Advertisement

Trace Analysis of Actinides in Geological, Environmental, and Biological Matrices

  • Stephen F. Wolf

Abstract

Actinide elements are ubiquitous in nature. Uranium and thorium are present in the Earth’s crust with average concentrations of 1–10 μg g-1, making them more abundant than Ag, Sb, Cd, or Hg. While U and Th can even be found as major or minor mineral constituents in a variety of geochemical environments, typically they are highly dispersed and present only at trace or ultra–trace concentrations in most natural materials. Because 238U, 235U, and 232Th are the parents of the three naturally occurring non–extinct radioactive decay chains, they are always accompanied by lower concentrations of their radioactive progeny, many of which are also actinides (Table 30.1).

Keywords

Chemical Separation Inductively Couple Plasma Mass Spectrometer Gamma Spectrometry Alpha Spectrometry Minimum Detection Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldstadt, J. H., Kuo, J. M., Smith, L. L., and Erickson, M. D. (1996) Anal. Chim. Acta, 319, 135–43.Google Scholar
  2. Alvarado, J. S., Neal, T. J., Smith, L. L., and Erickson, M. D. (1996) Anal. Chim. Acta, 322, 11–20.Google Scholar
  3. Alvarez, L. W. and Cornog, R. (1939) Phys. Rev., 56, 379.Google Scholar
  4. Ambartzumian, R. V. and Letokhov, V. S. (1972) Appl. Optics, 11, 354–8.Google Scholar
  5. American Society for Testing and Materials (1990) ASTM D3972-90, Annual Book of ASTM Standards, vol 11.02.Google Scholar
  6. American Society for Testing and Materials (1991a) ASTM D4309-91, Annual Book of ASTM Standards, vol 11.01.Google Scholar
  7. American Society for Testing and Materials (1991b) ASTM D2907-91, Annual Book of ASTM Standards, vol 11.02.Google Scholar
  8. American Society for Testing and Materials (1991c) ASTM D3649-91, Annual Book of ASTM Standards, vol 11.02.Google Scholar
  9. American Society for Testing and Materials (1991d) ASTM D5174-91, Annual Book of ASTM Standards, vol 11.02Google Scholar
  10. American Society for Testing and Materials (1995a) ASTM D1971-95, Annual Book of ASTM Standards, vol 11.01.Google Scholar
  11. American Society for Testing and Materials (1995b) ASTM D3084-95, Annual Book of ASTM Standards, vol 11.02.Google Scholar
  12. American Society for Testing and Materials (1995c) ASTM C1310-95, Annual Book of ASTM Standards, vol 12.01.Google Scholar
  13. American Society for Testing and Materials (1996a) ASTM D5673-96, Annual Book of ASTM Standards, vol 11.02.Google Scholar
  14. American Society for Testing and Materials (1996b) ASTM C1342-96, Annual Book of ASTM Standards, vol. 12.01.Google Scholar
  15. American Society for Testing and Materials (1996c) ASTM C1345-96, Annual Book of ASTM Standards, vol 12.01.Google Scholar
  16. American Society for Testing and Materials (1997a) ASTM D3865-97, Annual Book of ASTM Standards, vol 11.02.Google Scholar
  17. American Society for Testing and Materials (1997b) ASTM C1205-97, Annual Book of ASTM Standards, vol 12.01.Google Scholar
  18. American Society for Testing and Materials (1998) ASTM D6239-98, Annual Book of ASTM Standards, vol 11.02.Google Scholar
  19. American Society for Testing and Materials (2000a) ASTM C1001-00, Annual Book of ASTM Standards, vol 12.01.Google Scholar
  20. American Society for Testing and Materials (2000b) ASTM D1284-00, Annual Book of ASTM Standards, vol 12.01.Google Scholar
  21. Anders, E., Wolf, R., Morgan, J. Ebihara, W., M., Woodrow, A. B., Janssens, M.-J., and Hertogen, J. (1988) NAS-NS-3117, Office of Scientific and Technical Information, USDOE.Google Scholar
  22. Arden, J. W. and Gale, N. H. (1974) Anal. Chem., 46, 687–91.Google Scholar
  23. Aston, F. W. (1931) Nature, 128, 725.Google Scholar
  24. Attrep, M. Jr, Roensch, F. R., Aguilar, R., and Fabryka-Martin, J. (1992) Radiochim. Acta, 57, 15–20.Google Scholar
  25. Barnes, C. E. and Cochran, J. K. (1990) Earth Planet. Sci. Lett., 97, 94–101.Google Scholar
  26. Beasley, T. M., Kelley, J. M., Orlandini, K. A., Bond, L. A., Aarkrog, A., Trapeznikov, A. P., and Pozolotina, V. N. (1998) J. Environ. Radioact., 2, 215–30.Google Scholar
  27. Becker, J. S. and Dietze, H.-J. (1998) Spectrochim. Acta, 52B, 177–87.Google Scholar
  28. Bertrand, P. A. and Choppin, G. R. (1982) Radiochim. Acta, 31, 135–7.Google Scholar
  29. Bondietti, E. A. and Trabalka, J. R. (1980) Radiochem. Radioanal. Lett., 42, 169–76.Google Scholar
  30. Bourdon, B., Joron, J.-L., and Allegre, C. J. (1999) Chem. Geol., 157, 147–51.Google Scholar
  31. Bowen, V. T., Noskin, V. E., Livingston, H. D., and Volchok, H. L. (1980) Earth Planet Sci. Lett., 49, 411–34.Google Scholar
  32. Brenner, I. B., Liezers, M., Godfrey, J., Nelms, S., and Cantle, J. (1998) Spectrochim. Acta, 53, 1087–107.Google Scholar
  33. Burnett, W. C. and Yeh, C.-C. (1995) Radioact. Radiochem., 6, 22–6.Google Scholar
  34. Burney, G. A. and Harbour R. M. (1974) Radiochemistry of Neptunium, NAS-NS-3060, Technical Information Center, USAEC.Google Scholar
  35. Burns, P. A., Cooper, M. B., Lokan, K. H., Wilks, M. J., and Williams, G. A. (1995) Appl. Radiat. Isot., 46, 1099–107.Google Scholar
  36. Byrne, A. R. (1986) J. Environ. Radioact., 4, 133–44.Google Scholar
  37. Chen, J. H. and Wasserburg, G. J. (1981) Anal. Chem., 53, 2060–7.Google Scholar
  38. Chen, J. H., Edwards, R. L., and Wasserburg, G. J. (1992) in Uranium Series Disequilibrium Applications to Earth, Marine, and Environmental Sciences (eds. M. Ivanovich and R. S. Harmon), Clarendon Press, Oxford, pp. 174–206.Google Scholar
  39. Cheng, H., Edwards, R. L., Hoff, J., Gallup, C. D., Richards, D. A., and Asmerom, Y. (2000) Chem. Geol., 169, 17–33.Google Scholar
  40. Chiarizia, R., Horwitz, E. P., Alexandratos, S. D., and Gula, M. J. (1997) Sep. Sci. Technol., 32, 1–35.Google Scholar
  41. Coleman, G. H. (1965) The Radiochemistry of Plutonium, NAS-NS-3058, Technical Information Center, USAEC.Google Scholar
  42. Cooper, E. L., Haas, M. K., and Mattie, J. F. (1995) Appl. Radiat. Isot., 46, 1159–90.Google Scholar
  43. Cooper, L. W., Kelly, J. M., Bond, L. A., Orlandini, K. A., and Grebmeier, J. M. (2000) Mar. Chem., 69, 253–76.Google Scholar
  44. Crain, J. S. and Mikesell, B. I. (1992) Appl. Spectrosc., 46, 1498–502.Google Scholar
  45. Crain, J. S., Smith, L. L., Yaeger, J. S., and Alvarado, J. A. (1995) J. Radioanal. Nucl. Chem., 194, 133–9.Google Scholar
  46. Croudace, I., Warwick, P., Taylor, R., and Dee, S. (1998) Anal. Chim. Acta, 371, 217–25.Google Scholar
  47. Currie, L. A. (1968) Anal. Chem., 40, 586–93.Google Scholar
  48. Curtis, D. B., Fabbryka-Martin, J., Dixon, P., and Cramer, J. (1999) Geochim. Cosmochim. Acta, 63, 275–85.Google Scholar
  49. Dean, J. A. (1995) Analytical Chemistry Handbook, McGraw-Hill, New York.Google Scholar
  50. Dixon, P., Curtis, D. B., Musgrave, J., Roensch, F., Roach, J., and Rokop, D. (1997) Anal. Chem., 69, 1692–9.Google Scholar
  51. Dolezal, J., Povondra, P., and Sulcek, Z. (1968) Decomposition Techniques in Inorganic Analysis, London Iliffe Books, London.Google Scholar
  52. Donohue, D. L. and Young, J. P. (1983) Anal. Chem., 55, 378–9.Google Scholar
  53. Donohue, D. L., Smith, D. H., Young, J. P., McKown, H. S., and Pritchard, C. A. (1984) Anal. Chem., 56, 379–81.Google Scholar
  54. Edmonds, H. N., Moran, S. M., Hoff, J. A., Smith, J. N., and Edwards, R. L. (1998) Science, 280, 405–7.Google Scholar
  55. Efurd, D. W., Drake, J., Roensch, F. R., Cappis, J. H., and Perrin, R. E. (1986) Int. J. Mass Spectrom. Ion Phys., 74, 309–15.Google Scholar
  56. Egorov, O., Grate, J. W., and Ruzicka, J. (1998) J. Radioanal. Nucl. Chem., 234, 231–5.Google Scholar
  57. Eggins, S. M., Woodhead, J. D., Kinsley, L. P. J., Mortimer, G. E., Sylvester, P., McCulloch, M. T., Hergt, J. M., and Handler, M. R. (1997) Chem. Geol., 134, 311–26.Google Scholar
  58. Ehman, W. D. and Vance, D. E. (1991) Radiochemistry and Nuclear Methods of Analysis, Wiley Interscience, New York.Google Scholar
  59. Eikenberg, J., Zumsteg, I., Rüthi, M., Bajo, S., Fern, M. J., and Passo, C. J. (1999a) Radioact. Radiochem., 10, 19–30.Google Scholar
  60. Eikenberg, J., Zumsteg, M., Bajo, S., Vezzu, G., and Fern, M. J. (1999b) Radioact. Radiochem., 10, 31–40.Google Scholar
  61. Erdmann, N., Nunnemann, M., Eberhardt, K., Herrmann, G., Huber, G., Köhler, S., Kratz, J. V., Passler, G., Peterson, J. R., Trautman, N., and Waldek, A. (1998) J. Alloys Compds, 271/3, 837–40.Google Scholar
  62. Erdtmann, G. (1976) Neutron Activation Tables, vol. 6, Verlag Chemie, Weinheim.Google Scholar
  63. Fassett, J. D., Moore, L. J., Travis, J. C., and Lytle, F. E. (1983) Anal. Chem., 55, 765–70.Google Scholar
  64. Fearey, B. L., Tissue, B. M., Olivares, J. A., Loge, G. W., Murrell, M. T., and Miller, C. M. (1992) LA-UR-92-1841.Google Scholar
  65. Fifield, L. K., di Cresswell, R. G., Tada, M. L., Ophel, T. R., Day, J. P., Clacher, A. P., King, S. J., and Priest, N. D. (1996) Nucl. Instrum. Methods, B 117, 295–303.Google Scholar
  66. Filby, R. H. (1975) NIOSH Technical Information, U.S. Department of Health, Education, and Welfare, U.S. Government Printing Office, Washington DC.Google Scholar
  67. Filipy, R. E., Khokhryakov, V. F., Suslova, K. G., Romanov, S. A., Stuit, D. B., Aladova, E. E., and Kathren, R. L. (1998) J. Radioanal. Nucl. Chem., 234, 171–4.Google Scholar
  68. Firestone, R. B. and Shirley, V. A. (1996) Table of Isotopes, 8th edn, John Wiley, New York.Google Scholar
  69. Foti, S. C. and Freiling, E. C. (1964) Talanta, 11, 385–92.Google Scholar
  70. Friedlander, G., Kennedy, J. W., Macias, E. S., and Miller, J. M. (1981) Nuclear Chemistry, 3rd edn, Wiley Interscience, New York.Google Scholar
  71. Fuller, R. K., O’Conner, J. D., Lukens, H. R., and Fleishman, D. (1965) in Modern Trends in Activation Analysis, National Bureau of Standards Special Publication 312.Google Scholar
  72. Ganz, M., Barth, H., Fuest, M., Molzahn, D., and Brandt, R. (1991) Radiochim. Acta, 52/53, 403–4.Google Scholar
  73. Ghods-Esphahani, A., Veselsky, J. C., Zeoeda, E., and Peiris, M. A. R. K. (1990) Radiochim. Acta, 50, 155–8.Google Scholar
  74. Gindler, G. E. (1962) Radiochemistry of Uranium, NAS-NS-3050, Technical Information Center, USAEC.Google Scholar
  75. Glover, S. E., Filby, R. H., and Clark, S. B. (1998a) Radioanal. Nucl. Chem., 234, 65–70.Google Scholar
  76. Glover, S. E., Filby, R. H., and Clark, S. B. (1998b) J. Radioanal. Nucl. Chem., 234, 201–8.Google Scholar
  77. Glover, S. E., Filby, R. H., Clark, S. B., and Grytdal, S. P. (1998c) J. Radioanal. Nucl. Chem., 234, 213–18.Google Scholar
  78. Green, L. W. and Sopchyshyn, F. C. (1989) Int. J. Mass Spectrom. Ion Processes, 89, 81–95.Google Scholar
  79. Gu, Z. Y., Lal, D., Liu, T. S., Guo, Z. T., Southon, J., and Caffee, M. W. (1997) Geochim. Cosmochim. Acta, 61, 5221–31.Google Scholar
  80. Guest, R. J. and Zimmerman, J. B. (1955) Anal. Chem., 27, 931–6.Google Scholar
  81. Gunnick, R. (1991) MGA: A Gamma-ray Spectrum Analysis Code for Determining Plutonium Isotopic Abundances, vol. 1, Report UCRL-LR-103220.Google Scholar
  82. Halliday, A. N., Lee, D.-C., Christensen, J. N., Rehkämper, M., Yi, W., Luo, X., Hall, C. M., Ballentine, C. J., Pettke, T., and Stirling, C. (1998) Geochim. Cosmochim. Acta, 62, 919–40.Google Scholar
  83. Harbottle, G. and Cumming, J. B. (1994) Nucl. Instrum. Methods, A353, 503–7.Google Scholar
  84. Harbottle, G. and Evans, C. V. (1997) Radioact. Radiochem., 8, 38–46.Google Scholar
  85. Hoffman, D. C., Lawrence, F. O., Mewherter, J. L., and Rourke, F. M. (1971) Nature, 234, 132–4.Google Scholar
  86. Holm, E. and Persson, B. R. R. (1978) Nature, 273, 289–90.Google Scholar
  87. Horwitz, E. P., Dietz, M. L., Nelson, D. M., La Rosa, J. J., and Fairman, W. D. (1990) Anal. Chim. Acta, 238, 263–71.Google Scholar
  88. Horwitz, E. P., Chiarizia, R., Dietz, M. L., Diamond, H., Essling, A. M., and Graczyk, D. (1992) Anal. Chim. Acta, 266, 25–37.Google Scholar
  89. Horwitz, E. P., Chiarizia, R., Diamond, H., Gatrone, R. C., Alexandratos, S. D., Trochimczuk, A. Q., and Crick, E. W. (1993a) Solvent Extr. Ion Exch., 11, 943–66.Google Scholar
  90. Horwitz, E. P., Dietz, M. L., Chiarizia, R., Diamond, H., and Nelson, D. M. (1993b) Anal. Chim. Acta, 281, 361–72.Google Scholar
  91. Horwitz, E. P., Dietz, M. L., Chiarizia, R., Diamond, H., Maxwell, S. L., and Nelson, M. R. (1995) Anal. Chim. Acta, 310, 63–8.Google Scholar
  92. Hurst, G. S. (1987) Phil. Trans. R. Soc. Lond., A323, 155–70.Google Scholar
  93. Hyde, E. K. (1960) The Radiochemistry of Thorium, NAS-NS-3004, Technical Information Center, USAEC.Google Scholar
  94. Inoue, Y. and Tochiyama, O. J. (1977) Inorg. Nucl. Chem., 39, 1443–7.Google Scholar
  95. Ivanovich, M. and Murray A. (1992) in Uranium Series Disequilibrium Applications to Earth, Marine, and Environmental Sciences (eds. M. Ivanovich and R. S. Harmon), Clarendon Press, Oxford, pp. 127–73.Google Scholar
  96. Ivanovich, M., Latham, A. G., and Ku, T.-L. (1992) in Uranium Series Disequilibrium Applications to Earth, Marine, and Environmental Sciences (eds. M. Ivanovich and R. S. Harmon), Clarendon Press, Oxford, pp. 62–94.Google Scholar
  97. Jarvis, K. E., Gray, A. L., and Houk, R. S. (1991) Handbook of Inductively Coupled Plasma Mass Spectrometry, Chapman and Hall, New York.Google Scholar
  98. Jerome, S. M., Smith, D., Woods, M. J., and Woods, S. A. (1995) Appl. Radiat. Isot., 46, 1145–50.Google Scholar
  99. Joannon, S., Telouk, P., and Pin, C. (1997) Spectrochim. Acta, 52, 1783–9.Google Scholar
  100. Joron, J. L., Treuil, M., and Raimbault, L. (1997)Radioanal. Nucl. Chem.,216, 229–35.Google Scholar
  101. Kaplan, D. I., Bertsch, P. M., Adriano, D. C., and Orlandini, K. A. (1994)Radiochim. Acta,66/67, 181–7.Google Scholar
  102. Kersting, A. B., Efurd, D. W., Finnigan, D. L., Rokop, D. J., Smith, D. K., and Thompson, J. L. (1999)Nature,397, 56–9.Google Scholar
  103. Kilius, L. R., Baba, N., Garwan, M. A., Litherland, A. E., Nadeau, M.-J., Rucklidge, J. C., Wilson, G. C., and Zhao, X.-L. (1990)Nucl. Instrum. Methods,B52, 337–65.Google Scholar
  104. Kim, G., Burnett, W. C., and Horwitz, E. P. (2000)Anal. Chem.,72, 4882–7.Google Scholar
  105. Kim, J. I. (1986) inHandbook on the Physics and Chemistry of the Actinides(eds. A. J. Freeman and C. Keller), Elsevier Science, Amsterdam, pp. 413–55.Google Scholar
  106. Kingston, H. M. and Haswell S. J. (eds.) (1997)Microwave-Enhanced Chemistry Fundamentals, Sample Preparation, and Applications, American Chemical Society, Washington DC.Google Scholar
  107. Kirby, H. W. (1959)The Radiochemistry of Protactinium, NAS-NS-3016, Technical Information Center, USAEC.Google Scholar
  108. Kressin, I. K. (1977)Anal. Chem.,49, 842–5.Google Scholar
  109. Krönert, U., Bonn, J., Kluge, H.-J., Ruster, W., Wallmeroth, K., Peuser, P., and Trautmann, N. (1985)Appl. Phys.,38B, 65–70.Google Scholar
  110. Kuroda, P. K. (1960)Nature,187, 36–8.Google Scholar
  111. Lagergren, C. R. and Stoffels, J. J. (1970)Int. J. Mass Spectrom. Ion Phys.,3, 429–38.Google Scholar
  112. Lally, A. E. (1992) inUranium Series Disequilibrium Applications to Earth, Marine, and Environmental Sciences(eds. M. Ivanovich and R. S. Harmon), Clarendon Press, Oxford, pp. 94–126.Google Scholar
  113. Lamble, K. J. and Hill, S. J. (1998)Analyst,123, 103R–33RGoogle Scholar
  114. Levine, C. A. and Seaborg, G. T. (1951)J. Am. Chem. Soc.,73, 3278–83.Google Scholar
  115. Lipschutz, M. E., Wolf, S. F., Hanchar, J. M., and Culp, F. B. (2001)Anal. Chem.,73, 2687–700.Google Scholar
  116. Litherland, A. E. (1987)Phil. Trans. R. Soc. Lond.,A323, 5–21.Google Scholar
  117. Longerich, H. P., Jackson, S. E., and Günther, D. (1996)J. Anal. At. Spectrom.,11, 899–904.Google Scholar
  118. Love, S. F., Filby, R. H., Glover, S. E., Kathren, R. L., and Stuit, D. B. (1998)Radioanal. Nucl. Chem.,234, 189–93.Google Scholar
  119. Magnusson, L. B. and La Chapelle, T. J. (1948)J. Am. Chem. Soc.,70, 3534–8.Google Scholar
  120. Mair, M. A. and Savage, D. J. (1986) UK Atomic Energy Agency Report ND-R-134.Google Scholar
  121. Marley, N. A., Gaffney, J. S., Orlandini, K. A., and Dugue, C. P. (1991)Hydrol. Process.,5, 291–5.Google Scholar
  122. Maxwell, S. L. (1997)Radioact. Radiochem.,8, 36–44.Google Scholar
  123. Maxwell, S. L. and Fauth, D. J. (2000)Radioact. Radiochem.,11, 28–34.Google Scholar
  124. McOrist, G. D. and Smallwood, A. (1997)Radioanal. Nucl. Chem.,223, 9–15.Google Scholar
  125. Mitchell, P. I., Holm, E., Leon Vintro, L., and Condren, O. M. (1998)Appl. Radiat. Isot.,49, 1283–8.Google Scholar
  126. Moens, L. and Jakubowski, N. (1998)Anal. Chem.,70, 251A–6AGoogle Scholar
  127. Montaser, A., Minnich, M. G., McLean, J. A., Liu, H., Caruso, J., McLeod, C. W. (1998) inInductively Coupled Plasma Mass Spectrometry2nd edn (ed. A. Montaser), VCH Publishers, New York.Google Scholar
  128. Moody, C. A., Glover, S. E., Stuit, D. B., and Filby, R. H. (1998)J. Radioanal. Nucl. Chem.,234, 183–7.Google Scholar
  129. Moorthy, A. R., Schopfer, C. J., and Benerjee, S. (1988)Anal. Chem.,60, 857A–60AGoogle Scholar
  130. Murray, C. N., Kautsky, H., and Eicke, H. F. (1979)Nature,279, 628–9.Google Scholar
  131. Nelson, D. M. and Lovett, M. B. (1978a)Nature,276, 599–601.Google Scholar
  132. Nelson, D. M. and Lovett, M. B. (1978b) inImpacts of Radionuclide Release into the Marine Environment, IAEA-SM-248/145, Vienna, Austria, pp. 105–18.Google Scholar
  133. Nelson, D. M., Carey, A. E., and Bowen, V. T. (1984)Earth Planet Sci. Lett.,68, 422–30.Google Scholar
  134. Nier, A. O. (1939)Phys. Rev.,55, 150–3.Google Scholar
  135. Nitsche, H., Gatti, R. C., and Lee, Sh. C. (1992)J. Radioanal. Nucl. Chem.,161, 401–11.Google Scholar
  136. Novikov, Y. P., Myasoedov, B. V., and Margorian, M. N. (1972)Radiochem. Radioanal. Lett.,10, 11–17.Google Scholar
  137. Noyce, J. R. (1981) National Bureau of Standards Report TN 1137.Google Scholar
  138. Orlandini, K. A., Penrose, W. R., and Nelson, D. M. (1986)Mar. Chem.,18, 49–57.Google Scholar
  139. Palacz, Z. A., Freedman, P. A., and Walder, A. J. (1992)Chem. Geol.,101, 157–65.Google Scholar
  140. Parry, S. J. (1991) in Activation Spectrometry in Chemical Analysis (eds. J. D. Winefordner and I. M. Kolthoff), John Wiley, New York, pp. 206–7.Google Scholar
  141. Penneman, R. A. and Keenan T. K. (1960)The Radiochemistry of Americium and Curium, NAS-NS-3006, Technical Information Center, USAEC.Google Scholar
  142. Peppard, D. F., Mason, G. W., Gray, P. R., and Mech, J. F. (1952)J. Am. Chem. Soc.,70, 6081–7.Google Scholar
  143. Perrin, R. E., Knobeloch, G. W., Armijo, V. M., and Efurd, D. W. (1985)Int. J. Mass Spectrom. Ion Phys.,64, 17–24.Google Scholar
  144. Peuser, P., Herrmann, G., Rimke, H., Sattelberger, P., Trautmann, N., Ruster, W., Ames, F., Kluge, H.-J. Kroenert, U., and Otten, E.-W. (1985)Appl. Phys.,38B, 249–53.Google Scholar
  145. Picer, M. and Strohal, P. (1968) Anal. Chim. Acta,40, 131–6.Google Scholar
  146. Pickett, D. A., Murrell, M. T., and Williams, R. W. (1994)Anal. Chem.,66, 1044–9.Google Scholar
  147. Pin, C. and Zalduegui, J. F. S. (1997)Anal. Chim. Acta,339, 79–89.Google Scholar
  148. Platzner, I. T., Habfast, K., Walder, A. J., and Goetz, A. (1997)Modern Isotope Ratio Mass Spectrometry(ed. J. D. Weinfordner), John Wiley, New York.Google Scholar
  149. Plutonium in the Environment (1995)Proc. Symp., 6–8 July 1994, Ottawa, Canada;Appl. Radiat. Isot.,46, 1089–293.Google Scholar
  150. Porcelli, D., Andersson, P. S., Wasserburg, G. J., Ingri, J., and Baskaran, M. (1997)Geochim Cosmochim. Acta,61, 4095–113.Google Scholar
  151. Poupard, D. and Jouniaux, B. (1990)Radiochim. Acta,49, 25–8.Google Scholar
  152. Purser, K. H., Kilius, L. R., Litherland, A. E., and Zhao, X.-L. (1996)Nucl. Instrum. Methods,B113, 445–52.Google Scholar
  153. Qu, H., Stuit, D., Glover, S. E., Love, S. F., and Filby, R. H. (1998)J. Radioanal. Nucl. Chem.,234, 175–81.Google Scholar
  154. Raimbault, L., Peycelon, H., and Joron, J. L. (1997)Radioanal. Nucl. Chem.,216, 221–8.Google Scholar
  155. Ramdoss, K., Gomathy Amma, B., Umashankar, V., and Rangaswamy, R. (1997)Talanta,44, 1095–8.Google Scholar
  156. Rosenberg, R. J., Pitkanen, V., and Sorsa, A. (1977)J. Radioanal. Chem.,37, 169–79.Google Scholar
  157. Rowe, M. W. and Kuroda, P. K. (1965)J. Geophys. Res.,70, 709–14.Google Scholar
  158. Saito, A. and Choppin, G. R. (1983)Anal. Chem.,55, 2454–7.Google Scholar
  159. Schrauder, M., Koeberl, C., and Navon, O. (1996)Geochim. Cosmochim Acta,60, 4711–24.Google Scholar
  160. Sidhu, R. S. and Hoff, P. (1999)Radiochim. Acta,84, 89–93.Google Scholar
  161. Smith, L. L., Crain, J. S., Yaeger, J. S., Horwitz, E. P., Diamond, H., and Chiarizia, R.(1995)J. Radioanal. Nucl. Chem.,194, 151–6.Google Scholar
  162. Stevenson, P. C. and Nervik, W. E. (1961)The Radiochemistry of the Rare Earths:Scandium, Yttrium, and Actinium, NAS-NS-3020, Technical Information Center, USAEC.Google Scholar
  163. Taylor, R. N., Warneke, T., Milton, J. A., Croudace, I. W., Warwick, P. E., and Nesbitt, R. W. (2001)J. Anal. At. Spectrom.,16, 279–84.Google Scholar
  164. Testa, C., Degetto, S., Jia, G., Gerdol, R., Desideri, D., Meli, M. A., and Guerra, F. (1998)J. Radioanal. Nucl. Chem.,234, 273–6.Google Scholar
  165. Trautmann, N. (1992) inTransuranium Elements, A Half Century(eds. L. R. Morss and J. Fuger), American Chemical Society, Washington DC, pp. 159–67.Google Scholar
  166. Twiss, P., Watling, R. J., and Delev, D. (1994)At. Spectrosc.,15, 36–9.Google Scholar
  167. United States Environmental Protection Agency (1979) EPA-600/7-79-093.Google Scholar
  168. United States Environmental Protection Agency (1996) EPA Method 3052.Google Scholar
  169. United States, Transuranium and Uranium Registries, Radiochemical Analytical Procedure, Manual (1995) USTUR 100, Washington State University, Pullman, WA.Google Scholar
  170. Vance, D. E., Belt, V. F., Oatts, T. J., and Mann, D. K. (1998)J. Radioanal. Nucl. Chem.,234, 143–6.Google Scholar
  171. Vogel, J. S., Turteltaub, K. W., and Nelson, D. E. (1995)Anal. Chem.,67, 353A–9AGoogle Scholar
  172. Walker, R. L., Eby, R. E., Pritchard, C. A., and Carter, J. A. (1974)Anal. Lett.,7, 563–74.Google Scholar
  173. Wänke, H., Begemann, F., Vilcsek, E., Rieder, R., Teschke, F., Born, W., Quijano- Rico, M., Voshage, H., and Wlotzka, F. (1970) Science, 167, 523–5.Google Scholar
  174. Whicker, F. W., Hinton, T. G., Orlandini, K. A., and Clark, S. B. (1999)J. Environ. Radioact.,45, 1–12.Google Scholar
  175. Wogman, N. A. (1970)Nucl. Instrum. Methods,83, 277–82.Google Scholar
  176. Wolf, S. F., Bates, J. K., Buck, E. C., Dietz, N. L., Fortner, J. A., and Brown, N. R. (1997)Environ. Sci. Technol.,31, 467–71.Google Scholar
  177. Wolf, S. F. (1998)J. Radioanal. Nucl. Chem.,234, 207–12.Google Scholar
  178. Wolf, S. F. (1999) inReviews in Mineralogy, vol. 38 (eds. P. C. Burns and R. Finch), Mineralogical Society of America, Washington DC, pp. 623–53.Google Scholar
  179. Wong, K. M., Brown, G. S., and Noshkin, V. E. (1978)J. Radioanal. Chem.,42, 7–15.Google Scholar
  180. Wyse, E. J., Mac Lellen, J. A., Lindenmeier, C. W., Bramson, J. P., and Koppenaal, D. W. (1998)J. Radioanal. Nucl. Chem.,234, 165–70.Google Scholar
  181. Yamamoto, M., Kofuji, H., Tsumura, A., Yamasaki, S., Yuita, K., Komamura, M., and Komura, K. (1994)Radiochim. Acta,64, 217–24.Google Scholar
  182. Yamamoto, M., Tsumura, A., Katayama, Y., and Tsukatani, T. (1996)Radiochim. Acta,72, 209–15.Google Scholar
  183. Yamamoto, M., Kuwabara, J., and Assinder, D. J. (1998)Radiochim. Acta,83, 121–6.Google Scholar
  184. Yokoyama, T., Makishima, A., and Nakamura, E. (1999)Anal. Chem.,71, 135–41.Google Scholar
  185. Young, D. A. (1958)Nature,182, 315–17.Google Scholar
  186. Zhao, X.-L., Nadeau, M.-J., Garwan, M. A., Kilius, L. R., and Litherland, A. E. (1994a)Nucl. Instrum. Methods,B92, 258–64.Google Scholar
  187. Zhao, X.-L., Nadeau, Kilius, L. R., and Litherland, A. E. (1994b)Nucl. Instrum. Methods,B92, 249–53.Google Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Stephen F. Wolf

There are no affiliations available

Personalised recommendations