) Chem. Geol., 171, 147–171.

    CAS  Google Scholar 

  • Matonic, J. H., Scott, B. L., and Neu, M. P. (2001) Inorg. Chem., 40, 2638–2639.

    CAS  Google Scholar 

  • Matsunaga, T., Nagao, S., Ueno, T., Takeda, S., Amano, H., and Tkachenko, Y. (2004) Appl. Geochem., 19, 1581–1599.

    CAS  Google Scholar 

  • Mboulou, M. O., Hurtgen, C., Hofkens, K., and Vandecasteele, C. (1998) J. Environ. Radioact., 39, 231–237.

    CAS  Google Scholar 

  • McCarthy, J. and Zachara, J. (1989) Environ. Sci. Technol., 23, 496–502.

    CAS  Google Scholar 

  • McCubbin, D. and Leonard, K. S. (1995) Radiochim. Acta, 69, 97–102.

    CAS  Google Scholar 

  • McDonald, P., Cook, G. T., Baxter, M. S., and Thompson, J. C. (2001) J. Environ. Radioact., 267, 109–123.

    CAS  Google Scholar 

  • McKinley, I. G. and Alexander, W. R. (1993) J. Contam. Hydrol., 13, 249–259.

    CAS  Google Scholar 

  • McKinley, J. P., Zachara, J. M., Wan, J., McCready, D. E., and Heald, S. M. (2007) Vadose Zone J., 6, 1004–1017.

    CAS  Google Scholar 

  • McMahon, C. A., Vintro, L. L., Mitchell, P. I., and Dahlgaard, H. (2000) Appl. Radiat. Isot., 52, 697–703.

    CAS  Google Scholar 

  • Meece, D. and Benninger, L. K. (1993) Geochim. Cosmochim. Acta, 57, 1447–1458.

    CAS  Google Scholar 

  • Meinrath, G. and Kim, J. I. (1991) Radiochim. Acta, 52/53, 29–34.

    Google Scholar 

  • Meinrath, A., Schneider, P., and Meinrath, G. (2003) J. Environ. Radioact., 64, 175–193.

    CAS  Google Scholar 

  • Min, M. Z., Zhai, J. P., and Fang, C. Q. (1998) Chem. Geol., 144, 313–328.

    CAS  Google Scholar 

  • Mitchell, P. I., Vintro, L., Dahlgaard, H., Gasco, C., and Sanchez-Cabeza, J. A. (1997) Sci. Total Environ., 202, 147–153.

    CAS  Google Scholar 

  • Morgenstern, M., Klenze, R., and Kim, J. I. (2000) Radiochim. Acta, 88, 7–16.

    CAS  Google Scholar 

  • Moulin, V. and Moulin, C. (2001) Radiochim. Acta, 89, 773–778.

    CAS  Google Scholar 

  • Moulin, V. and Ouzounian, G. (1992) Appl. Geochem. Suppl., 1, 179–186.

    CAS  Google Scholar 

  • Moulin, V., Robouch, P., Vitorge, P., and Allard, B.(1988) Radiochim. Acta, 44/45, 33–37.

    Google Scholar 

  • Moulin, V., Tits, J., Moulin, C., Decambox, P., Mauchien, P., and Deruty, O. (1992a) Radiochimica Acta, 58–9, 121–128.

    Google Scholar 

  • Moulin, V., Tits, J., and Ouzounian, G. (1992b) Radiochim. Acta, 58/59, 179–190.

    Google Scholar 

  • Moulin, V. M., Moulin, C. M., and Dran, J.-C. (1996) ACS Symp. Ser., 651, 259–271.

    CAS  Google Scholar 

  • Müller, K., Brendler, V., and Foerstendorf, H. (2008) Inorg. Chem., 47, 10127–10134.

    Google Scholar 

  • Muramatsu, Y., Rühm, W., Yoshida, S., Tagami, K., Uchida, S., and Wirth, E. (2000) Environ. Sci. Technol., 34, 2913–2917.

    CAS  Google Scholar 

  • Muramatsu, Y., Hamilton, T., Uchida, S., Tagami, K., Yoshida, S., and Robison, W. L.(2001) Sci. Total Environ., 278, 151–159.

    CAS  Google Scholar 

  • Murphy, W. M. and Grambow, B. (2008) Radiochim. Acta, 96, 563–567.

    CAS  Google Scholar 

  • Myasoedov, B. F. and Drozhko, E. G. (1998) J. Alloys Compd., 271/273, 216–220.

    Google Scholar 

  • Myers, D. (1991) Surfaces, Interfaces, and Colloids. Principles and Applications, VCH Publishers, New York, pp. 433.

    Google Scholar 

  • Nagasaki, S., Tanaka, S., and Suzuki, A. (1997) J. Nucl. Mater., 248, 323–327.

    CAS  Google Scholar 

  • Nagasaki, S., Tanaka, S., Todoriki, M., and Suzuki, A. (1998) J. Alloys Compd., 271–273, 252–256.

    Google Scholar 

  • Nash, K. L., Cleveland, J. M., Sullivan, J. C., and Woods, M. (1986) Inorg. Chem., 25, 1169–1173.

    CAS  Google Scholar 

  • NATO (1998) Defense Nuclear Waste Disposal in Russia: International Perspective, Springer, Dordrecht, The Netherlands, pp. 364.

    Google Scholar 

  • NATO (2005) Use of Humic Substances to Remediate Polluted Environments, Springer, Dordrecht, The Netherlands, pp. 506.

    Google Scholar 

  • Naudet, R. (1975) IAEA Bull., 17, 22–32.

    Google Scholar 

  • Neck, V., Fanghänel, T., Rudolph, G., and Kim, J. I. (1995a) Radiochim. Acta, 69, 39–67.

    CAS  Google Scholar 

  • Neck, V., Runde, W., and Kim, J. I. (1995b) J. Alloys Compd., 225, 295–302.

    CAS  Google Scholar 

  • Neck, V., Kim, J. I., Seidel, B. S., Marquardt, C. M., Dardenne, K., Jensen, M. P., and Hauser, W. (2001) Radiochim. Acta, 89, 439–446.

    CAS  Google Scholar 

  • Neck, V., Altmaier, M., Müller, R., Bauer, A., Fanghänel, T., and Kim, J. I. (2003) Radiochim. Acta, 91, 253–262.

    CAS  Google Scholar 

  • Neck, V., Altmaier, M., and Fanghänel, T. (2007a) C R Chimie, 10, 959–977.

    CAS  Google Scholar 

  • Neck, V., Altmaier, M., Seibert, A., Yun, J. I., Marquardt, C. M., and Fanghänel, T. (2007b) Radiochim. Acta, 95, 193–207.

    CAS  Google Scholar 

  • Neilands, J. B. (1981) Ann. Rev. Biochem., 50, 715–731.

    CAS  Google Scholar 

  • Neu, M. P., Schulze, R. K., Conradson, S. D., Farr, J. D., and Haire, R. G. (1997) Polymeric Plutonium(IV) Hydroxide: Formation, Prevalence, and Structural and Physical Characteristics. In: Plutonium Future-The Science. Los Alamos National Laboratory, Los Alamos, NM, pp. 89–90

    Google Scholar 

  • Neu, M. P., Matonic, J. H., Ruggiero, C. E., Christy, E., and Scott, B. L. (2000) Angew. Chem., Internat. Ed., 39, 1442–1444.

    CAS  Google Scholar 

  • Neu, M. P., Ruggiero, C. E., and Francis, A. J. (2002) Bioinorganic Chemistry of Plutonium and Interactions of Plutonium with Microorganisms and Plants. In Advances in Plutonium Chemistry 1967–2000 (ed. D. Hoffman), American Nuclear Society, Lagrange Park, IL, pp. 169–211.

    Google Scholar 

  • Neu, M. P., Icopini, G. A., and Boukhalfa, H. (2005) Radiochim. Acta, 93, 705–714.

    CAS  Google Scholar 

  • NEWMDB (2008) The IAEA Radioactive Waste Management Database. International Atomic Energy Agency. http://newmdb.iaea.org/datacentre.aspx.

    Google Scholar 

  • Newton, T. W. (2002) Redox Reactions of Plutonium Ions in Aqueous Solutions. In Advances in Plutonium Chemistry 1967–2000 (ed. D. Hoffman), American Nuclear Society, La Grange Park, IL, pp. 24–57.

    Google Scholar 

  • Nitsche, H., Gatti, R. C., Standifer, E. M., Lee, S. C., Muller, A., Prussin, T., Deinhammer, R. S., Maurer, H., Becraft, K., Leung, S., and Carpenter, S. A. (1993) Measured solubilities and speciations of neptunium, plutonium, and americium in a typical groundwater (J-13) from the Yucca Mountain Region, Report LA-12562-MS, Los Alamos National Laboratory, Los Alamos, NM, pp. 127.

    Google Scholar 

  • Norris, S. and Kristensen, H. M. (2006) Bull. At. Sci., July/August, 64–66.

    Google Scholar 

  • Novikov, A. P., Kalmykov, S. N., Utsunomiya, S., Ewing, R. C., Horreard, F., Merkulov, A., Clark, S. B., Tkachev, V. V., and Myasoedov, B. F. (2006) Science, 314, 638–641.

    CAS  Google Scholar 

  • NRC (1996) Nuclear Wastes: Technologies for Separation and Transmutation. National Research Council (U.S.), Committee on Separations Technology and Transmutation Systems, National Academies Press, pp. 571.

    Google Scholar 

  • NRC (2007) Fact Sheet on the Three Mile Island Accident. United States Nuclear Regulatory Commission. http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/3mile-isle.html.

    Google Scholar 

  • O’Boyle, N., Nicholson, G., Piper, T., Taylor, D., Williams, D., and Williams, G. (1997) Appl. Radiat. Isot., 48, 183–200.

    Google Scholar 

  • Oberti, R., Ottolini, L., Camara, F., and DellaVentura, G. (1999) Am. Mineral., 84, 913–921.

    Google Scholar 

  • Odintsov, A. A., Khan, V. E., Krasnov, V. A., and Pazukhin, E. M. (2007) Radiochem., 49, 534–540.

    CAS  Google Scholar 

  • OECD/NEA (2003) Uranium 2003: Resources, Production and Demand, Organisation for Economic Co-operation and Development, Nuclear Energy Agency, Paris, France, pp. 292.

    Google Scholar 

  • OECD/NEA (2005) Uranium 2005. Resources, Production and Demand, Organisation for Economic Co-operation and Development, Nuclear Energy Agency and the International Atomic Energy Agency, pp. 392.

    Google Scholar 

  • OECD/NEA (2008) Uranium 2007: Resources, Production and Demand (Red Book), Organisation for Economic Co-operation and Development, Nuclear Energy Agency and the International Atomic Energy Agency, pp. 422.

    Google Scholar 

  • ORNL (1995) Technical Drawing, ORNL-DWG-95A-534, Oak Ridge National Laboratory.

    Google Scholar 

  • Östhols, E., Bruno, J., and Grenthe, I. (1994) Geochim. Cosmochim. Acta, 58, 613–623.

    Google Scholar 

  • OTA (1991) Long-Lived Legacy: Managing High-Level and Transuranic Waste at the DOE Nuclear Weapons Complex. Office, U. S. G. P., Report OTA-BP-O-83, U.S. Congress, Office of Technology Assessment, Washington, D.C., pp. 99.

    Google Scholar 

  • Oviedo, C. and Rodriguez, J. (2003) Quím. Nova, 26, 901–905.

    CAS  Google Scholar 

  • Pabalan, R. T., Turner, D. R., Bertetti, F. P., and Prikryl, J. D. (1998) Uranium(VI) Sorption onto Selected Mineral Surfaces: Key Geochemical Parameters. In Adsorption of Metals by Geomedia (ed. E. A. Jenne), Academic, San Diego, CA, pp. 100–130.

    Google Scholar 

  • Panak, P., Klenze, R., and Kim, J. I. (1996) Radiochim. Acta, 74, 141–146.

    CAS  Google Scholar 

  • Panak, P. J., Booth, C. H., Caulder, D. L., Bucher, J. J., Shuh, D. K., and Nitsche, H. (2002) Radiochim. Acta, 90, 315–321.

    CAS  Google Scholar 

  • Parrish, R. R. and Noble, S. R. (2003) Zircon U-Th-Pb Geochronology by Isotope Dilution — Thermal Ionization Mass Spectrometry (ID-TIMS). In Zircon. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America (eds. J. Hanchar and P. Hoskin), Mineralogical Society of America, Washington, D.C., pp. 183–213.

    Google Scholar 

  • Pashalidis, I., and Kim, J. I. (1992) Chemisches Verhalten des Sechswertigen Plutoniums in Konzentrierten NaCl-Lösungen under dem Einfluss der Eigenen Alpha-Strahlung, Report RCM01092, Institut für Radiochemie, TU München, Germany, pp. 187.

    Google Scholar 

  • Pashalidis, I., Kim, J. I., Lierse, C., and Sullivan, J. C. (1993) Radiochim. Acta, 60, 99–101.

    CAS  Google Scholar 

  • Pathak, P. N. and Choppin, G. R. (2007) J. Radioanal. Nucl. Chem., 274, 517–523.

    CAS  Google Scholar 

  • Payne, T. E., Edis, R., and Seo, T. (1992) Materials Research Society Symposium Proceedings, 257, pp. 481–488.

    Google Scholar 

  • Payne, T. E., Davis, J. A., and Waite, T. D. (1996) Radiochim. Acta, 74, 239–243.

    CAS  Google Scholar 

  • Pearcy, E. C., Prikryl, J. D., Murphy, W. M., and Leslie, B. W. (1994) Appl. Geochem., 9, 713–732.

    CAS  Google Scholar 

  • Peiper, J. C. and Pitzer, K. S. (1982) J. Chem. Thermodyn., 14, 613.

    CAS  Google Scholar 

  • Perez del Villar, L., De la Cruz, B., Pardillo, J., Pelayo, M., Rivcas, P., and Astudillo, J. (1993) Est. Geol. (Madrid), 49, 187–198.

    CAS  Google Scholar 

  • Perkins, R. W. and Thomas, C. W. (1980) Worldwilde Fallout. In: Transuranic Elements in the Environment Worldwide Fallout (ed. W. C. Hanson), Technical Information Center, Department of Energy, Springfield, MO, pp. 53–82.

    Google Scholar 

  • Perna, L., Jernström, J., Aldave de las Heras, L., Hrnecek, E., de Pablo, J., and Betti, M.(2005) J. Radioanal. Nucl. Chem., 263, 367–373.

    CAS  Google Scholar 

  • Pitzer, K. S. (1991) Activity Coefficients in Electrolyte Solutions, CRC Press, Boca Raton, FL, pp. 560.

    Google Scholar 

  • Pompe, S., Schmeide, K., Bubner, M., Geipel, G., Heise, K. H., Bernhard, G., and Nitsche, H. (2000) Radiochim. Acta, 88, 553–558.

    CAS  Google Scholar 

  • Powell, B. A., Duff, M. C., Kaplan, D. I., Fjeld, R. A., Newville, M., Hunter, D. B., Bertsch, P. M., Coates, J. T., Eng, P., Rivers, M. L., Serkiz, S. M., Sutton, S. R., Triay, I. R., and Vaniman, D. T. (2006) Environ. Sci. Technol., 40, 3508–3514.

    CAS  Google Scholar 

  • Rabideau, S. W., Bradley, M. J., and Cowen, H. D. (1958) Alpha-Particle Oxidation and Reduction in Aqueous Plutonium Solutions, LAMS-2236, Report, Los Alamos Scientific Laboratory, Los Alamos, NM, pp. 28.

    Google Scholar 

  • Rai, D. (1984) Radiochim. Acta, 35, 97–106.

    CAS  Google Scholar 

  • Rai, D., Serne, R. J., and Swanson, J. L. (1980) J. Environ. Qual. 9, 417–420.

    CAS  Google Scholar 

  • Rai, D., Strickert, R. G., Moore, D. A., and Serne, R. J. (1981) Geochim. Cosmochim. Acta, 45, 2257–2265.

    CAS  Google Scholar 

  • Rai, D., Hess, N. J., Felmy, A. R., Moore, D. A., Yui, M., and Vitorge, P. (1999) Radiochim. Acta, 86, 89–99.

    CAS  Google Scholar 

  • Rai, D., Moore, D. A., Felmy, A. R., Choppin, G. R., and Moore, R. C. (2001) Radio-chim. Acta, 89, 491–498.

    CAS  Google Scholar 

  • Rai, D., Gorby, Y., Fredrickson, J., Moore, D., and Yui, M. (2002) J. Soln. Chem., 31, 433–453.

    CAS  Google Scholar 

  • Rao, L. F., Rai, D., Felmy, A. R., Fulton, R. W., and Novak, C. F. (1996) Radiochim. Acta, 75, 141–147.

    CAS  Google Scholar 

  • Rao, L., Zhang, Z., PierLuigi Zanonato, P., Plinio Di Bernardo, P., Bismondo, A., and Clark, S. B. (2004) J. Chem. Soc. Dalton Trans., 18, 2867–2872.

    Google Scholar 

  • Ratledge, C. and Dover, L. G. (2000) Ann. Rev. Microbiol., 54, 881–941.

    CAS  Google Scholar 

  • Reeder, R. J., Nugent, M., Lamble, G. M., Tait, C. D., and Morris, D. E. (2000) Environ. Sci. Technol., 34, 638–644.

    CAS  Google Scholar 

  • Reilly, S. D., Myers, W. K., Stout, S. A., Smith, D. M., Ginder-Vogel, M. A., and Neu, M. P. (2003) Plutonium Futures — The Science: Third Topical Conference on Plutonium and Actinides, AIP Conference Proceedings, 673, p. 375–376.

    CAS  Google Scholar 

  • Reiller, P. (2005) Radiochim. Acta, 93, 43–55.

    CAS  Google Scholar 

  • Reiller, P., Moulin, V., Casanova, F., and Dautel, C. (2002) Appl. Geochem., 17, 1551–1562.

    CAS  Google Scholar 

  • Reilly, S. D. and Neu, M. P. (2006) Inorg. Chem., 45, 1839–1846.

    CAS  Google Scholar 

  • Rekacewicz, P. (2004) Existing radioactive waste disposal and proposal alternatives for storage. UNEP/GRID-Arendal Maps and Graphics Library, Arendal, Norway, http://maps.grida.no/go/graphic/existing-radioactive-waste-disposal-and-proposal-alternatives-for-storage.

    Google Scholar 

  • Rempe, N. T. (2008) Deep Geologic Repositories. Geological Society of America, Boulder, CO, pp. 119.

    Google Scholar 

  • Rey, A., Giménez, J., Casas, I., Clarens, F., and de Pablo, J. (2008) Appl. Geochem., 23, 2249–2255.

    CAS  Google Scholar 

  • Righetto, L., Bidoglio, G., Marcandalli, B., and Bellobono, I. R. (1988) Radiochim. Acta, 44/45, 73–75

    Google Scholar 

  • Robison, W. L. and Noshkin, V. E. (1999) Sci. Total Environ., 237/238, 311–327.

    CAS  Google Scholar 

  • Royer, R. A., Burgos, W. D., Fisher, A. S., Unz, R. F., and Dempsey, B. A. (2002) Environ. Sci. Technol., 36, 1939–1946.

    CAS  Google Scholar 

  • Ruggiero, C. E., Matonic, J. H., Reilly, S. D., and Neu, M. P. (2002) Inorg. Chem., 41, 3593–3595.

    CAS  Google Scholar 

  • Runde, W. (2000) The Chemical Interactions of Actinides in the Environment. In Los Alamos Science (ed. N. G. Cooper), Los Alamos National Laboratory, Los Alamos, NM, pp. 392–415.

    Google Scholar 

  • Runde, W., Neu, M. P., and Clark, D. L. (1996) Geochim. Cosmochim. Acta, 60, 2065–2073.

    CAS  Google Scholar 

  • Runde, W., Conradson, S. D., Efurd, D. W., Lu, N., VanPelt, C. E., and Tait, C. D.(2002a) Appl. Geochem., 17, 837–853.

    CAS  Google Scholar 

  • Runde, W., Neu, M. P., Conradson, S. D., Li, D., Lin, M., Smith, D. M., Van Pelt, C. E., and Xu, Y. (2002b) Geochem. Soil Radionucl., 59, 21–44.

    CAS  Google Scholar 

  • Runde, W., Brodnax, L. F., Goff, G. S., Peper, S. M., Taw, F. L., and Scott, B. L. (2007) Chem. Commun., 1728–1729.

    Google Scholar 

  • Rusin, P. A., Quintana, L., Brainard, J. R., Strietelmeier, B. A., Tait, C. D., Ekberg, S. A., Palmer, P. D., Newton, T. W., and Clark, D. L. (1994) Environ. Sci. Technol., 28, 1686–1690.

    CAS  Google Scholar 

  • Sanchez, A. L., Murray, J. W., and Sibley, T. H. (1985) Geochim. Cosmochim. Acta, 49, 2297–2307.

    CAS  Google Scholar 

  • Sandino, A. and Bruno, J. (1992) Geochim. Cosmochim. Acta, 56, 4135–4145.

    CAS  Google Scholar 

  • Sandino, M. C. A. and Grambow, B. (1994) Radiochim. Acta, 66/67, 37–43.

    CAS  Google Scholar 

  • Schäfer, T., Artinger, R., Dardenne, K., Bauer, A., Schuessler, W., and Kim, J. I. (2003) Environ. Sci. Technol., 37, 1528–1534.

    Google Scholar 

  • Schild, D. and Marquardt, C. M. (2000) Radiochim. Acta, 88, 587–591.

    CAS  Google Scholar 

  • Schneider, M. and Froggatt, A. (2008) The World Nuclear Industry Status Report 2007, Report, Greens-EFA Group in the European Parliament, Brussels, Belgium, pp. 37.

    Google Scholar 

  • Schneider, D. L., and Livingston, H. D. (1984) Nucl. Instrum. Methods Phys. Res., Sect. A, 233, 510–516.

    Google Scholar 

  • Silva, R. J. and Nitsche, H. (2002) Environmental Chemistry. Chapter 6. In Advances in Plutonium Chemistry 1967–2000 (ed. D. C. Hoffman), American Nuclear Society, La Grange Park, IL, pp. 89–117.

    Google Scholar 

  • Silva, R. J., Bidoglio, G., Rand, M. H., Robouch, P. B., Wanner, H., and Puigdomenech, I.(1995) Chemical Thermodynamics of Americium, North-Holland Elsevier Science B.V., Amsterdam, The Netherlands, pp. 374.

    Google Scholar 

  • Silva, M. K., Rucker, D. F., and Chaturvedi, L. (1999) Risk Anal., 19, 1003–1016.

    CAS  Google Scholar 

  • SKB (2002) Analogier, Report, Svensk Kärnbränslehantering AB, Stockholm, Sweden, pp. 7.

    Google Scholar 

  • Smellie, J. (1995) Radwaste Magazine, pp. 18–27.

    Google Scholar 

  • Smith, J. N., Ellis, K. M., Aarkrog, A., Dahlgaard, H., and Holm, E. (1994) J. Environ. Radioact., 25, 135–159.

    CAS  Google Scholar 

  • Smith, A. D., Jones, S. R., Gray, J., and Mitchell, K. A. (2007) J. Radiol. Prot., 27, 115–145.

    CAS  Google Scholar 

  • SNL (1964) SNAP-9A Incident Summary, Sc-TM-64-947, Report, Sandia National Laboratory, Albuquerque, NM, pp. 84.

    Google Scholar 

  • Spinks, J. W. T. and Woods, R. J. (1990) An Introduction to Radiation Chemistry, Wiley, New York, pp. 592.

    Google Scholar 

  • Stammose, D. and Dolo, J. M. (1990) Radiochim. Acta, 51, 189–193.

    CAS  Google Scholar 

  • Sterne, P. A., Gonis, A., and Borovoi, A. A. (1998) Actinides in the Environment, Kluwer, Dordrecht, The Netherlands, pp. 500.

    Google Scholar 

  • Stout, S. A., Reilly, S. D., Smith, D. M., Myers, W. K., Ginder-Vogel, M. A., Skanthakumar, S., Soderholm, L., and Neu, M. P. (2003) Plutonium Futures — The Science: Third Topical Conference on Plutonium and Actinides, AIP Conference Proceedings, 673, pp. 381–383.

    CAS  Google Scholar 

  • Stumm, W. (1992) Chemistry of the Solid–Water Interface. Processes at the Mineral—Water and Particle—Water Interface in Natural Systems,Wiley, New York, NY, pp. 428.

    Google Scholar 

  • Stumm, W. and Morgan, J. J. (1995) Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, Wiley, New York, NY, pp. 1040.

    Google Scholar 

  • Stumpf, S., Stumpf, T., Dardenne, K., Hennig, C., Foerstendorf, H., Klenze, R., and Fanghänel, T. (2006) Environ. Sci. Technol., 40, 3522–3528.

    CAS  Google Scholar 

  • Sturchio, N. C., Antonio, M. R., Soderholm, L., Sutton, S. R., and Brannon, J. C. (1998) Science, 281, 971–973.

    CAS  Google Scholar 

  • Suzuki, Y., Kelly, S. D., Kemner, K. A., and Banfield, J. F. (2003) Appl. Environ. Microbiol., 69, 1337–1346.

    CAS  Google Scholar 

  • Sylwester, E. R., Hudson, E. A., and Allen, P. G. (2000) Geochim. Cosmochim. Acta, 64, 2431–2438.

    CAS  Google Scholar 

  • Tao, Z. Y., Li, W. J., Zhang, F. M., and Han, J. (2006) J. Radioanal. Nucl. Chem., 268, 563–569.

    CAS  Google Scholar 

  • Tavcar, P., Jakopic, R., and Benedik, L. (2005) Acta Chim. Slov., 52, 60–66.

    CAS  Google Scholar 

  • Tcherkezian, V., Galushkin, B., Goryachenkova, T., Kasharov, L., Liul, A., Roshina, I., and Ruminantsev, O. (1995) J. Environ. Radioact., 27, 133–139.

    CAS  Google Scholar 

  • Techer, I., Khoury, H. N., Salameh, E., Rassineux, F., Claude, C., Clauer, N., Pagel, M., Lancelot, J., Hamelin, B., and Jacquot, E. (2006) J. Geochem. Explor., 90, 53–67.

    CAS  Google Scholar 

  • Thomas, P. A. (1999) Health Phys., 78, 614–624.

    Google Scholar 

  • Thompson, H. A., Parks, G. A., and Brown, G. E. (1998) Structure and Composition of UraniumVI Sorption Complexes at the Kaolinite-Water Interface. 2. In Adsorption of Metals by Geomedia (ed. E. A. Jenne), Academic, San Diego, CA, pp. 349–370.

    Google Scholar 

  • Todosow, M., Galperin, A., Herring, S., Kazimi, M., Downar, T., and Morozov, A.(2005) Nucl. Technol. 151, 168–176.

    CAS  Google Scholar 

  • Triay, I. R., Meijer, A., Conca, J. L., Kung, K. S., Rundberg, R. S., Strietelmeier, B. A., Tait, C. D., Clark, D. L., Neu, M. P., and Hobart, D. E. (1997) Summary and Synthesis Report on Radionuclide Retardation for the Yucca Mountain Site Characterization Project, Report LA-13262-MS, Los Alamos National Laboratory, Los Alamos, NM, pp. 279.

    Google Scholar 

  • Turner, D. R. (1995) A uniform approach to surface complexation modeling of radio-nuclide sorption, Report CN-WRA 95-001, Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, pp. 116. www.lsnnet.gov.

  • UNSCEAR (2000a) Exposures to the Public from Man-made Sources of Radiation. In Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation, New York, pp. 158–291.

    Google Scholar 

  • UNSCEAR (2000b) Exposures and Effects of the Chernobyl Accident. In Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation, New York, pp. 453–566.

    Google Scholar 

  • Utsunomiya, S., Ewing, R. C., and Wang, L. M. (2005) Earth Planet. Sci. Lett., 240, 521–528.

    CAS  Google Scholar 

  • Villani, S. (1979) Uranium Enrichment, Springer, New York, pp. 322.

    Google Scholar 

  • Vintro, L., Mitchell, P. I., Condren, O. M., Moran, M., Vives i Batlle, J., and Sanchez-Cabeza, J. A. (1996) Nucl. Instr. Meth. Phys. Res. A, 369, 597–602.

    Google Scholar 

  • Vintro, L., Mitchell, P. I., Condren, O. M., Downes, A. B., Papucci, C., and Delfanti, R. (1999) Sci. Total Environ., 237/238, 77–91.

    CAS  Google Scholar 

  • Vintro, L., Mitchell, P. I., Smith, K. J., Kershaw, P. J., and Livingston, H. D. (2004) Transuranium Nuclides in the World’s Oceans. In Marine Radioactivity (ed. H. D. Livingston), Elsevier, Amsterdam, The Netherlands, pp. 79–108.

    Google Scholar 

  • Vira, J. (2006) Mat. Res. Soc. Symp. Proc., 932, 3–12.

    CAS  Google Scholar 

  • Vitorge, P. (1992) Radiochim. Acta, 58/59, 105–107.

    Google Scholar 

  • Vorobiova, M. I., Degteva, M. O., Burmistrov, D. S., Safronova, N. G., Kozheurov, V. P., Anspaugh, L. R., and Napier, B. A. (1999) Health Phys., 76, 605–618.

    CAS  Google Scholar 

  • Waber, N., Schorscher, H. D., and Peters, T. (1991) Mineralogy, petrology, and geochemistry of the Pocos de Caldas analogue study sites, Minas Gerais, Brazil. I. Osamu Utsumi uranium mine, Report SKB 90-11, Mineral.-Petrogr. Institute, Bern, Switzerland, pp. 514.

    Google Scholar 

  • Waite, T. D., Davis, J. A., Payne, T. E., Waychunas, G. A., and Xu, N. (1994) Geochim. Cosmochim. Acta, 58, 5465–5478.

    CAS  Google Scholar 

  • Wanty, R. B. (1999) Eh–pH Relations. In Encyclopedia of Geochemistry (eds. R. W. Fairbridge and M. R. Rampino), Kluwer, Dordrecht, The Netherlands, pp. 183–186.

    Google Scholar 

  • Warnecke, E., Hollmann, A., Tittel, G., and Brennecke, P. (1994) Gorleben Radionu-clide Migration Experiments: More Than 10 Years of Experience. In Proceedings of the Fourth International Conference on the Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere, Charleston, SC, 1993, Oldenbourg Verlag, Munich, pp. 821–827.

    Google Scholar 

  • Warwick, P. E., Croudace, I. W., and Carpenter, R. (1996) Appl. Radiat. Isot., 47, 627.

    CAS  Google Scholar 

  • Waters, R. D., Compton, K. L., Novikov, V., and Parker, F. L. (1999) Releases of Radionuclides to Surface Waters at Krasnoyarsk-26 and Tomsk-7, Report RR-99-3, International Institute for Applied Systems Analysis, Laxenberg, Austria, pp. 118.

    Google Scholar 

  • Weinbauer, M. G., Beckmann, C., and Hofle, M. G. (1998) Appl. Environ. Microbiol., 64, 5000–5003.

    CAS  Google Scholar 

  • Wellmann, D. M., Pierce, E. M., Richards, E. L., Fruchter, J. S., and Vermeul, V. R. (2008) WM2008, Phoenix, AZ, Conference Proceedings, pp. 1–15.

    Google Scholar 

  • Westlén, D. (2007) Progr. Nucl. Energy, 49, 597–605.

    Google Scholar 

  • White, D. L., Durbin, P. W., Jeung, N., and Raymond, K. N. (1988) J. Med. Chem., 31, 8–11.

    Google Scholar 

  • Wilhelm, R. G. (2004) Understanding Variation in Partition Coefficient, K d Values. Volume III: Review of Geochemistry and Available K d Values for Americium, Arsenic, Curium, Iodine, Neptunium, Radium and Technetium, Report EPA 402-R-04-002188 United States Environmental Protection Agency, Office of Air and Radiation, Washington, D.C., pp. 188.

    Google Scholar 

  • Witherspoon, P. A., and Bodvarsson, G. S. (2001) Geological Challenges in Radioactive Waste Isolation. Third Worldwide Review, Lawrence Berkeley National Laboratory, Berkeley, CA, pp. 335.

    Google Scholar 

  • WNA (2008a) Nuclear Power in Sweden. World Nuclear Association. http://www.world-nuclear.org/info/inf42.html.

  • WNA (2008b) World Uranium Mining. World Nuclear Association. http://www.world-nuclear.org/info/inf23.html, http://www.world-nuclear.org/info/inf23.html.

  • WNA (2009) World Nuclear Power Reactors 2007–08 and Uranium Requirements. World Nuclear Association. http://www.world-nuclear.org/info/reactors.html, http://www.world-nuclear.org/info/reactors.html.

  • Wronkiewicz, D. J., and Buck, E. C. (1999) Uranium Mineralogy and the Geologic Disposal of Spent Nuclear Fuel. In Uranium: Mineralogy, Geochemistry, and the Environment (ed. P. H. Ribbe), Mineralogical Society of America, Washington, D.C., pp. 475–494.

    Google Scholar 

  • Wronkiewicz, D. J., Bates, J. K., Gerding, T. J., Veleckis, E., and Tani, B. S. (1992) J. Nucl. Mater., 190, 107–127.

    CAS  Google Scholar 

  • Yamaguchi, T., Sakamoto, Y., and Ohnuki, T. (1994) Radiochim. Acta, 66/67, 9–14.

    CAS  Google Scholar 

  • Yamamoto, M., Ishiguro, T., Tazaki, K., Komura, K., and Ueno, K. (1996) Health Phys., 70, 744–748.

    CAS  Google Scholar 

  • Yanase, N., Sato, T., Iida, Y., and Sekine, K. (1998) Radiochim. Acta, 82, 319–325.

    CAS  Google Scholar 

  • Yong, P., and Macaskie, L. E. (1998) J. Chem. Technol. Biotechnol., 71, 15–26.

    CAS  Google Scholar 

  • Yui, M., Shibutani, T., Shibutani, S., Rai, D., and Ochs, M. (2001) A plutonium geochemical database for performance analysis of high-level radioactive waste repositories. In Plutonium in the Environment (ed. A. Kudo), Elsevier Science, Amsterdam, The Netherlands, pp. 159–174.

    Google Scholar 

  • Zeh, P., Czerwinski, K. R., and Kim, J. I. (1997) Radiochim. Acta, 76, 37–44.

    CAS  Google Scholar 

  • Zeh, P., Kim, J. I., Marquardt, C. M., and Artinger, R. (1999) Radiochim. Acta, 87, 23–28.

    CAS  Google Scholar 

  • Zetterström, L. (2000) Oklo: A Review and Critical Evaluation of Literature, Technical Report TR-00-17, Report, SKB, Stockholm, Sweden, pp. 37.

    Google Scholar 

  • Zhao, D. and Ewing, R. C. (2000) Radiochim. Acta, 88, 739–749.

    CAS  Google Scholar 

  • Zhu, J. L., and Chan, C. Y. (1989) IAEA Bulletin, 31, 5–13.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Runde, W., Neu, M.P. (2010). Actinides in the Geosphere. In: Morss, L.R., Edelstein, N.M., Fuger, J. (eds) The Chemistry of the Actinide and Transactinide Elements. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0211-0_32

Download citation

Publish with us

Policies and ethics