Advertisement

Thorium

  • Mathias S. Wickleder
  • Blandine Fourest
  • Peter K. Dorhout

Abstract

In 1815 Berzelius analyzed a rare mineral from the Falun district. He assumed that the mineral contained a new element, which he named thorium after the ancient Scandinavian god of thunder and weather, Thor (Weeks and Leicester, 1968).

Keywords

Common Metal Hydrolysis Constant Thorium Nitrate Thorium Dioxide Thorium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abaouz, A., Taoudi, A., and Laval, J. P. (1997) J. Solid State Chem., 130, 277–83.Google Scholar
  2. Aboukais, A., Bechara, R., Aissi, C. F., Bonnelle, J. P., Ouqour, A., Loukah, M., Coudurier, G., and Vedrine, J. C. (1993) J. Chem. Soc., Faraday Trans., 89, 2545–9.Google Scholar
  3. Abraham, J. and Corsini, A. (1970) Anal. Chem., 42, 1528–31.Google Scholar
  4. Ackermann, R. J. and Rauh, E. G. (1972) J. Chem. Thermodyn., 4, 521–32.Google Scholar
  5. Ackermann, R. J. and Rauh, E. G. (1973a) High Temp. Sci., 5, 463–73.Google Scholar
  6. Ackermann, R. J. and Rauh, E. G. (1973b) J. Inorg. Nucl. Chem., 35, 3787–94.Google Scholar
  7. Adachi, H. and Imoto, S. (1968) Technol. Rep. Osaka Univ., 18, 377.Google Scholar
  8. Adachi, H., Imoto, S., and Kuki, T. (1973) Phys. Lett. A, 44, 491–2.Google Scholar
  9. Adams, D. M., Chatt, J., Davidson, J. M., and Gerratt, J. (1963) J. Chem. Soc., 2189–94.Google Scholar
  10. Adi, M. B. and Murty, A. S. R. (1978) Curr. Sci., 47, 539–41.Google Scholar
  11. Agarwal, R. K., Agarwal, H., and Arora, K. (2000) Rev. Inorg. Chem., 20, 1–61.Google Scholar
  12. Aksel'rud, L. G., Bodak, O. I., Aslan, A. N., Marusin, E. P., and Mazus, M. D. (1990a) Kristallografiya, 35, 199–201; (1990a) Sov. Phys., Crystallogr., 35, 120–1.Google Scholar
  13. Aksel'rud, L. G., Bodak, O. I., Marusin, E. P., and Aslan, A. M. (1990b) Kristallografiya, 35, 487–90.Google Scholar
  14. Alario-Franco, M. A., Grey, I. E., Joubert, J. C., Vincent, H., and Labeau, M. (1982) Acta Crystallogr., A38, 177–86.Google Scholar
  15. Albering, J. H. and Jeitschko, W. (1992) Z. Naturforsch., 47b, 1521–5.Google Scholar
  16. Albering, J. H. and Jeitschko, W. (1995) Z. Kristallogr., 210, 686.Google Scholar
  17. Albering, J. H., Poettgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B., and Etourneau, J. (1994) J. Alloys, 206, 133–9.Google Scholar
  18. Alcock, N. W., Esperas, S., Bagnall, K. W., and Wang, H.-Y. (1978) J. Chem. Soc. Dalton Trans. 638–46.Google Scholar
  19. Al-Daher, A. G. M. and Bagnall, K. W. (1984) J. Less Common Metals, 97, 343–8.Google Scholar
  20. Al-Kazzaz, Z. M. S. and Louis, R. A. (1978) Z. Anorg. Allg. Chem., 440, 286–8.Google Scholar
  21. Allard, G. (1932) Bull. Soc. Chim., 51, 1213–5.Google Scholar
  22. Allen, P. B. (1987) Phys. Rev., B36, 2920–3.Google Scholar
  23. Allen, P. G., Bucher, J. J., Shuh, D. K., Edelstein, N. M., and Reich, T. (1997) Inorg. Chem., 36, 4676–83.Google Scholar
  24. Anderson, J. S. and D'Eye, R. W. M. (1949) J. Chem. Soc., (Suppl. Issue 2), S244–8.Google Scholar
  25. Anderson, M. R. (1950) USAEC Document ISC-116.Google Scholar
  26. Andreetti, G. D., Calestani, G., and Montenero, A. (1984) Z. Kristallogr., 168, 41–51.Google Scholar
  27. Andresen, A. F., Fjellvag, H., and Maeland, A. J. (1984) J. Less Common Metals, 103, 27–31.Google Scholar
  28. Andruchow, W. J. and Karraker, D. G. (1973) Inorg. Chem., 12, 2194–6.Google Scholar
  29. Angelucci, O. (1907) Atti Acad. Nazl. Lincei, 16, 196–8.Google Scholar
  30. Aronson, S. and Auskern, A. B. (1966) J. Phys. Chem., 70, 3937–41.Google Scholar
  31. Arsalane, S. and Ziyad, M. (1996) Mater. Res. Bull., 31, 156–71.Google Scholar
  32. Arutyunyan, E. G., Porai-Koshits, M. A., and Molodkin, A. K. (1963) Zh. Strukt. Khim., 4, 276–7.Google Scholar
  33. Asano, M., Kubo, K., and Sasaki, N. (1974) Kyoto Daigaku Genshii Enerugi Kenkyosho Iho, 46, 33.Google Scholar
  34. Asprey, L. B. and Haire, R. G. (1973) Inorg. Nucl. Chem. Lett., 9, 1121–8.Google Scholar
  35. Auskern, A. B. and Aronson, S. (1967) J. Phys. Chem. Solids, 28, 1069–71.Google Scholar
  36. Avdeef, A., Raymond, K. N., Hodgson, K. O., and Zalkin, A. (1972) Inorg. Chem., 11, 1083–8.Google Scholar
  37. Avignant, D. and Cousseins, J. C. (1970) C. R. Acad. Sci. Paris C, 271, 1446–8.Google Scholar
  38. Bacon, W. E. and Brown, G. H. (1969) J. Phys. Chem., 73, 4163–6.Google Scholar
  39. Baes, C. F. Jr, Meyer, N. J., and Roberts, C. E. (1965) Inorg. Chem., 4, 518–27.Google Scholar
  40. Baes, C. F. and Mesmer, R. E. (1976) The Hydrolysis of Cations, Reprint edn, Krieger Publishing company, Malabar, FL, Copyright 1976 by John Wiley, p. 158.Google Scholar
  41. Baglan, N., Fourest, B., Guillaumont, R., Blain, G., Le Du, J. F., and Genet, M. (1994) New J. Chem., 18, 809–16.Google Scholar
  42. Bagnall, K. W., Brown, D., Jones, P. J., and du Preez, J. G. H. (1965) J. Chem. Soc., 350–3.Google Scholar
  43. Bagnall, K. W., Brown, D., and Easey, J. F. (1968) J. Chem. Soc. A, 288–91.Google Scholar
  44. Bagnall, K. W. and Yanir, E. (1974) J. Inorg. Nucl. Chem., 36, 777–9.Google Scholar
  45. Bagnall, K. W., Behesti, A., and Heatley, F. (1978) J. Less Common Metals, 61, 63–9.Google Scholar
  46. Ban, Z. and Sikirica, M. (1965) Acta Crystallogr., 18, 594–9.Google Scholar
  47. Ban, Z., Omejec, L., Szytula, A., and Tomkowicz, Z. (1975) Physica Status Solidi A, 27, 333–8.Google Scholar
  48. Banks, C. V. and Diehl, H. (1947) Anal. Chem., 19, 222–4.Google Scholar
  49. Baran, E. J., Gentil, L. A., Pedregosa, J. C., and Aymonino, P. J. (1974) Z. Anorg. Allg. Chem., 410, 301–12.Google Scholar
  50. Barbieri, G. A. (1913) Atti Acad. Nazl. Lincei, 22, 781–6.Google Scholar
  51. Bardeen, J., Cooper, L. N., and Schrieffer, J. R. (1957) Phys. Rev., 108, 1175–204.Google Scholar
  52. Barker, M. G. and Alexander, I. C. (1974) J. Chem. Soc., Dalton Trans., 2166–70.Google Scholar
  53. Barre, M. (1910) C. R. Acad. Sci. Paris, 150, 1599–602.Google Scholar
  54. Barre, M. (1911) Ann. Chim. Phys., 8 (24), 145–256.Google Scholar
  55. Barre, M. (1912) Bull. Soc. Chim., 11, 646–8.Google Scholar
  56. Bartscher, W., Rebizant, J., Boeuf, A., Caciuffo, R., Rustichelli, F., Fournier, J. M., and Kuhs, W. F. (1986) J. Less Common Metals, 121, 455–6.Google Scholar
  57. Baskerville, C. (1901) J. Am. Chem. Soc., 23, 761–4.Google Scholar
  58. Baskin, Y., Harada, Y., and Handwerk, J. H. (1961) J. Am. Ceram. Soc., 44, 456–9.Google Scholar
  59. Baskin, Y. (1969) J. Am. Ceram. Soc., 52, 54–5.Google Scholar
  60. Bearden, J. A. (1967) Rev. Mod. Phys., 39, 78–124.Google Scholar
  61. Bearden, J. A. and Burr, A. F. (1967) Rev. Mod. Phys., 39, 125–42.Google Scholar
  62. Bechara, R., D'Huysser, A., Aissi, C. F., Guelton, M., Bonnelle, J. P., and Abou-Kais, A. (1990a) Chem. Mater., 2, 522–6.Google Scholar
  63. Bechara, R., Wrobel, G., Aissi, C. F., Guelton, M., Bonnelle, J. P., and Abou-Kais, A. (1990b) Chem. Mater., 2, 518–22.Google Scholar
  64. Beck, H. P. and Strobel, C. (1982) Angew. Chem., 94, 558–9.Google Scholar
  65. Beck, H. P., Thiel, W., and Schuster, M. (1993) Z. Anorg. Allg. Chem., 619, 221–7.Google Scholar
  66. Beck, H. P. and Kühn, F. (1995) Z. Anorg. Allg. Chem., 621, 1649–54.Google Scholar
  67. Ben Salem, A., Meerschaut, A., and Rouxel, J. (1984) C. R. Acad. Sci. Paris, 299, 617–9.Google Scholar
  68. Bénard, P., Brandel, V., Dacheux, N., Jaulmes, S., Launay, S., Lindecker, C., Genet, M., Louer, D., and Quarton, M. (1996) Chem. Mater., 8, 181–8.Google Scholar
  69. Benner, G. and Müller, B. G. (1990) Z. Anorg. Allg. Chem., 588, 33–42.Google Scholar
  70. Benz, R. and Zachariasen, W. H. (1966) Acta Crystallogr., 21, 838–40.Google Scholar
  71. Benz, R., Hoffmann, C. G., and Rupert, G. N. (1967) J. Am. Chem. Soc., 89, 191–7.Google Scholar
  72. Benz, R. (1968) J. Nucl. Mater., 25, 233–5.Google Scholar
  73. Benz, R. (1969) J. Nucl. Mater., 31, 93–8.Google Scholar
  74. Benz, R. and Zachariasen, W. H. (1969) Acta Crystallogr. B, 25, 294–6.Google Scholar
  75. Benz, R. and Troxel, J. E. (1971) High Temp. Sci., 3, 422–32.Google Scholar
  76. Benz, R., Arnold, G. P., and Zachariasen, W. H. (1972) Acta Crystallogr. B, 28, 1724–7.Google Scholar
  77. Bergsma, J., Goedkoop, J. A., and van Vucht, J. H. N. (1961) Acta Crystallogr., 14, 223–8.Google Scholar
  78. Bernard, L., Currat, R., Delamoye, P., Zeyen, C. M. E., and Hubert, S. (1983) J. Phys. Chem., 16, 433–56.Google Scholar
  79. Bertaut, F. and Durif, A. (1954) C. R. Acad. Sci. Paris, 238, 2173–5.Google Scholar
  80. Berzelius, J. J. (1829) K. Sven. Vetenskapsakad. Handl., 9, 1–30; (1829) Pogg. Ann., 16, 385–415.Google Scholar
  81. Binnewies, M. and Schäfer, H. (1973) Z. Anorg. Allg. Chem., 395, 77–81; (1974) Z. Anorg. Allg. Chem., 407, 327–44.Google Scholar
  82. Binnewies, M. and Schäfer, H. (1974) Z. Anorg. Allg. Chem., 410, 149–55.Google Scholar
  83. Biradar, N. S. and Kulkarni, V. H. (1972) Z. Anorg. Allg. Chem., 387, 275–9.Google Scholar
  84. Blake, P. C., Edelman, M. A., Hitchcock, P. B., Hu, J., Lappert, M. F., Tian, S., Müller, G., Atwood, J. L., and Zhang, H. (1998) J. Organomet. Chem., 551 (1–2), 261–70.Google Scholar
  85. Blum, P. and Bertaut, F. (1954) Acta Crystallogr., 7, 81–6.Google Scholar
  86. Blunck, H. and Juza, R. (1974) Z. Anorg. Allg. Chem., 410, 9–10.Google Scholar
  87. Bock, R. and Bock, E. (1950) Z. Anorg. Chem., 263, 146–8.Google Scholar
  88. Borzone, G., Borsese, A., and Ferro, R. (1982) J. Less Common Metals, 84, 165–72.Google Scholar
  89. Böttcher, F., Simon, A., Kremer, R. K., Buchkremer-Hermanns, H., and Cockcroft, . K. (1991a) Z. Anorg. Allg. Chem., 598, 25–44.Google Scholar
  90. Böttcher, F., Simon, A., Kremer, R. K., Buchkremer-Hermanns, H., and Cockcroft, J. K. (1991b) Angew. Chem., 103, 79–80.Google Scholar
  91. Botto, I. L. and Baran, E. J. (1981) Acta Sud. Am. Quim., 1, 143–50.Google Scholar
  92. Bourion, F. (1907) C. R. Acad. Sci. Paris, 145, 243–6.Google Scholar
  93. Bourion, F. (1909) C. R. Acad. Sci. Paris 148, 170–1; (1910).Google Scholar
  94. Bowman, A. L., Krikorian, N. H., Arnold, G. P., Wallace, T. C., and Nereson, N. G. (1968) Acta Crystallogr. B, 24, 1121–3.Google Scholar
  95. Bowman, A. L. and Arnold, G. P. (1971) Acta Crystallogr. B, 27, 243–4.Google Scholar
  96. Bradley, D. C. and Gitlitz, M. H. (1969) J. Chem. Soc. A, 980–4.Google Scholar
  97. Bradley, D. G., Ghotra, J. S., and Hart, F. A. (1974) Inorg. Nucl. Chem. Lett., 10, 209–11.Google Scholar
  98. Brandel, V., Dacheux, N., Pichot, E., and Genet, M. (1998) Chem. Mater., 10, 345–50.Google Scholar
  99. Brandel, V., Dacheux, N., and Genet, M. (2001a) Radiochemistry 43, 16–21. (Moscow, Russian Federation) (Translation of Radiokhimiya)Google Scholar
  100. Brandel, V., Dacheux, N., Genet, M., and Podor, R. (2001b) J. Solid State Chem., 159, 139–48.Google Scholar
  101. Bratsch, S. G. and Lagowski, J. J. (1986) J. Phys.Chem., 90, 307–12.Google Scholar
  102. Brauer, G. and Mitius, A. (1942) Z. Anorg. Allg. Chem., 249, 325–39.Google Scholar
  103. Braun, T. P., Simon, A., Böttcher, F., and Ueno, F. (1995) Angew. Chem., 107, 647–8.Google Scholar
  104. Brendel, W., Samartzis, T., Brendel, C., and Krebs, B. (1985) Thermochim. Acta, 83, 167–72.Google Scholar
  105. Brese, N. E. and Di Salvo, F. J. (1995a) J. Solid State Chem., 120, 372–5.Google Scholar
  106. Brese, N. E. and Di Salvo, F. J. (1995b) J. Solid State Chem., 120, 378–80.Google Scholar
  107. Bressat, R., Claudel, B., Giorgio, G., and Mentzen, B. (1968) J. Chim. Phys., 65, 1615–7.Google Scholar
  108. Brewer, L., Sawyer, D. L., Templeton, D. H., and Dauben, C. H. (1951) J. Am. Ceram. Soc., 34, 173–9.Google Scholar
  109. Bridgman, P. W. (1935) Phys. Rev., 34, 825–47.Google Scholar
  110. Briggs, G. G. and Cavendish, J. H. (1971) AEC Report NLCO-1080.Google Scholar
  111. Briggs-Piccoli, P. M., Abney, K. D., Schoonover, J. R., and Dorhout, P. K. (2000) Inorg. Chem., 39, 2970–6.Google Scholar
  112. Briggs-Piccoli, P. M., Abney, K. D., Schoonover, J. R., and Dorhout, P. K. (2001) Inorg. Chem., 40, 4871–5.Google Scholar
  113. Briggs-Piccoli, P. M., Abney, K. D., and Dorhout, P. K. (2002) J. Nucl. Sci. Tech., 3, 611–5.Google Scholar
  114. Britton, H. T. S. (1923) J. Chem. Soc., 1429–35.Google Scholar
  115. Brown, A. (1961) Acta Crystallogr., 14, 860–5.Google Scholar
  116. Brown, A. and Norreys, J. J. (1961) J. Inst. Methods, 89, 238–40.Google Scholar
  117. Brown, D. (1966) J. Chem. Soc., 766–9.Google Scholar
  118. Brown, D. (1968) Halides of the Lanthanides and Actinides, John Wiley, London.Google Scholar
  119. Brown, D., Fowles, G. W. A., and Walton, R. A. (1970a) Inorg. Synth., 12, 225–32.Google Scholar
  120. Brown, D., Holah, D. G., and Rickard, C. E. F. (1970b) J. Chem. Soc. A, 423–5.Google Scholar
  121. Brown, D., Hall, T. L., and Moseley, P. T. (1973) J. Chem. Soc., Dalton Trans., 686–91.Google Scholar
  122. Brown, D., Lidster, P., Whittaker, B., and Edelstein, N. (1976) Inorg. Chem., 15, 511–4.Google Scholar
  123. Brown, P. L., Ellis, J., and Sylva, R. N. (1983) J. Chem. Soc., Dalton Trans., 31–4.Google Scholar
  124. Brunn, H. and Hoppe, R. (1977) Z. Anorg. Allg. Chem., 34, 144–54.Google Scholar
  125. Bruno, J. W., Marks, T. J., and Morss, L. R. (1983) J. Am. Chem. Soc., 105, 6824–32.Google Scholar
  126. Bruno, J., Casas, I., Lagerman, B., and Munoz, M. (1987) in Scientific Basis for Nuclear Waste Management X (Pittsburg, PA) (eds. J. K. Bates and W. B. Seefelt), M R S Symposium Proceedings ANL-IL (USA): pp. 153–60.Google Scholar
  127. Brunton, G. D., Insley, H., McVay, T. N., and Thoma, R. E. (1965) ORNL-3761.Google Scholar
  128. Brunton, G. and Sears, D. R. (1969) Acta Crystallogr. B, 25, 2519–27.Google Scholar
  129. Brunton, G. (1970) Acta Crystallogr. B, 26, 1185–7.Google Scholar
  130. Brunton, G. (1971a) Acta Crystallogr. B, 27, 2290–2.Google Scholar
  131. Brunton, G. (1971b) Acta Crystallogr. B, 27, 1823–6.Google Scholar
  132. Brunton, G. (1972) Acta Crystallogr. B, 28, 144–7.Google Scholar
  133. Brunton, G. (1973) Acta Crystallogr. B, 29, 2976–8.Google Scholar
  134. Bryner, J. S. and Brodsky, M. B. (1959) Proc. Second UN Int. Conf. on the Peaceful Uses of Atomic. Energy, 2nd, Geneva, 1958, 7, 207–15.Google Scholar
  135. Bucher, E. and Staundenmann, J. L., private communication cited by Hulliger, F. (1968) Struct. Bonding, 4, 83–229.Google Scholar
  136. Bundschuh, T., Knopp, R., Kim, J. I., and Fanghänel, Th (2000) Radiochim. Acta, 88, 625–9.Google Scholar
  137. Burdese, A. and Borlera, M. L. (1963) Ann. Chim., 53, 344–55.Google Scholar
  138. Busch, J. and Gruehn, R. (1996) Z. Anorg. Allg., 622, 640–8.Google Scholar
  139. Busch, J., Hofmann, R., and Gruehn, R. (1996) Z. Anorg. Allg., 622, 67–75.Google Scholar
  140. Buschow, K. H. J., Van Mal, H. H., and Miedema, A. R. (1975) J. Less Common Metals, 42, 163–78.Google Scholar
  141. Bushuev, N. N. and Trunov, V. K. (1974) Dokl. Akad. Nauk SSSR, 217, 827–9; Dokl. Chem., 217, 533–5.Google Scholar
  142. Cacheris, W. P. and Choppin, G. R. (1987) Radiochim. Acta, 42, 185–90.Google Scholar
  143. Calestani, G. and Andreetti, G. D. (1984) Z. Kristallogr., 168, 41–51.Google Scholar
  144. Calvin, M. (1944) Report CN-2486.Google Scholar
  145. Canneri, G. (1925) Gazz. Chim. Ital., 55, 39–44.Google Scholar
  146. Cannon, J. F. and Hall, H. T. (1977) in The Rare Earths in Modern Science and Technology (eds. G. J. McCarthy and J. J. Rhyne), Plenum, New York, pp. 219–24.Google Scholar
  147. Cannon, J. F. and Farnsworth, P. B. (1983) J. Less Common Metals, 92, 359–68.Google Scholar
  148. Capocchi, J. D. T. (1971) Met. Ass. Brasil Metais., 27, 881–90.Google Scholar
  149. Carter, F. L. (1982) Rare Earth Mod. Sci. Technol, 3, 479–80.Google Scholar
  150. Caton, R. and Satterthwaite, C. B. (1977) J. Less Common Metals, 52, 307–21.Google Scholar
  151. Chaigneau, M. (1957) Bull. Soc. Chim. Fr., 886–8.Google Scholar
  152. Charpin, P., Chevrier, G., Lance, M., Nierlich, M., and Vigner, D. (1987) Acta Crystal-logr. C, 43, 1239–41.Google Scholar
  153. Chauvenet, E. (1911) Ann. Chim. Phys., 8 (23), 425–90.Google Scholar
  154. Chavastelon, R. (1900) C. R. Acad. Sci. Paris, 130, 781–2.Google Scholar
  155. Cheda, J. A. R., Westrum, E. F. Jr, and Morss, L. R. (1976) J. Chem. Thermodyn., 8, 25–9.Google Scholar
  156. Chernorukov, N. G., Moskvichev, E. P., and Zhuk, M. I. (1974a) Kristallographiya, 19, 1084–5.Google Scholar
  157. Chernorukov, N. G., Sibrina, G. F., and Moskvichev, E. P. (1974b) Radiokhimiya, 16, 412–3.Google Scholar
  158. Chernyaev, I. I., Golovina, V. A., and Molodkin, A. K. (1958) Proc. Second UN Int. Conf. on the Peaceful Uses of Atomic Energy, 28, 203–9.Google Scholar
  159. Chiappini, R., Taillade, J. M., and Brébion, S. (1996) J. Anal. At. Spectrom., 11, 497–503.Google Scholar
  160. Chiotti, P. (1952) J. Am.Ceram. Soc., 35, 123–30.Google Scholar
  161. Chiotti, P., Korbitz, F. W., and Dooley, G. J. (1967) J. Nucl. Mater., 23, 55–67.Google Scholar
  162. Chiotti, P. and Dock, C. H. (1975) J. Less Common Metals, 41, 225–39.Google Scholar
  163. Chiotti, P., Akhachinskij, V. V., Ansara, I., and Rand, M. H. (1981) in The Chemical Thermodynamics of Actinide Elements and Compounds, part 5, The Actinide Binary Alloys (eds. F. L. Oetting, V. A. Medvedev, M. H. Rand, and E. F. Westrum Jr), STI/PUB/424/5, IAEA, Vienna.Google Scholar
  164. Choi, K.-S., Patschke, R., Billinge, S. J. L., Waner, M. J., Dantus, M., and Kanatzidis, M. G. (1998) J. Am. Chem. Soc., 120, 10706.Google Scholar
  165. Choppin, G. R. and Allard, B. I. (1985) in Handbook on the Physics and Chemistry of Actinides, vol. 3, ch. 11 (eds. A. J. Freeman and C. Keller), Elsevier, Amsterdam, 407–29.Google Scholar
  166. Choppin, G. R., Erten, H. N., and Xia, Y.-X. (1996) Radiochim. Acta, 74, 123–7.Google Scholar
  167. Chydenius, J. J. (1863) Pogg. Ann., 119, 43.Google Scholar
  168. Clark, G. L. (1924) Am. J. Sci., 7, 1–23.Google Scholar
  169. Clark, R. J. and Corbett, J. D. (1963) Inorg. Chem., 2, 460–3.Google Scholar
  170. Clark, J. P. and Green, J. C. (1977) J. Chem. Soc., Dalton Trans., 505–8.Google Scholar
  171. Claudel, B. and Mentzen, B. (1966) Bull. Soc. Chim. France, 1547–52.Google Scholar
  172. Clève, P. T. (1874) Bull. Soc. Chim. Paris, 21, 115–23.Google Scholar
  173. Clève, P. T. (1885) Bull. Soc. Chim. Paris, 43, 53–8.Google Scholar
  174. Cline, D., Tevebaugh, R., and Warf, J. (1944) Report CC-1981.Google Scholar
  175. Cloke, F. G. N. and Hitchcock, P. B. (1997) J. Am. Chem. Soc., 119, 7899–900.Google Scholar
  176. Cloke, F. G. N., Grenn, J. C., and Jardine, C. N. (1999) Organometalics, 18, 1080–6.Google Scholar
  177. Cody, J. A. and Ibers, J. A. (1996) Inorg. Chem., 35, 3836.Google Scholar
  178. Colani, A. (1909) C. R. Acad. Sci. Paris, 149, 207–10.Google Scholar
  179. Colin-Blumenfeld, M. (1987) Thesis, University of Nancy I (France), 182–4.Google Scholar
  180. Corbett, J. D., Guidotti, R. A., and Adolphson, D. G. (1969) Inorg. Chem., 8, 163–5.Google Scholar
  181. Corsini, A. and Abraham, J. (1970) Talanta, 17, 439–42.Google Scholar
  182. Cousson, A., Pagès, M., Cousseins, J. C., and Vedrine, A. (1977) J. Cryst. Growth, 40, 157–60.Google Scholar
  183. Cousson, A., Pagès, M., and Chevalier, R. (1978) Acta Crystallogr. B, 34, 1776–8.Google Scholar
  184. Cousson, A., Pagès, M., and Chevalier, R. (1979a) Acta Crystallogr. B, 35, 1564–6.Google Scholar
  185. Cousson, A., Tabuteau, A., Pagès, M., and Gasperin, M. (1979b) Acta Crystallogr. B, 35, 2674–6.Google Scholar
  186. Cousson, A. and Gasperin, M. (1991) Acta Crystallogr. C, 47, 10–2.Google Scholar
  187. Cox, J. D., Wagman, D. D., and Medvedev, V. A. (1989) CODATA Key Values for Thermodynamics, Hemisphere Publishers, New York.Google Scholar
  188. Cremers, T. L., Eller, P. G., and Penneman, R. A. (1983) Acta Crystallogr. C, 39, 1165–7.Google Scholar
  189. Cuthbert, F. L. (1958) Thorium Production Technology, Addison-Wesley, Reading, MA.Google Scholar
  190. d'Ans, J. and Dawihl, W. (1929) Z. Anorg. Allg. Chem., 178, 252–6.Google Scholar
  191. Dacheux, N. and Aupiais, J. (1997) Anal. Chem., 69, 2275–82.Google Scholar
  192. Dacheux, N., Podor, R., Chassigneux, B., Brandel, V., and Genet, M. (1998) J. Alloys Compds, 271–273, 236–9.Google Scholar
  193. Dahlke, O., Gans, W., Knacke, O., and Müller, F. (1969) Z. Metallk., 60, 465–8.Google Scholar
  194. Damien, D. and de Novion, C. H. (1981) J. Nucl. Mater., 100, 167–77.Google Scholar
  195. Danan, J. (1975) J. Nucl. Mater., 57, 280–2.Google Scholar
  196. Danesi, P. R., Magini, M., Margherita, S., and D'Alessandro, G. (1968) Energy. Nucl., 15, 333–9.Google Scholar
  197. Darnell, A. J. and McCollum, W. A. (1961) USAEC Report NAA-SR-6498.Google Scholar
  198. Dawson, H. M. and Williams, P. (1899) Proc. Chem. Soc., 15, 210–1.Google Scholar
  199. David, F. and Vokhmin, V. (2001) J. Phys. Chem., 105, 9704–9.Google Scholar
  200. David, F. and Vokhmin, V. (2003) New J. Chem., 27, 1627–32.Google Scholar
  201. Day, R. A. Jr and Stoughton, R. W. (1950) J. Am. Chem. Soc., 72, 5662–6.Google Scholar
  202. de Boisbaudran, L. (1885) C. R. Acad. Sci. Paris, 100, 605–7.Google Scholar
  203. de Haas, W. J. and van Alphen, P. V. (1931) Proc. Acad. Sci. Amsterdam, 34, 70–4.Google Scholar
  204. de Maayer, P., de Bruyne, R., and Brabers, M. J. (1972)J. Am. Ceram. Soc., 55, 113.Google Scholar
  205. de Regge, P. and Boden, R. (1984) Nucl. Instrum. Methods Phys. Res., 223, 181–7.Google Scholar
  206. Dean, O. C. (1957) Adv. Nucl. Eng., Proc. Second Nucl. Eng. Sci. Conf., 1, 66–73. Philadelphia.Google Scholar
  207. Dean, O. C. and Chandler, J. M. (1957) Nucl. Sci. Eng., 2, 57–72.Google Scholar
  208. Decker, W. R. and Finnemore, D. K. (1968) Phys. Rev., 172, 430–6.Google Scholar
  209. Denecke, M. A., Bublitz, D., Kim, J. I., Moll, H., and Farkes, I. (1999) J. Synchrotron Radiat., 6, 394–6.Google Scholar
  210. Dennis, L. M. and Kortright, F. L. (1894) Am. Chem. J., 16, 79–83.Google Scholar
  211. Dergunov, E. P. and Bergman, A. G. (1948) Dokl. Akad. Nauk SSSR, 60, 391–4.Google Scholar
  212. Dervin, J. and Faucherre, J. (1973a) Bull. Soc. Chim. Fr., 2926–9.Google Scholar
  213. Dervin, J. and Faucherre, J. (1973b) Bull. Soc. Chim. Fr., 2929–33.Google Scholar
  214. Dervin, J., Faucherre, J., Herpin, P., and Voliotis, S. (1973) Bull. Soc. Chim. Fr., 2634–7.Google Scholar
  215. Desyatnik, V. N., Kurbatov, N. N., Raspopin, S. P., and Trifonov, I. I. (1974a) Zh. Fiz. Khim., 48, 237; Russ. J. Phys. Chem., 48, 145.Google Scholar
  216. Desyatnik, V. N., Raspopin, S. P., and Trifonov, I. I. (1974b) Zh. Neorg. Khim., 19, 842–3; Russ. J. Inorg. Chem., 19, 459–60.Google Scholar
  217. Desyatnik, V. N. and Emel'yanov, N. M. (1975) Zh. Prikl. Khim., 48, 1382–4.Google Scholar
  218. D'Eye, R. W. M. (1950) J. Chem. Soc., 2764–6.Google Scholar
  219. D'Eye, R. W. M., Sellman, P. G., and Murray, J. R. (1952) J. Chem. Soc., 255–62.Google Scholar
  220. D'Eye, R. W. M. (1953) J. Chem. Soc., 1670–2.Google Scholar
  221. D'Eye, R. W. M. and Sellman, P. G. (1954) J. Chem. Soc., 3760–6.Google Scholar
  222. D'Eye, R. W. M. (1958) J. Chem. Soc., 196–9.'Google Scholar
  223. Dietrich, M. (1974) Report KFK-2098.Google Scholar
  224. Dietrich, M., Gey, W., Rietschel, A., and Satterthwaite, C. B. (1974) Solid State Commun, 15, 941–3.Google Scholar
  225. Diness, A. M. and Roy, R. (1969) J. Mater. Sci., 4, 613–24.Google Scholar
  226. Dobry, A., Guinand, S., and Mathieu-Sicaud, A. (1953) J. Chim. Phys. et Phys. Chim. iol., 50, 501–11.Google Scholar
  227. Dordevic, S. V., Dilley, N. R., Bauer, E. D., Basov, D. N., Maple, M. B., and Degiorgi, L. (1999) Phys. Rev. B: Conden. Matter Mater. Phys., 60, 11321.Google Scholar
  228. Dronskowski, R. (1995) Inorg. Chem., 34, 4991–5.Google Scholar
  229. du Jassonneix, B. (1905) C. R. Acad. Sci. Paris, 141, 191–3; (1906) Bull. Soc. Chim., 3 (35), 278–80.Google Scholar
  230. Duboin, A. (1908a)C. R. Acad. Sci. Paris, 146, 489–91.Google Scholar
  231. Duboin, A. (1908b) C. R. Acad. Sci. Paris, 146, 815–7.Google Scholar
  232. Duboin, A. (1909a) Ann. Chim. Phys., 8 (16), 256–88.Google Scholar
  233. Duboin, A. (1909b) Ann. Chim. Phys., 8 (17), 354–64.Google Scholar
  234. Dubrovskaya, G. N. (1971) Zh. Neorg. Khim., 16, 12–5; Russ. J. Inorg. Chem., 16, 6–8.Google Scholar
  235. Dupuis, T. and Duval, C. (1949) C. R. Acad. Sci. Paris, 228, 401–2.Google Scholar
  236. Düsing, W. and Hüniger, M. (1931) Techn. Wiss. Abhandl. Osram-Konzern, 2, 357–65.Google Scholar
  237. Dzimitrowickz, D. J., Wiseman, P. J., and Cherns, D. (1985) J. Colloid Interface Sci., 103(1), 170–7.Google Scholar
  238. Eastman, E. D., Brewer, L., Bromley, L. A., Gilles, P. W., and Lofgren, N. L. (1950) J. Am Chem. Soc., 72, 4019–23.Google Scholar
  239. Eastman, E. D., Brewer, L., Bromley, L. A., Gilles, P. W., and Lofgren, N. L. (1951) J. Am. Ceram. Soc., 34, 128–34.Google Scholar
  240. Edwards, P. G., Andersen, R. A., and Zalkin, A. (1981) J. Am. Chem. Soc., 103, 7792–4.Google Scholar
  241. Edwards, P. G., Andersen, R. A., and Zalkin, A. (1984) Organometallics, 3, 293–8.Google Scholar
  242. Ehemann, M. and Nöth, H. (1971) Z. Anorg. Allg. Chem., 386, 87–101.Google Scholar
  243. Ekberg, C. and Albinsson, Y. (2000) J. Solution Chem., 29(1), 63–86.Google Scholar
  244. Elfakir, A., Mahe, P., and Quarton, M. (1987) Z. Kristallogr., 181, 235–9.Google Scholar
  245. Elfakir, A., Souron, J. P., and Quarton, M. (1989) Powder Diffraction, 4, 165–7.Google Scholar
  246. Elfakir, A., Souron, J. P., and Quarton, M. (1990) Powder Diffraction, 5, 219–20.Google Scholar
  247. Eliseev, A. A., Molodkin, A. K., and Ivanova, O. M. (1967) Russ. J. Inorg. Chem., 12, 1507–8.Google Scholar
  248. El-Yacoubi, A., Brochu, R., Serghini, A., Louer, M., Alami Talbi, M., and Louer, D. (1997) Powder Diffraction, 12, 76–80.Google Scholar
  249. Engel, G. (1978) Mater. Res. Bull., 13, 43–8.Google Scholar
  250. Engkvist, I. and Albinsson, Y. (1994) Radiochim. Acta, 58/59, 139–42.Google Scholar
  251. English, A. C., Cranshaw, T. E., Demers, P., Harvey, J. A., Hincks, E. P., Jelly, J. V., and May, A. N. (1947) Phys. Rev., 72, 253–4.Google Scholar
  252. Ennaciri, A., Kahn, A., and Michel, D. (1986) J. Less Common Metals., 124, 105–9.Google Scholar
  253. Ernst, R. D., Kennelly, W. J., Day, V. W., and Marks, T. J. (1979) J. Am. Chem. Soc., 101, 2656–64.Google Scholar
  254. Erten, H. N., Mohammed, A. K., and Choppin, G. R. (1994) Radiochim. Acta, 66/67, 123–8.Google Scholar
  255. Ettmayer, P., Waldhart, J., Vendl, A., and Banik, G. (1980) Monatsh. Chem., 111, 1185–8.Google Scholar
  256. Evans, D. S. and Raynor, G. V. (1959) J. Nucl. Mater., 1, 281–8.Google Scholar
  257. Evstaf'eva, O. N., Molodkin, A. K., Dvoryantseva, G. G., Ivanova, O. M., and Struchkova, M. I. (1966) Russ. J. Inorg. Chem., 11, 697–702.Google Scholar
  258. Fagan, P. J., Manriquez, J. M., Maatta, E. A., Seyam, A. M., and Marks, T. J. (1981) J. Am. Chem. Soc., 103, 6650–7.Google Scholar
  259. Faucherre, J. and Dervin, J. (1962) C. R. Acad. Sci., 255, 2264–6.Google Scholar
  260. Fava, J., Le Flem, G., Devalette, M., Rabardel, L., Coutures, J.-P., Foëx, M., and Hagenmuller, P. (1971) Rev. Int. Hautes Temp. Refract., 8, 305–10.Google Scholar
  261. Fedorov, P. I. and Fedorov, P. P. (2001) Zh. Neorg. Khim.,46, 1571–2; Russ. J. Inorg. Chem., 46, 1422–4.Google Scholar
  262. Felmy, A. R., Rai, D., and Mason, M. J. (1991) Radiochim. Acta, 55, 177–85.Google Scholar
  263. Felmy, A. R., Rai, D., Sterner, S. M., Mason, M. J., Hess, N. J., and Conradson, S. D. (1997) J. Solution. Chem., 26, 233–48.Google Scholar
  264. Fendrick, C. M., Mintz, E. A., Schertz, L. D., Marks, T. J., and Day, V. W. (1984) Organometallics, 3, 819–21.Google Scholar
  265. Fernandes, L. (1925) Gazz. Chim. Ital., 55, 3–6.Google Scholar
  266. Ferraro, J. R., Katzin, L. I., and Gibson, G. (1954) J. Am. Chem. Soc., 76, 909–11.Google Scholar
  267. Ferraro, J. R., Katzin, L. I., and Gibson, G. (1955) J. Am. Chem. Soc., 77, 327–9.Google Scholar
  268. Ferraro, J. R., Katzin, L. I., and Gibson, G. (1956) J. Inorg. Nucl. Chem., 2, 118–24.Google Scholar
  269. Ferraro, J. R. (1957) J. Inorg. Nucl. Chem., 4, 283–6.Google Scholar
  270. Ferro, R. (1955) Acta Crystallogr., 8, 360Google Scholar
  271. Ferro, R. (1956) Acta Crystallogr., 9, 817–8.Google Scholar
  272. Ferro, R. (1957) Acta Crystallogr., 10, 476–7.Google Scholar
  273. Fertig, W. A., Moodenbaugh, A. R., and Maple, M. B. (1972) Phys. Lett., 38A, 517–8.Google Scholar
  274. Fischer, E. O. and Treiber, A. (1962) Z. Naturforsch. B, 17, 276–7.Google Scholar
  275. Fischer, W., Gewehr, R., and Wingchen, H. (1939) Z. Anorg. Allg. Chem., 242, 161–92.Google Scholar
  276. Flotow, H. E. and Osborne, D. W. (1978) J. Chem. Thermodyn., 10, 537–51.Google Scholar
  277. Flotow, H. E., Haschke, F. M., Yamauchi, S. (1984) in The Chemical Thermodynamics of Actinide Elements and Compounds (eds. V. A. Medredev, M. H. Raud, E. F. Westrum Jr., part 9, The Actinide Hydrides), STI/PuB/424/9, IAEA, Vienna.Google Scholar
  278. Foster, L. S. (1945) Report CT-3370.Google Scholar
  279. Foster, L. S. (1950) Report AECD-2942.Google Scholar
  280. Fourest, B., Baglan, N., Guillaumont, R., Blain, G., and Legoux, Y. (1994) J. Alloys Compds, 213/214, 219–25.Google Scholar
  281. Fourest, B., Lagarde, G., Perrone, J., Brandel, V., Dacheux, N., and Genet, M. (1999) New J. Chem., 23, 645–9.Google Scholar
  282. Fragala, I., Condorelli, G., Zanella, P., and Tondello, E. (1976) J. Organomet. Chem., 122, 357–63.Google Scholar
  283. Frampton, O. D. (1979) Res. Discl., 183, 364.Google Scholar
  284. Fratiello, A., Lee, R. E., and Schuster, R. E. (1970) Inorg. Chem., 9, 391–2.Google Scholar
  285. Frazer, M. J. and Rimmer, B. (1968) J. Chem. Soc. A, 2273–5.Google Scholar
  286. Frick, B., Schoenes, J., Vogt, O., and Allen, J. W. (1982) Solid State Commun., 42, 331.Google Scholar
  287. Frondel, C. (1958) Systematic Mineralogy of Uranium and Thorium, Geological Survey Bulletin no. 1064, U.S. Govt.Google Scholar
  288. Fuger, J. and Brown, D. (1973) J. Chem. Soc., Dalton Trans., 428–34.Google Scholar
  289. Fuger, J., Parker, V. B., Hubbard, W. N., and Oetting, F. L. (1983) in The Chemical Thermodynamics of Actinide Elements and Compounds, part 8, The Actinide Halides (eds. F. L. Oetting, V. A. Medvedev, M. H. Rand, and E. F. Westrum Jr), STI/PUB/ 424/8, IAEA, Vienna.Google Scholar
  290. Fuger, J., Khodakovsky, I. L., Sergeyeva, E. I., Medvedev, V. A., and Navratil, J. D. (1992) in The Chemical Thermodynamics of Actinide Elements and Compounds, part 12, The Actinide Aqueous Inorganic Complexes (eds. F. L. Oetting, V. A. Medvedev, M. H. Rand, and E. F. Westrum Jr), STI/PUB/424/12, IAEA, Vienna.Google Scholar
  291. Fuhrman, N., Holden, R. B., and Whitman, C. I. (1957) USAEC Report SCNC-185.Google Scholar
  292. Fuhse, O. (1897) Z. Angew. Chem., 10, 115–6.Google Scholar
  293. Galesic, N., Matkovic, B., Topic, M., Coffou, E., and Sljukic, M. (1984) Croat. Chem. Acta, 57, 597–608.Google Scholar
  294. Gantz, D. E. and Lambert, J. L. (1957) J. Phys. Chem., 61, 112–4.Google Scholar
  295. Gantzel, P. K. and Baldwin, N. L. (1964) Acta Crystallogr., 17, 772–3.Google Scholar
  296. Gao, L. Z. and Au, C. T. (2000) Catalysis Lett., 65, 91–8.Google Scholar
  297. Gaumet, V., El-Ghozzi, M., and Avignant, D. (1995) Eur. J. Solid State Inorg. Chem., 32, 893–905.Google Scholar
  298. Geipel, G. (1992) Z. Kristallogr., 35, 608–28.Google Scholar
  299. Genet, M., Brandel, V., Dacheux, N., and Lindecker, C. (1996) in PCT Int. Appl. (Centre National De La Recherche Scientifique, Fr.). WO 9630300, 35 pp.Google Scholar
  300. Gershanovich, A. Y. and Suglobova, I. G. (1980) Sov. Radiochem., 22, 201–5.Google Scholar
  301. Gershanovich, A. Y. and Suglobova, I. G. (1981) Sov. Radiochem., 23, 170–3.Google Scholar
  302. Gesing, T. M. and Jeitschko, W. (1996) J. Alloys Compds, 240, 9–15.Google Scholar
  303. Giacchetti, A., Blaise, J., Corliss, C. H., and Zalubas, R. (1974) J. Res. NBS, 78A, 247–81.Google Scholar
  304. Gingerich, K. A. and Wilson, D. W. (1965) Inorg. Chem., 4, 987–93.Google Scholar
  305. Gingerich, K. A. and Aronson, S. (1966) J. Phys. Chem., 70, 2517–23.Google Scholar
  306. Giorgi, A. L., Hill, H. H., Szklarz, E. G., and White, R. W. (1976) Report LA-UR- 76–1535.Google Scholar
  307. Glaser, C. (1897) Chem. News, 75, 145–7, 157–8.Google Scholar
  308. Glavic, P., Slivnik, J., and Bole, A. (1973) J. Inorg. Nucl. Chem., 35, 427–32.Google Scholar
  309. Gmelin Handbook of Inorganic Chemistry, 8th edn, Thorium, System No. 44, Springer Verlag, Berlin.Google Scholar
  310. (1955) Main volume (reprint 1978).Google Scholar
  311. (1976) vol. C2, Ternary and Polynary Oxides.Google Scholar
  312. (1978) vol. C1, Compounds with Noble Gases, Hydrogen, Oxygen.Google Scholar
  313. (1985a) vol. C2, Solvent Extraction.Google Scholar
  314. (1985b) vol. E, Coordination Compounds.Google Scholar
  315. (1986a) vol. A2, History, Isotopes, Recovery.Google Scholar
  316. (1986b) vol. C5, Compounds with S, Se, Te, B.Google Scholar
  317. (1987) vol. C3, Compounds with Nitrogen.Google Scholar
  318. (1988a) vol. C7, Compounds with Carbon: Carbonates, Thiocyanates, Alkoxides, Carboxylates.Google Scholar
  319. (1988b) vol. A3, Technology, Uses, Irradiated Fuel, Reprocessing.Google Scholar
  320. (1988c) vol. D1, Properties of Ions in Solutions.Google Scholar
  321. (1989) vol. A4, General Properties. Spectra. Recoil Reactions.Google Scholar
  322. (1990a) vol. A1a, Natural Occurrence. Minerals(Excluding Silicates).Google Scholar
  323. (1990b) vol. C5, Analysis, Biological Behavior.Google Scholar
  324. (1990c) vol. D3, Ion Exchange.Google Scholar
  325. (1991a) vol. A1b, Minerals (Silicates). Deposits.Mineral Index.Google Scholar
  326. (1991b) vol. D4, Chromatography. Chemistry in Nonaqueous Solutions.Google Scholar
  327. (1992a) vol. B2, Alloys with Metals of Group I to IV.Google Scholar
  328. (1992b) vol. C6, Carbides.Google Scholar
  329. (1993a) vol. C4, Compounds with F, Cl, Br, I.Google Scholar
  330. (1993b) vol. C8, Compopunds with Si, P, As,Sb, Bi, and Ge.Google Scholar
  331. (1997) vol. B1, Thorium Metal.Google Scholar
  332. Goffart, J., Fuger, J., Gilbert, B., Hocks, L., and Duyckaerts, G. (1975) Inorg. Nucl. Chem. Lett., 11, 569–83.Google Scholar
  333. Goffart, J., Gilbert, B., and Duyckaerts, G. (1977) Inorg. Nucl. Chem. Lett., 13, 189–96.Google Scholar
  334. Goffart, J., Piret-Meunier, J., and Duyckaerts, G. (1980) Inorg. Nucl. Chem. Lett., 16, 233–4.Google Scholar
  335. Golovnya, V. A., Molodkin, A. K., and Tverdokhlebov, V. N. (1964) Zh. Neorg. Khim., 9, 2032–34; Russ. J. Inorg. Chem., 9, 1097–8.Google Scholar
  336. Golovnya, V. A., Molodkin, A. K., and Tverdokhlebov, V. N. (1967a) Zh. Neorg. Khim., 12, 2377–87; Russ. J. Inorg. Chem., 12, 1254–9.Google Scholar
  337. Golovnya, V. A., Molodkin, A. K., and Tverdokhlebov, V. N. (1967b) Zh. Neorg. Khim., 12, 2729–39; Russ. J. Inorg. Chem., 12, 1439–44.Google Scholar
  338. Golovnya, V. A., Molodkin, A. K., and Tverdokhlebov, V. N. (1967c) Zh. Neorg. Khim., 12, 2075–85; Russ. J. Inorg. Chem., 12, 1092–8.Google Scholar
  339. Golub, A. M. and Kalibabchuk, V. A. (1967) Zh. Neorg. Khim., 12, 2370–6; Russ. J. Inorg. Chem., 12, 1249–53.Google Scholar
  340. Golub, A. M., Dabeka, R. V., and Koval, V. T. (1974) Komplexobrazovanie Ekstr. Aktinoidov Lantanoidov, 97–101.Google Scholar
  341. Gorbunov, L. V., Desyatnik, V. N., Raspopin, S. P., and Trifonov, I. I. (1974) Zh. Neorg. Khim., 19, 3093–5; Russ. J. Inorg. Chem., 19, 1692–3.Google Scholar
  342. Gordon, J. E., Montgomery, H., Noer, R. J., Pickett, G. R., and Tobóu, R. (1966) Phys. Rev., 152, 432–7.Google Scholar
  343. Gouder, T., Havela, L., Black, L., Wastin, F., Rebizant, J., Boulet, P., Bouexiere, D., Heathman, S., and Idiri, M. (2002) J. Alloys Compds, 336, 73–6.Google Scholar
  344. Graham, J. and McTaggart, F. K. (1960) Aust. J. Chem., 13, 67–73.Google Scholar
  345. Gray, A. L. (1985) Spectrochim. Acta, 40B, 1525–37.Google Scholar
  346. Greiner, J. D. and Smith, J. F. (1971) Phys. Rev. B., 4, 3275–7.Google Scholar
  347. Greis, O., Bohres, E. W., and Schwochau, K. (1977) Z. Anorg. Allg. Chem., 433, 111–8.Google Scholar
  348. Grenthe, I. and Lagerman, B. (1991) Acta Chem. Scand., 45, 231–8.Google Scholar
  349. Grenthe, I., Fuger, J., Konings, R. J. M., Lemire, R. J., Muller, A. B., Nguyen-Trung, C., and Wanner, H. (1992) OECD, NEA-TDB: Chemical Thermodynamics, vol. 1, The Chemical Thermodynamics of Uranium, Elsevier, North-Holland, Amsterdam, pp. 683–98.Google Scholar
  350. Grossmann, H. (1905) Z. Anorg. Chem., 44, 229–36.Google Scholar
  351. Gudaitis, M. N., Desyatnik, V. N., Raspopin, S. P., and Trifonov, I. I. (1972) Zh. Neorg. Khim., 17, 2841–2; Russ. J. Inorg. Chem., 17, 1489.Google Scholar
  352. Guertin, R. P., Bulman, J. B., Huber, J. G., and Parks, R. D. (1980) Physica B/C, 102, 151–4.Google Scholar
  353. Guery, J., Gao, Y., Guery, C., and Jacoboni, C. (1994) Eur. J. Solid State Inorg. Chem., 31, 187–96.Google Scholar
  354. Guggenberger, L. J. and Jacobson, R. A. (1968) Inorg. Chem., 7, 2257–60.Google Scholar
  355. Guillaumont, R. (1983) Radiochim. Acta, 32, 129–37.Google Scholar
  356. Gutowska, M., Wanklyn, B. M., and Porcher, P. (1981) Physica B, 111, 257.Google Scholar
  357. Guymont, M. (1977) C. R. Acad. Sci. Paris C, 285, 345–8.Google Scholar
  358. Habash, J. and Smith, A. J. (1983) Acta Crystallogr. C, 39, 413–5.Google Scholar
  359. Habash, J. and Smith, A. J. (1990) Acta Crystallogr. C, 46, 957–60.Google Scholar
  360. Habash, J. and Smith, A. J. (1992) J. Crystallogr. Spectr. Res., 22, 21–4.Google Scholar
  361. Haber, L. (1897) Monatsh. Chem., 18, 687–99.Google Scholar
  362. Hagemann, F., Katzin, L. I., Studier, M. H., Ghiorso, A., and Seaborg, G. T. (1947) Phys. Rev., 72, 252.Google Scholar
  363. Hagemann, F., Katzin, L. I., Studier, M. H., Seaborg, G. T., and Ghiorso, A. (1950) Phys. Rev., 79, 435–43.Google Scholar
  364. Halla, F. (1912) Z. Anorg. Chem., 79, 260–2.Google Scholar
  365. Hamaker, J. W. and Koch, C. W. (1952a) in Katzin (1952), paper 7.2, p. 318.Google Scholar
  366. Hamaker, J. W. and Koch, C. W. (1952b) in Katzin (1952), paper 7.3, p. 339.Google Scholar
  367. Hardman, K., Rhyne, J. J., Smith, K., and Wallace, W. E. (1980) J. Less Common Metals, 74, 97–102.Google Scholar
  368. Hardman, K., Rhyne, J. J., Prince, E., Smith, H. K., Malik, S. K., and Wallace, W. E. (1982) Rare Earth Mod. Sci. Technol., 3, 477–8.Google Scholar
  369. Hardman-Rhyne, K., Smith, H. K., and Wallace, W. E. (1984) J. Less Common Metals, 96, 201–11.Google Scholar
  370. Harris, L. A., White, G. D., and Thoma, R. E. (1959) J. Phys. Chem., 63, 1974–5.Google Scholar
  371. Harris, L. A. (1960) Acta Crystallogr., 13, 502.Google Scholar
  372. Harris, L. A. and Finch, C. B. (1972) Am. Mineral., 57, 1894–8.Google Scholar
  373. Hasty, R. A. and Boggs, J. E. (1971) J. Inorg. Nucl. Chem., 33, 874–6.Google Scholar
  374. Hauser, O. and Wirth, F. (1908) Z. Anorg. Chem., 60, 242–6.Google Scholar
  375. Hayek, E. and Rehner, T. (1949) Experientia, 5, 114.Google Scholar
  376. Hayek, E., Rehner, T., and Frank, A. (1951) Monatsh. Chem., 82, 575–87.Google Scholar
  377. Hecht, F. (1928) Z. Anal. Chem., 75, 28–39.Google Scholar
  378. Hecht, F. and Ehrmann, W. (1935) Z. Anal. Chem.,100, 87–98.Google Scholar
  379. Heindl, F. and Loriers, J. (1974) Bull. Soc. Chim. Fr., 377–8.Google Scholar
  380. Helean, K. B., Navrotsky A., Lumpkin, G. R., Colella, M., Lian, J., Ewing, R. C., Ebbinghaus B., and Catalano, J. G. (2003) J. Nucl. Mater., 320, 231–44.Google Scholar
  381. Henkie, Z., Markowski, P. J., and Zdanowicz, E. (1976) Proc. Second Int. Conf. on Electronic Structure of Actinides, Wroclaw (Poland), pp. 425–9.Google Scholar
  382. Henkie, Z. and Markowski, P. J. (1978) J. Phys. Chem. Solids, 39, 39–43.Google Scholar
  383. Henkie, Z. and Wawryk, R. (2002) Solid State Commun., 122, 1–6.Google Scholar
  384. Hentz, F. C. and Johnson, J. S. (1966) Inorg. Chem., 5, 1337–44.Google Scholar
  385. Hess, R. F., Abney, K. D., Burris, J. L., Hochheimer, H. D., and Dorhout, P. K. (2001)Inorg. Chem., 40, 2851–9.Google Scholar
  386. Hiebl, K., Rogl, P., Uhl, E., and Sienko, R. J. (1980) Inorg. Chem., 19, 3316–20.Google Scholar
  387. Hietanen, S. and Sillen, L. G. (1964) Acta Chem. Scand., 18, 1018–9.Google Scholar
  388. Hildenbrand, D. L. and Murad, E. (1974a) J. Chem. Phys., 61, 5466–7.Google Scholar
  389. Hildenbrand, D. L. and Murad, E. (1974b) J. Chem. Phys., 61, 1232–7.Google Scholar
  390. Hildenbrand, D. L. and Lau, K. H. (1990) J. Chem. Phys., 93, 5983–9.Google Scholar
  391. Hill, N. A. and Cavin, O. B. (1964) J. Am. Ceram. Soc., 47, 360–1.Google Scholar
  392. Hill, R. and Lieser, K. H. (1992)Fresenius J. Anal. Chem., 342, 337–40.Google Scholar
  393. Hoffmann, A. (1935) Z. Phys. Chem. B, 28, 65–77.Google Scholar
  394. Hogfeldt, E. (1982) Stability Constants of Metal-ion Complexes. part A, Inorganic Ligands, IUPAC Chemical Data Series, no. 21, Pergamon Press, Oxford, p. 122.Google Scholar
  395. Hönigschmid, O. (1906a) Monatsh. Chem., 27, 205–12.Google Scholar
  396. Hönigschmid, O. (1906b) C. R. Acad. Sci. Paris, 142, 157–9.Google Scholar
  397. Hovey, J. K. (1997) J. Phys. Chem., 101, 4321–34.Google Scholar
  398. Hubert, S., Barthelet, K., Fourest, B., Lagarde, G., Dacheux, N., and Baglan, N. (2001) J. Nucl. Mater., 297, 206–13.Google Scholar
  399. Hubin, R. (1971) Spectrochim. Acta, 27A, 311–9.Google Scholar
  400. Hüfken, T., Witte, A. M., and Jeitschko, W. (1998) J. Alloys Compds, 266, 158–63.Google Scholar
  401. Hüfken, T., Witte, A. M., and Jeitschko, W. (1999) J. Solid State Chem., 142, 279–87.Google Scholar
  402. Hulliger, F. (1966) Nature, 209, 499–500; (1968) J. Less Common Metals, 16, 113–7.Google Scholar
  403. Hunt, E. B. and Rundle, R. E. (1951) J. Am. Chem. Soc., 73, 4777–81.Google Scholar
  404. Huyghe, M., Lee, M.-R., Quarton, M., and Robert, F. (1991a) Acta Crystallogr., C47, 244–6.Google Scholar
  405. Huyghe, M., Lee, M.-R., Quarton, M., and Robert, F. (1991b) Acta Crystallogr., C47, 1797–9.Google Scholar
  406. Huyghe, M., Lee, M.-R., Jaulmes, S., and Quarton, M. (1993) Acta Crystallogr., C49, 950–4.Google Scholar
  407. Hyde, E. K. (1952) in Katzin (1952), paper 9.7, p. 554.Google Scholar
  408. Hyde, E. K. and Wolf, M. J. (1952) in Katzin (1952), paper 3.12, p. 197.Google Scholar
  409. Hyde, E. K. (1960) The Radiochemistry of Thorium, NAS-NS–3004, National Research Council, Springfield, VA.Google Scholar
  410. Imre, L. (1927) Z. Anorg. Allg. Chem., 164, 214–8; 166, 1–15.Google Scholar
  411. International Critical Tables (1928) vol. 3, McGraw-Hill, New York, pp. 51–95.Google Scholar
  412. Ionova, G., Madic, C., and Guillaumont, R. (1998) Polyhedron, 17, 1991–5.Google Scholar
  413. Isnard, O., Soubeyroux, J. L., Fruchart, D., Jacobs, T. H., and Buschow, K. H. J. (1992a) J. Phys.: Conden. Matter, 4, 6367–74.Google Scholar
  414. Isnard, O., Soubeyroux, J. L., Fruchart, D., Jacobs, T. H., and Buschow, K. H. J. (1992b) J. Alloys Compds, 186, 135–45.Google Scholar
  415. Isnard, O., Miraglia, S., Soubeyroux, J. L., Fruchart, D., Deportes, J., and Buschow, K. H. J. (1993) J. Phys.: Cond. Matter, 5, 5481–90.Google Scholar
  416. Jacob, I. (1981) Solid State Commun., 40, 1015.Google Scholar
  417. Jacobson, E. L., Freeman, R. D., Tharp, A. G., and Searcy, A. W. (1956) J. Am. Chem. Soc., 78, 4850–2.Google Scholar
  418. Jacoby, R. (1901) Die Doppelnitrate des vierwertigen Ceriums und des Thoriums, Berlin, as cited in Mellor, J. W. (1941) A Comprehensive Treatise on Inorganic and Theoretical Chemistry, vol. VII, Longmans, Green & Co., London, p. 251.Google Scholar
  419. James, W. J. and Straumanis, M. E. (1956) Acta Crystallogr, 9, 376–9.Google Scholar
  420. Jannasch, P. and Schilling, J. (1905) J. Prakt. Chem. 72, 26–34.Google Scholar
  421. Javorsky, C. A. and Benz, R. (1967) J. Nucl. Mater., 23, 192–8.Google Scholar
  422. Jeitschko, W., Pollmeier, P. G., and Meisen, U. (1993) J. Alloys Compds, 196, 105–9.Google Scholar
  423. Jere, G. V. and Santhamma, M. T. (1977) J. Less Common Metals, 55, 281–4.Google Scholar
  424. Jiang, F. S. and Kuroda, P. K. (1987) Radiochim. Acta,42, 23–28.Google Scholar
  425. Joao, A., Bigot, S., and Fromage, F. (1987) Bull. Soc. Chim., 1, 42–4.Google Scholar
  426. Joao, A., Burrows, H. D., Zikovsky, L., and Lipponen, M. (1995) Radiochim. Acta, 68, 177–83.Google Scholar
  427. Johansson, G. (1968a) Acta Chem. Scand., 22, 389–98.Google Scholar
  428. Johansson, G. (1968b) Acta Chem. Scand., 22, 399–409.Google Scholar
  429. Johansson, G., Magini, M., and Ohtaki, H. (1991) J. Solution Chem., 20(8), 775–92.Google Scholar
  430. Johnson, G. L., Kelly, M. I., and Cuneo, D. R. (1965) J. Inorg. Nucl. Chem., 27, 1787–91.Google Scholar
  431. Johnson, K. R. (1889) Berl. Dtsch. Chem. Ges., 22, 976–80.Google Scholar
  432. Jones, D. W., McColm, I. J., Steadman, R., and Yerkess, J. (1987) J. Solid State Chem., 68, 219–26.Google Scholar
  433. Juza, R. and Gerke, H. (1968) Z. Anorg. Allg. Chem., 363, 245–57.Google Scholar
  434. Juza, R. and Sievers, R. (1968) Z. Anorg. Allg. Chem., 363, 258–72.Google Scholar
  435. Kahn-Harari, A. (1971) Rev. Int. Hautes Temp. Refract., 8, 71–84.Google Scholar
  436. Kalina, D. G., Marks, T. J., and Wachter, W. A. (1977) J. Am. Chem. Soc., 99, 3877–9.Google Scholar
  437. Kanellakopulos, B., Dornberger, E., and Baumgärtner, F. (1974) Inorg. Nucl. Chem. Lett., 10, 155–60.Google Scholar
  438. Kaplan, G. E. (1956) Proc. Int. Conf. on the Peaceful Uses of Atomic Energy, Geneva, 1955, vol. 8, pp. 184–7.Google Scholar
  439. Karabasch, A. G. (1958) Zh. Neorg. Khim., 3, 986–95.Google Scholar
  440. Karstens, H. (1909) Z. Elektrochem., 15, 33–4.Google Scholar
  441. Katz, J. J. and Seaborg, G. T. (1957)The Chemistry of the Actinide Elements, Methuen, London, 58.Google Scholar
  442. Katzin, L. I. (1944) Memorandum to G. T. Seaborg on October 14.Google Scholar
  443. Katzin, L. I. (1948) Report AECD-2213.Google Scholar
  444. Katzin, L. I. (1952) Production and Separation of U 233: Collected Papers, Natl. Nucl. En. Ser., Div. IV, 17B, Report TID–5223, USAEC, Oak Ridge, Tenn.Google Scholar
  445. Katzin, L. I., Ferraro, J. R., Wendlandt, W. W., and McBeth, R. L. (1956) J. Am. Chem. Soc., 78, 5139–44.Google Scholar
  446. Katzin, L. I. (1958) J. Am. Chem. Soc., 36, 5908–10.Google Scholar
  447. Katzin, L. I. and Gulyas, E. (1960) J. Phys. Chem.,64, 1347–50.Google Scholar
  448. Katzin, L. I., Kaplan, L., and Seitz, T. (1962) Inorg. Chem., 1, 963–4.Google Scholar
  449. Katzin, L. I. (1966) in Transition Metal Chemistry, A Series of Advances, vol. 3 (ed. R. L. Carlin), Marcel Dekker, New York, pp. 56–88.Google Scholar
  450. Katzin, L. I. (1983) Kirk-Othmer Encyclopoedia of Chemical Technology, 3rd edn, 22, 989–1002.Google Scholar
  451. Kauffmann, O. (1899) PhD Thesis, University of Rostok, Germany.Google Scholar
  452. Keenan, T. K. (1966) Inorg. Nucl. Chem. Lett., 2, 153–6; 211–4.Google Scholar
  453. Keil, R. (1981) Fresenius Z. Anal. Chem., 305, 374–8.Google Scholar
  454. Keller, C. (1965) J. Inorg. Nucl. Chem., 27, 1233–46.Google Scholar
  455. Keller, C. and Salzer, M. (1967) J. Inorg. Nucl. Chem., 29, 2925–34.Google Scholar
  456. Kemper, C. P. and Krikorian, N. H. (1962) J. Less Common Metals, 4, 244–51.Google Scholar
  457. Keskar, M., Kasar, U. M., and Singh Mudher, K. D. (2000)J. Nucl. Mater., 282, 146–51.Google Scholar
  458. Khan Malek, C., Péneau, A., and Guibé, L. (1982) J. Mol. Struct., 83, 201–12.Google Scholar
  459. Khan, A. S. and Peterson, D. T. (1976) J. Less Common Metals, 50, 103–6.Google Scholar
  460. Kharitonov, Yu. Ya., Molodkin, A. K., and Balakaeva, T. A. (1969) Zh. Neorg. Khim., 14, 2761–7; Russ. J. Inorg.Chem., 14, 1453–6.Google Scholar
  461. King, E. L. (1945) Ph.D. Thesis, University of California.Google Scholar
  462. Kiriyama, T. and Kuroda, R. (1978) Anal. Chim. Acta, 101, 207–10.Google Scholar
  463. Klapötke, T. M. and Schulz, A. (1997) Polyhedron, 16(6), 989–91.Google Scholar
  464. Klinkenberg, P. F. A. and Lang, R. J. (1949) Physica, 15, 774–88.Google Scholar
  465. Klyuchnikov, V. M., Zaitsev, L. M., and Apraksin, I. A. (1972) Zh. Neorg. Khim., 17, 2269–73.Google Scholar
  466. Knacke, O., Müller, F., and van Rensen, E. (1972a) Phys. Chem., 80, 82–90.Google Scholar
  467. Knacke, O., Müller, F., and van Rensen, E. (1972b) Z. Phys. Chem., 80, 91–100.Google Scholar
  468. Knacke, O., Münstermann, E., and Probst, H. (1978) Ber. Bunsen Ges., 82, 154–9.Google Scholar
  469. Koelling, D. D. and Freeman, A. J. (1971) Solid State Commun., 9, 1369–72.Google Scholar
  470. Köhler, E., Brüser, W., and Thiele, K.-H. (1974) J. Organomet. Chem., 76, 235–40.Google Scholar
  471. Köhler, S., Deißenberger, R., Eberhardt, K., Erdmann, N., Herrmann, G., Huber, G., Kratz, J. V., Nunnemann, M., Passler, G., Rao, P. M., Riegel, J., Trautmann, N., and Wendt, K (1997) Spectrochim. Acta B, 52, 717–26.Google Scholar
  472. Kohlmann, H. and Beck, H. P. (1999) Z. Kristallogr., 214, 341–5.Google Scholar
  473. Kohlschütter, V. (1901) Liebig's Ann., 317, 158–89.Google Scholar
  474. Kojic-Prodic, B., Slukic, M., and Ruzic Toros, Z. (1982) Acta Crystallogr., B38, 67–71.Google Scholar
  475. Kolb, A., Melzer, G., Merckle, A., and Teufel, C. (1908) Z. Anorg. Chem., 60, 123–33.Google Scholar
  476. Kolb, A. (1913) Z. Anorg. Chem., 83, 143–8.Google Scholar
  477. Konrad, T. and Jeitschko, W. (1995) Z. Naturforsch., 50b, 1195–9.Google Scholar
  478. Konrad, T., Jeitschko, W., Danebrock, M. E., and Evers, C. B. H. (1996) J. Alloys Compds, 234, 56–61.Google Scholar
  479. Koppel, I. and Holtkamp, H. (1910) Z. Anorg. Chem.,67, 266–92.Google Scholar
  480. Korobkov, I., Gambarotta, S., and Yap, G. P. A. (2003) Angew. Chem, 115, 838–42.Google Scholar
  481. Korshunov, B. G. and Drobot, D. V. (1971) Zh. Neorg. Khim., 16, 556–7.Google Scholar
  482. Korst, W. L. (1962) Acta Crystallogr., 15, 287–8.Google Scholar
  483. Koulkès-Pujo, A. M., Martin-Rovet, D., Folcher, G., Plissionier, M., and Pascal, J. L. (1982) Nouv. J. Chim., 6, 571–2.Google Scholar
  484. Kovalchuk,E. L., Smolnikov, A. A., and Temmoev, A. H. (1982) Phys. Appl., 8, 297–303.Google Scholar
  485. Kraus, K. A. and Holmberg, R. W. (1954) J. Phys. Chem., 58, 325–30.Google Scholar
  486. Kravchenko, E. A., Ivanova, O. M., and Ilin, E. G. (1975) Zh. Neorg. Khim., 20, 2556–7.Google Scholar
  487. Krupa, J. C., Khan Malek, C., Delamoye, P., Moine, B., and Pedrini, C. (1987) Phys. Status Solidi B, 140, 289–300.Google Scholar
  488. Krupa, J. C., Delamoye, P., and Milicic-Tang, A. (1995)Zh. Prikl. Spek., 62, 167–78.Google Scholar
  489. Krupka, M. C. (1970) J. Less Common Metals, 20, 135–40.Google Scholar
  490. Krüss, G. and Volck, C. (1894) Z. Anorg. Chem., 5, 75–9.Google Scholar
  491. Krüss, G. and Nilson, L. F. (1887a) Z. Phys. Chem., 1, 301–6.Google Scholar
  492. Krüss, G. and Nilson, L. F. (1887b) Ber. Dtsch. Chem. Ges., 20, 1665–76.Google Scholar
  493. Krüss, G. (1894) Z. Anorg. Chem., 6, 49–56.Google Scholar
  494. Ku, H. C., Meisner, G. P., Acker, F., and Johnston, D. C. (1980) Solid State Commun., 35, 91–6.Google Scholar
  495. Kumar, N. and Tuck, D. G. (1983) Inorg. Chem., 22, 1951–2.Google Scholar
  496. Lafferty, J. M. (1951) J. Appl. Phys., 22, 299–309.Google Scholar
  497. Laligant, Y., Le Bail, A., Avignant, D., Cousseins, J. C., and Ferey, G. (1989) J. Solid State Chem., 80, 206–12.Google Scholar
  498. Laligant, Y., Ferey, G., El Ghozzi, M., and Avignant, D. (1992) Eur. J. Solid State Inorg. Chem., 29, 497–504.Google Scholar
  499. Lam, D. J., Darby, J. B. Jr, and Nevitt, M. V. (1974) in The Actinides: Electronic Structure and Related Properties, ch. 4 (eds. A. J. Freeman and J. B. Darby), Academic Press, New York.Google Scholar
  500. Langer, S., Baldwin, N., Gantzel, P., Kester, F., and Hancock, C. (1964) in Nuclear Metallurgy, vol. 10 (eds. J. T. Waber, P. Chiotti, and W. N. Miner), Edward Bros., Ann Arbor, p. 359.Google Scholar
  501. Langmuir, D. and Herman, J. S. (1980) Geochim. Cosmochim. Acta, 44, 1753–66.Google Scholar
  502. Larson, E. M., Eller, P. G., Cremers, T. L., Penneman, R. A., and Herrick, C. C. (1989) Acta Crystallogr., C45, 1669–72.Google Scholar
  503. Lau, K. F., Vaughan, R. W., and Satterthwaite, C. B. (1977) Phys. Rev. B, 15, 2449–57.Google Scholar
  504. Laubereau, P. G., Ganguly, J., Burns, J. H., Benjamin, B. M., Atwood, J. L., and Selbin, J. (1971) Inorg. Chem., 10, 2274–80.Google Scholar
  505. Laubscher, A. E. and Fouché, K. F. (1971) J. Inorg. Nucl. Chem., 33, 3521–35.Google Scholar
  506. Laud, K. R. (1971) J. Am. Ceram. Soc., 54, 296–8.Google Scholar
  507. Laügt (1973) J. Appl. Crystallogr., 6, 299–301.Google Scholar
  508. Launay, S. and Rimsky, A. (1980) Acta Crystallogr., B36, 910–2.Google Scholar
  509. Launay, S., Mahe, P., Quarton, M., and Robert, F., J. (1992) J. Solid State Chem., 97, 305–13.Google Scholar
  510. Launay, S., Jaulmes, S., Lucas, F., and Quarton, M. (1998) J. Solid State Chem., 136, 199–205.Google Scholar
  511. Le Berre, F., Boucher, E., Allain, M., and Courbion, G. (2000) J. Mater. Chem., 10, 2578–86.Google Scholar
  512. Le Flem, G. (1967) Thése de Doctorat, Bordeaux.Google Scholar
  513. Lebeau, P. and Damiens, A. (1913) C. R. Acad. Sci. Paris, 156, 1987–9.Google Scholar
  514. Leber, A. (1927) Z. Anorg. Allg. Chem., 166, 16–26.Google Scholar
  515. Leciejewicz, J., Siek, S., and Szytula, A. (1988) J. Less Common Metals, 144, 9–13.Google Scholar
  516. Lefèbvre, J. (1957) Bull. Soc. Chim., 14, 227–33.Google Scholar
  517. Le Flem, G. and Hagenmuller, P. (1964) Rev. Hautes Temp. Refract., 1, 149–52.Google Scholar
  518. Le Flem, G., Hardy, A., and Hagenmuller, P. (1965) C. R. Acad. Sci. Paris C, 260, 1663–5.Google Scholar
  519. Lesinsky, J. and Gundlich, C. (1897) Z. Anorg. Chem., 15, 81–3.Google Scholar
  520. Le Vanda, C., Solar, J. R., and Streitwieser, A. Jr (1980) J. Am. Chem. Soc., 102, 2128–9.Google Scholar
  521. Lipkind, H. and Newton, A. S. (1952) in Katzin (1952), paper 7.8, p. 398.Google Scholar
  522. Li, Y.-P., Krivovichev, S. V., and Burns, P. C. (2000) Am. Miner., 85 1521–5.Google Scholar
  523. Liu, C., Zhao, Z., Yang, X., Ye, X., and Wu, Y. (1997) Sci. China, Ser. A: Math., Phys., Astron., 40, 1210.Google Scholar
  524. Lobanov, M. V., Li, S., and Greenblatt, M. (2003) Chem. Mater., 15, 1302–8.Google Scholar
  525. Louer, M., Brochu, R., Louer, D., Arsalane, S., and Ziyad, M. (1995) Acta Crystallogr., B51, 908–13.Google Scholar
  526. Loye, O., Laurelle, P., and Harari, A. (1968) C. R. Acad. Sci. Paris C, 266, 454–6.Google Scholar
  527. Luengo, C. A., Cotiguola, J. M., Sereni, J. G., Sweedler, A. R., and Maple, M. B. (1972a) Proc. 13th Int. Conf. Low Temp. Phys., Boulder, Colorado, 585–9.Google Scholar
  528. Luengo, C. A., Cotiguola, J. M., Sereni, J. G., Sweedler, A. R., Maple, M. B., and Huber, J. G. (1972b) Solid State Commun., 10, 459–63.Google Scholar
  529. Lundgren, G. (1950) Ark. Kem., 2, 535–49.Google Scholar
  530. Lundgren, G. and Sillen, L. G. (1949) Naturwiss., 36, 345–6.Google Scholar
  531. Madariaga, G., Perez-Mato, J. M., and Aramburu, I. (1993) Acta Crystallogr., B49, 244–54.Google Scholar
  532. Magini, M., Cabrini, A., Scibona, G., Johansson, G., and Sandström, M. (1976) Acta Chem. Scand. A, 30, 437–47.Google Scholar
  533. Mahalingham, A., Kalpana, G., Kansalaya, B., Palanivel, B., and Rajagopalan, M. (1993) Phys. Status Solidi B, 178, 185–97.Google Scholar
  534. Manriquez, J. M., Fagan, P. J., and Marks, T. J. (1978) J. Am. Chem. Soc., 100, 3939–41.Google Scholar
  535. Manske, W. J. (1965) Luminescent Gas Mantles and Their Mountings, Minnesota Mining and Manufacturing Company, 32 pp.Google Scholar
  536. Manuelli, C. and Gasparinetti, B. (1902) Gazz. Chim. Ital., 32, 523–31.Google Scholar
  537. Marcus, Y. and Kertes, A. S. (1969) Ion Exchange and Solvent Extraction of Metal Complexes, Wiley-Interscience, London.Google Scholar
  538. Marden, J. W. and Rentschler, H. C. (1927) Ind. Eng. Chem., 19, 97–103.Google Scholar
  539. Marks, T. J. and Wacher, W. A. (1976) J. Am. Chem. Soc., 98, 703–10.Google Scholar
  540. Marks, T. J., Seyam, A. M., and Wachter, W. A. (1976) Inorg. Synth., 16, 147–51.Google Scholar
  541. Mason, D. M. (1964) Technical Report – Institute of Gas Technology (Chicago), No. 9, 19 pp.Google Scholar
  542. Mason, J. T., Jha, M. C., and Chiotti, P. (1974a) J. Less Common Metals, 34, 143–51.Google Scholar
  543. Mason, J. T., Jha, M. C., Bailey, D. M., and Chiotti, P. (1974b) J. Less Common Metals, 35, 331–8.Google Scholar
  544. Martinot, L. and Fuger, J. (1985) in Standard Potentials in Aqueous Solution (eds. A. J. Bard, R. Parsons, and J. Jordan), IUPAC, Marcel Dekker, New York, ch. 21, p. 640.Google Scholar
  545. Matignon, C. (1900) C. R. Acad. Sci. Paris, 131, 837–9.Google Scholar
  546. Matignon, C. and Delepine, M. (1901) C. R. Acad. Sci. Paris., 132, 36–8.Google Scholar
  547. Matignon, C. A. and Bourion, R. (1904) C. R. Acad. Sci. Paris, 138, 631–3.Google Scholar
  548. Matignon, C. and Delepine, M. (1907) Ann. chim. phys., 10, 130–44.Google Scholar
  549. Matignon, C. A. (1908) C. R. Acad. Sci. Paris, 147, 1292–3.Google Scholar
  550. Matkovic, B. and Sljukic, M. (1965) Croat. Chem. Acta, 37, 115–6.Google Scholar
  551. Matkovic, B., Sljukic, M., and Prodic, B. (1966) Croat. Chem. Acta, 38, 69–70.Google Scholar
  552. Matkovic, B., Prodic, B., and Sljukic, M. (1968) Bull. Soc. Chim. Fr., 1777–9.Google Scholar
  553. Matkovic, B., Kojic-Prodic, B., Sljukic, M., Topic, M., Willett, R. D., and Pullen, F. (1970) Inorg. Chim. Acta, 4, 571–6.Google Scholar
  554. Matthews, J. M. (1898) J. Am. Chem. Soc., 20, 815–39; 839–43.Google Scholar
  555. Maxim, P., Müller, R., and Schnabel, B. (1979) Physica, 24, 53–6.Google Scholar
  556. Mayankutty, P. C., Jangida, B. L., and Sundaresan, M. (1982) Separat. Sci. Technol., 17, 1327–37.Google Scholar
  557. Mazeina, L., Ushakov, S. V., Navrotsky, A., and Boatner, L. A. (2005)Geochim. Cosmochim. Acta 69, 4675–783.Google Scholar
  558. Meisel, K. (1939) Z. Anorg. Allg. Chem., 240, 300–2.Google Scholar
  559. Meissner, W. (1929) Naturwissenschaften, 17, 390–1; (1930) Z. Phys., 61, 191–8.Google Scholar
  560. Mellor, J. W. (1941) A Comprehensive Treatise on Inorganic and Theoretical Chemistry, vol. VII, Longmans, Green & Co., London, p. 241.Google Scholar
  561. Mentzen, B. F. (1969)Rev. Chim. Miner., 6, 713–25.Google Scholar
  562. Mentzen, B. F. (1971a) J. Solid State Chem., 3, 12–9.Google Scholar
  563. Mentzen, B. F. (1971b) J. Solid State Chem., 3, 20–5.Google Scholar
  564. Merigou, C., Le Du, J. F., Genet, M., Ouillon, N., and Chopin, T. (1995) New J. Chem., 19, 1037–45.Google Scholar
  565. Merkusheva, S. A., Skorik, N. A., Kumok, V. N., and Serebrennikov, V. V. (1967) Radiokhimiya, 9, 723–5; Sov. Radiochem, 9, 683–5.Google Scholar
  566. Metzger, F. J. and Zons, F. W. (1912) Ind. Eng. Chem., 4, 493–5.Google Scholar
  567. Meyer, R. J. and Jacoby, R. (1901) Z. Anorg Chem., 27, 359–89.Google Scholar
  568. Meyer, R. J. and Gumperz, A. (1905) Berl. Dtsch. Chem. Ges., 38, 817–25.Google Scholar
  569. Meyer, R. J. (1908) Z. Elektrochem., 14, 809–10; (1909) Z. Elektrochem., 15, 105–6.Google Scholar
  570. Meyerson, G. A. (1956) Proc. Int. Conf. on the Peaceful Uses of Atomic Energy, Geneva, 1955, vol. 8, pp. 188–93.Google Scholar
  571. Miekeley, N. and Küchler (1987) Inorg. Chim. Acta, 140, 315–9.Google Scholar
  572. Mikheev, N. B., Kulyhukin, S. A., and Kamenskaya, A. N. (1993) Radiokhimiya, 35, 1; Sov. Radiochem., 35, 249.Google Scholar
  573. Milic, N. A. (1971) Acta Chem. Scand., 25, 2487–98.Google Scholar
  574. Milic, N. B. (1981) J. Chem. Soc. Dalton, 1445–9.Google Scholar
  575. Milic, N. A. and Suranji, T. M. (1982) Can. J. Chem., 60, 1298–303.Google Scholar
  576. Miller, J. F., Caton, R. H., and Satterthwaite, C. B. (1976) Phys. Rev. B, 14, 2795–800.Google Scholar
  577. Mintz, E. A., Moloy, K. G., Marks, T. J., and Day, V. W. (1982) J. Am Chem. Soc., 104, 4692–5.Google Scholar
  578. Misciatelli, P. (1929) Phil. Mag., 7, 670–4.Google Scholar
  579. Misciatelli, P. (1930a) Gazz. Chim. Ital., 60, 833–8.Google Scholar
  580. Misciatelli, P. (1930b) Gazz. Chim. Ital., 60, 882–5.Google Scholar
  581. Mitchell, R. H. and Chakhmouradian, A. R. (1999) Phys. Chem. Miner., 26, 396–405.Google Scholar
  582. Moissan, H. and Étard, A. (1896) C. R. Acad. Sci. Paris, 122, 573Google Scholar
  583. Moissan, H. and Étard, A. (1897) Ann. Chim. Phys., 7 (12), 427–32.Google Scholar
  584. Moissan, H. and Martinsen, M. (1905) C. R. Acad. Sci. Paris, 140, 1510–5.Google Scholar
  585. Moissan, H. and Hönigschmid, O. (1906) Ann. Chim. Phys., 8 (8), 182–92.Google Scholar
  586. Moll, H., Denecke, M. A., Jalilehvand, F., Sandström, M., and Grenthe, I. (1999) Inorg. Chem., 38, 1795–9.Google Scholar
  587. Molodkin, A. K., Skotnikova, E. G., and Arutyunyan, E. (1964) Zh. Neorg. Khim., 9, 2705–9; Russ. J. Inorg. Chem., 9, 1458–61.Google Scholar
  588. Molodkin, A. K., Petrov, K. I., Balakayeba, T. A., and Kuchumova, A. N. (1968a) Zh. Neorg. Khim., 13, 3209–15; Russ. J. Inorg. Chem., 13, 1654–7.Google Scholar
  589. Molodkin, A. K., Ivanova, O. M., Kozina, L. E., and Petrov, K. I. (1968b) Russ. J. Inorg. Chem., 13, 694–9.Google Scholar
  590. Molodkin, A. K., Balakayeva, T. A., and Kuchumova, A. N. (1970) Zh. Neorg. Khim., 15, 1152–3; Russ. J. Inorg. Chem., 15, 589–90.Google Scholar
  591. Molodkin, A. K., Belyakova, Z. V., and Ivanova, O. M. (1971) Zh. Neorg. Khim.,16, 1582–9; Russ. J. Inorg. Chem.,16, 835–9.Google Scholar
  592. Montignie, E. (1947) Bull. Soc. Chim. Fr., 748–9.Google Scholar
  593. Moodenbaugh, A. R., Johnston, D. C., Viswanathan, R., Shelton, R. N., Delong, L. E., and Fertig, W. A. (1978) J. Low Temp. Phys., 33, 175–203.Google Scholar
  594. Moon, H. C. (1989) Bull. Korean Chem. Soc., 10(3), 270–2.Google Scholar
  595. Mooney, R. C. L. (1949) Acta Crystallogr., 2, 189–91.Google Scholar
  596. Morss, L. R. and McCue, M. C. (1976) J. Chem. Eng. Data, 21, 337–41.Google Scholar
  597. Moriyama, H., Kitamura, A., Fujiwara, K., and Yamana, H. (1999) Radiochim. Acta, 87, 97–104.Google Scholar
  598. Morss, L. R. and McCue, M. C. (1976) J. Chem. Eng. Data, 21, 337–41.Google Scholar
  599. Moseley, P. T., Sanderson, S. W., and Wheeler, V. J. (1971) J. Inorg. Nucl. Chem., 33, 3975–6.Google Scholar
  600. Moss, M. A. and Jeitschko, W. (1989a) Z. Kristallogr., 186, 204–5.Google Scholar
  601. Moss, M. A. and Jeitschko, W. (1989b) Z. Kristallogr., 186, 204.Google Scholar
  602. Moss, M. A. and Jeitschko, W. (1991a) Z. Anorg. Allg. Chem., 603, 57–67.Google Scholar
  603. Moss, M. A. and Jeitschko, W. (1991b) Z. Metallkunde, 82, 669–74.Google Scholar
  604. Moskvin, A. I. and Essen, L. N. (1967) Russ. J. Inorg. Chem., 12, 359–62.Google Scholar
  605. Moskvin, A. I., Essen, L. N., and Bukhtiyarova, T. N. (1967) Russ. J. Inorg. Chem., 12, 1794–5.Google Scholar
  606. Moulin, C., Amekraz, B., Hubert, S., and Moulin, V. (2001) Anal. Chim. Acta, 441, 269–79.Google Scholar
  607. Moze, O., Brueck, E., de Boer, F. R., and Buschow, K. H. J. (1996) J. Magn. Magn. Mater., 152, 341–4.Google Scholar
  608. Mucker, K., Smith, G. S., Johnson, Q., and Elson, R. E. (1969) Acta Crystallogr. B, 25, 2362–5.Google Scholar
  609. Mueller, M. H., Beyerlein, R. A., Jorgensen, J. D., Brun, T. O., Satterthwaite, C. B., and Caton, R. (1977) J. Appl. Crystallogr., 10, 79–83.Google Scholar
  610. Müller, A. (1906) Berl. Dtsch. Chem. Ges., 39, 2857–9; (1908) Z. Anorg. Chem., 57, 311–22.Google Scholar
  611. Murthy, M. S. and Redhead, P. A. (1974) J. Vac. Sci. Technol., 11, 837–42.Google Scholar
  612. Murthy, P. R. and Patel, C. C. (1965) Indian Chem., 3, 134–5.Google Scholar
  613. Nabar, M. A., Mhatre, B. G., and Vasaikar, A. P. (1981) J. Appl. Crystallogr., 14, 469–70.Google Scholar
  614. Nabar, M. A. and Mhatre, B. G. (1982) J. Solid State Chem., 45, 135–9.Google Scholar
  615. Nabar, M. A. and Mangaonkar, S. S. (1991) Eur. J. Solid State Inorg. Chem., 28, 549–52.Google Scholar
  616. Nabar, M. A. and Mhatre, B. G. (2001) J. Alloys Compds, 323–4, 83–5.Google Scholar
  617. Nabivanets, B. I. and Kudritskaya, L. N. (1964) Ukr. Khim. Zh., 30, 891–5.Google Scholar
  618. Nakamura, T. (1974) Chem. Lett., 429–34.Google Scholar
  619. Nakashima, T. and Zimmer, E. (1984) Radiochim. Acta, 37, 165–7.Google Scholar
  620. Naray-Szabo, L. (1951) in Crystal Structures, vol. 1 (ed. R. W. Wyckoff), Interscience Publishers, New York, no. 1, 30.Google Scholar
  621. Narducci, A. A. and Ibers, J. A. (1998a) Chem. Mater., 10, 2811–23.Google Scholar
  622. Narducci, A. A. and Ibers, J. A. (1998b) Inorg. Chem., 37, 3798–801.Google Scholar
  623. Narducci, A. A. and Ibers, J. A. (2000) Inorg. Chem., 39, 688–91.Google Scholar
  624. Naslain, R., Etourneau, J., and Kasper, J. S. (1971) J. Solid State Chem., 3, 101–11.Google Scholar
  625. Nebel, D. and Urban, G. (1966) Z. Phys. Chem. (Leipzig), 233, 73–84.Google Scholar
  626. Neck, V. and Kim, J. I. (2000) Radiochim. Acta, 88, 815–22.Google Scholar
  627. Neck, V. and Kim, J. I. (2001) Radiochim. Acta, 89, 1–16.Google Scholar
  628. Neck, V (2002) ANDRA project: Solution Chemistry of Actinides and Radium; Lot 2: Cement water Environment, 3rd Annual and Final Report to Phase 3 “Experimental Programme”, FZK-INE 002/02 Report.Google Scholar
  629. Neck, V., Müller, R., Bouby, M., Altmaier, M., Rothe, J., Denecke, M. A., and Kim, J. I. (2002) Radiochim. Acta, 90, 485–94.Google Scholar
  630. Neish, A. C. (1904) MJ. Am. Chem. Soc., 26, 780–3.Google Scholar
  631. Neubert, A. and Zmbov, K. F. (1974) High Temp. Sci., 6, 303–8.Google Scholar
  632. Newton, A. S., Lipkind, H., Keller, W. H., and Iliff, J. E. (1952a) in Katzin (1952), paper 8.3, p. 419.Google Scholar
  633. Newton, A. S., Johnson, O., Tucker, W., Fisher, R. W., and Lipkind, H. (1952b) in Katzin (1952), paper 8.6, p. 462.Google Scholar
  634. Nilson, L. F. (1876) Berl. Dtsch. Chem. Ges., 9, 1142.Google Scholar
  635. Nilson, L. F. (1882a) Berl. Dtsch. Chem. Ges., 15, 2537.Google Scholar
  636. Nilson, L. F. (1882b) C. R. Acad. Sci. Paris, 95, 727.Google Scholar
  637. Nilson, L. F. (1883) Berl. Dtsch. Chem. Ges.,16, 153.Google Scholar
  638. NIST (2002) NIST Critically Selected Stability Constants of Metal Complexes:version 7.0.NIST Standard Reference Database 46, National Institute of Standards and Technology, Gaithersburg, MD.Google Scholar
  639. Noël, H. (1980) J. Inorg. Nucl. Chem., 42, 1715–7.Google Scholar
  640. Noël, H. and Potel, M. (1982) Acta Crystallogr. B, 38, 2444–5.Google Scholar
  641. Nordenskjöld, A. E. and Chydenius, J. J. (1860) Pogg. Ann., 110, 642.Google Scholar
  642. Nordenskjöld, A. E. (1861) Pogg. Ann., 114, 612.Google Scholar
  643. Nordling, C. and Hagström, S. (1964) Z. Phys., 178, 418–32.Google Scholar
  644. Nottorf, R. W., Wilson, A. S., Rundle, R. E., Newton, A. S., and Powell, J. E. (1952) in Katzin (1952), paper 7.6, p. 350.Google Scholar
  645. Nugent, L. J., Baybarz, R. D., Burnett, J. L., and Ryan, J. L. (1973) J. Phys. Chem., 77, 1528–39.Google Scholar
  646. Oesterreicher, H., Clinton, J., and Bittner, H. (1976) J. Solid State Chem.,16, 209–10.Google Scholar
  647. Oetting, F. L., Rand, M. H., and Ackermann, R. J. (1976) in The Chemical Thermody- namics of Actinide Elements and Compounds, part 1, The Actinide Elements (eds. F. L. Oetting, V. A. Medvedev, M. H. Rand, and E. F. Westrum Jr), STI/PUB/424/1, IAEA, Vienna.Google Scholar
  648. Östhols, E., Bruno, J., and Grenthe, I. (1994) Geochim. Cosmochim. Acta, 58, 613–23.Google Scholar
  649. Östhols, E. (1995) Radiochim. Acta, 68, 185–90.Google Scholar
  650. Ohta, T. and Sata, T. (1974) Yogyo Kyoka Shi, 82, 387–401.Google Scholar
  651. Olson., W. M. and Mulford, R. N. R. (1965) J. Phys. Chem., 69, 1223–6.Google Scholar
  652. Omejec, L. and Ban, Z. (1971) Z. Anorg Allg. Chem., 380, 111–7.Google Scholar
  653. Onosov, V. N. (1971) Tr. Ural Politekh. Inst., 193, 21–7.Google Scholar
  654. Oyamada, R. and Yoshida, S. (1975) J. Phys. Soc. Japan, 38, 1786.Google Scholar
  655. Pages, M. and Freundlich, W. (1971) C. R. Acad. Sci. Paris C, 272, 1861–2.Google Scholar
  656. Pai, M. R., Wani, B. N., and Gupta, N. M. (2002) J. Mater. Sci. Lett., 21, 1187–90.Google Scholar
  657. Palanivel, B., Kalpana, G., and Rajagopalan, M. (1995) Mater. Res. Soc. Symp. Proc., 364, 1095.Google Scholar
  658. Palisaar, A.-P. and Juza, R. (1971) Z. Anorg. Allg. Chem., 384, 1–11.Google Scholar
  659. Palmer, C. (1895) Am. Chem. J., 17, 374–9.Google Scholar
  660. Palmy, C, Flach, R., and De Trey, P. (1971) Physica, 55, 663–8.Google Scholar
  661. Parry, J. S., Cloke, F. G. N., Coles, S. J., and Hursthouse, M. B. (1999) J. Am. Chem. Soc., 121, 6867–71.Google Scholar
  662. Pastor, R. C. and Arita, K. (1974) Mater. Res. Bull, 9, 579–83.Google Scholar
  663. Paul, R. C, Singh, S., and Verma, R. D. (1981) J. Indian Chem. Soc, 58, 24–5.Google Scholar
  664. Pearson, W. B. (1985) Z. Kristallogr., 171, 23–39.Google Scholar
  665. Pedziwiatr, A. T., Wallace, W. E., and Burzo, E. (1986) J. Magn. Magn. Mater., 61, 177–82.Google Scholar
  666. Penneman, R. A., Ryan, R. R., and Rosenzweig, A. (1968) J. Chem. Soc. Chem. Commun., 990–1.Google Scholar
  667. Penneman, R. A., Ryan, R. R., and Kressin, I. K. (1971) Acta Crystallogr. B, 27, 2279–83.Google Scholar
  668. Penneman, R. A., Ryan, R. R., and Rosenzweig, A. (1973) Struct. Bonding, 13, 1–52.Google Scholar
  669. Penneman, R. A., Ryan, R. R., and Larson, A. C. (1976) Proc. Moscow Symp. on Chem. Transuranium Elements, 1972, Pergamon Press, Oxford,, pp. 265–9.Google Scholar
  670. Peppard, D. F. and Mason, G. W. (1963) Nucl Sci. Eng.,16, 382–8.Google Scholar
  671. Peppard, D. F. (1966) Adv. Inorg. Chem. Radiochem., 9, 1–80.Google Scholar
  672. Peppard, D. F. (1971) Annu. Rev. Nucl. Sci, 21, 365–96.Google Scholar
  673. Peretz, M., Zamir, D., and Hadari, Z. (1978) Phys. Rev. B, 18, 2059–65.Google Scholar
  674. Perezy Jorba, M., Mondange, H., and Collongues, R. (1961) Bull. Soc. Chim. Fr., 79–81.Google Scholar
  675. Perrin, D. D. (1982) Stability Constants of Metal-ion Complexes, Part B-Organic Ligands, IUPAC Chemical Data Series, n°21, Pergamon Press, Oxford.Google Scholar
  676. Peterson, D. T. and Schmidt, F. A. (1971) J. Less Common Metals, 24, 223–8.Google Scholar
  677. Peterson, D. T., Westlake, D. G., and Rexer, J. (1959) J. Am. Chem. Soc, 81, 4443–5.Google Scholar
  678. Pissarsjewski, L. (1900) J. Russ. Phys.-Chem. Ges., 32, 609–27.Google Scholar
  679. Pissarsjewsky, L. (1902) Z. Anorg. Chem., 31, 359–67.Google Scholar
  680. Pitman, D. T. and Das, D. K. (1960) J. Electrochem. Soc, 107, 763–6.Google Scholar
  681. Popovic, S. (1971) J. Appl. Cryst., 4, 240–1.Google Scholar
  682. Post, B., Moskowitz, D., and Glaser, F. S. (1956) J. Am. Chem. Soc, 78, 1800–2.Google Scholar
  683. Price, C. E. and Warren, I. H. (1965) J. Electrochem. Soc, 112, 510–3.Google Scholar
  684. Pulcinelli, S. H. and de Almeida Santos, R. H. (1989) J. Fluorine Chem., 42, 41–50.Google Scholar
  685. Quarton, M., Rimsky, H., and Freundlich, W. (1970) C. R. Acad. Sci. Paris C, 217, 1439–41.Google Scholar
  686. Quarton, M. and Kahn, A. (1979) Acta Crystallogr., C35, 2529–32.Google Scholar
  687. Rabinovich, D., Chamberlin, R. M., Scott, B. L., Nielsen, J. B., and Abney, K. D. (1997) Inorg. Chem., 36, 4216–7.Google Scholar
  688. Racah, G. (1950) Physica,16, 651–66.Google Scholar
  689. Radzewitz, H. (1966) Report KFK-433.Google Scholar
  690. Rai, H. C. and Sahoo, B. (1974) Indian J. Chem., 12, 1302–3.Google Scholar
  691. Rai, D., Swanson, J. L., and Ryan, J. L. (1987) Radiochim. Acta, 42, 35–41.Google Scholar
  692. Rai, D., Felmy, A. R., Moore, D. A., and Mason, M. J. (1995) Mater. Res. Soc. Symp. Proc., 353, 1143–50.Google Scholar
  693. Rai, D., Felmy, A. R., Sterner, S. M., Moore, D. A., Mason, M. J. M., and Novak, C. F. (1997) Radiochim. Acta, 79, 239–47.Google Scholar
  694. Ramamurthy, P. and Patel, C. C. (1963) J. Inorg. Nucl. Chem., 25, 310–2.Google Scholar
  695. Raman, V. and Jere, G. V. (1973a) Indian J. Chem., 11, 1318–9.Google Scholar
  696. Raman, V. and Jere, G. V. (1973b) Indian J. Chem., 11, 31–4.Google Scholar
  697. Rammelsberg, C. (1873) Pogg. Ann., 150, 198.Google Scholar
  698. Rand, M. H., von Goldbeck, O., Ferro, R., Girgis, K., and Dragoo, A. L. (1975) in Thorium: Physico-Chemical Properties of its Compounds and Alloys (ed. O. Kubaschewski), IAEA, Vienna.Google Scholar
  699. Raub, E. and Engles, M. (1947) Metallforsch., 2, 115–9.Google Scholar
  700. Raymond, D. P., Duffield, J. R., and Williams, D. R. (1987) Inorg. Chim. Acta., 140, 309–13.Google Scholar
  701. Reid, A. F. and Wailes, P. C. (1966) Inorg. Chem., 5, 1213–6.Google Scholar
  702. Ribas Bernat, J. G. and Ramos Alonso, V. (1976) Ion (Madrid), 36, 11–3.Google Scholar
  703. Ribas Bernat, J. G., Ramos Alonso, V., and Balcazar Pinal, J. L. (1977) Ann. Quim., 73, 1425–7.Google Scholar
  704. Rickard, C. E. F. and Woolard, D. C. (1978) Inorg. Nucl. Chem. Lett., 14, 207–10.Google Scholar
  705. Rogl, P. and Nowotny, H. (1974) Monatsh. Chem., 105, 1082–98.Google Scholar
  706. Rogl, P. (1978) J. Nucl. Mater., 73, 198–203.Google Scholar
  707. Rogl, P. (1979) J. Nucl. Mater., 79, 154–8.Google Scholar
  708. Rogl, P. and Fischer, P. (1989) J. Solid State Chem., 78, 294–300.Google Scholar
  709. Roll, W. and Dempster, A. J. (1952) in Katzin (1952), paper 9.22, p. 639.Google Scholar
  710. Rollefson, G. K. (1947) unpublished work cited in Report CB-3717.Google Scholar
  711. Roozeboom, H. W. B. (1890) Z. Phys. Chem., 5, 198–216.Google Scholar
  712. Rosengren, A., Ebbsjö, I., and Johansson, B. (1975) Phys. Rev. B, 12, 1337–42.Google Scholar
  713. Rosenheim, A. and Schilling, J. (1900) Berl. Dtsch. Chem. Ges., 33, 977–80.Google Scholar
  714. Rosenheim, A., Samter, V., and Davidsohn, J. (1903) Z. Anorg. Chem., 35, 424–53.Google Scholar
  715. Rosenheim, A. and Kelmy, M. (1932) Z. Anorg. Allg. Chem., 206, 31–43.Google Scholar
  716. Rothschild, B. F., Templeton, C. C., and Hall, N. F. (1948) J. Phys. Col. Chem., 52, 1006–20.Google Scholar
  717. Rothwarf, F. and Dubeck, L. W. (1973) Solid State Commun., 13, 1645–9.Google Scholar
  718. Rozen, A. M., Nikolotova, Z. A., Kartasheva, N. A., Luk'yanenko, N. G., and Bogatskii, A. V. (1982) Dokl. Akad. Nauk SSSR, 263, 1165–9.Google Scholar
  719. Ruff, O. and Brintzinger, H. (1923) Z. Anorg. Allg. Chem., 129, 267–75.Google Scholar
  720. Ruh, R. and Wadsley, A. D. (1966) Acta Crystallogr., 21, 974–8.Google Scholar
  721. Rundle, R. E., Wilson, A. S., Nottorf, R., and Rauchle, R. F. (1948a) Report AECD- 2120.Google Scholar
  722. Rundle, R. E., Baenziger, N. C., Wilson, A., McDonald, R. A., Chiotti, P., and Rundle, R. E. (1948b) Acta Crystallogr., 1, 180–7.unpublished data cited inGoogle Scholar
  723. Rundle, R. E., Schull, C. G., and Wollan, E. O. (1952) Acta Crystallogr., 5, 22–6.Google Scholar
  724. Ruzic Toros, Z., Kojic-Prodic, B., Liminga, R., and Popovic, S. (1974) Inorg. Chim. Acta, 8, 273–8.Google Scholar
  725. Ryan, R. R., Penneman, R. A., and Rosenzweig, A. (1969) Acta Crystallogr. B, 25, 1958–62.Google Scholar
  726. Ryan, R. R. and Penneman, R. A. (1971) Acta Crystallogr. B, 27, 829–33.Google Scholar
  727. Ryan, J. L. and Rai, D. (1987) Inorg. Chem., 26, 4140–2.Google Scholar
  728. Sachs, A. (1901) Z. Kristallogr., 34, 162–70.Google Scholar
  729. Sahoo, B. and Patnaik, D. (1961) Curr. Sci., 30, 293–4.Google Scholar
  730. Salzer, M. (1966) Report KFK-385.Google Scholar
  731. Sandström, M., Persson, I., Jalilehvand, F., Lindquist- Reis, P., Spangberg, D., and Hermansson, K. (2001) J. Synchrotron Radiat., 8, 657–9.Google Scholar
  732. Satoh, T. and Kumagai, K. (1971) Proc. 12th Int. Conf. Low Temp. Phys., Tokyo, 347–9.Google Scholar
  733. Satoh, T. and Kumagai, K. (1973) J. Phys. Soc. Jpn., 34, 391–5.Google Scholar
  734. Satpathy, K. C. and Sahoo, B. (1968) Curr. Sci., 37, 435–6.Google Scholar
  735. Satterthwaite, C. B. and Toepke, I. L. (1970) Phys. Rev. Lett., 25, 741–3.Google Scholar
  736. Satterthwaite, C. B. and Peterson, D. T. (1972) J. Less Common Metals, 26, 361–8.Google Scholar
  737. Scaife, D. E. and Wylie, A. W. (1964) J. Chem. Soc., 5450–8.Google Scholar
  738. Scaife, D. E., Turnbull, A. G., and Wylie, A. W. (1965) J. Chem. Soc., 1432–7.Google Scholar
  739. Scavnicar, S. and Prodic, B. (1965) Acta Crystallogr., 18, 698–702.Google Scholar
  740. Schleid, ThMeyer, and G., Morss, R. L. (1987) J. Less Common Metals, 132, 69–77.Google Scholar
  741. Schmid, W. F. and Mooney, R. W. (1964) J. Electrochem. Soc., 111, 668–73.Google Scholar
  742. Schmidt, H. G. and Wolf, G. (1975) Solid State Commun.,16, 1085–7.Google Scholar
  743. Schmidt, H. G. and Gruehn, R. (1989) J. Less Common Metals, 156, 75–86.Google Scholar
  744. Schmidt, H.G. and Gruehn, R. (1990) J. Less Common Metals, 158, 275–85.Google Scholar
  745. Scholder, R., Räde, D., and Schwarz, H. (1968) Z. Anorg. Allg. Chem., 362, 149–68.Google Scholar
  746. Schild, D. and Marquardt, C. M. (2000) Radiochim. Acta, 88, 587–91.Google Scholar
  747. Schreiber, D. S. (1974) Solid State Commun., 14, 177–9.Google Scholar
  748. Schuler, F. W., Steahly, F. L., and Stoughton, R. W. (1952) in Katzin (1952), paper 7.1, p. 307.Google Scholar
  749. Schwarz, R. and Giese, H. (1928) Z. Anorg. Allg. Chem., 176, 209–32.Google Scholar
  750. Schwetz, K., Ettmayer, P., Kieffer, R., and Lipp, A. (1972) J. Less Common Metals, 26, 99–104.Google Scholar
  751. Seaborg, G. T., Gofman, J. W., and Stoughton, R. W. (1947) Phys. Rev., 71, 378.Google Scholar
  752. Seaborg, G. T. and Katzin, L. I. (1951) Production and Separation of U 233:Survey, Natl. Nucl. En. Ser., Div. IV, 17A, Report TID–5222, USAEC, Oak Ridge, Tenn.Google Scholar
  753. Sereni, J. G., Nieva, G., Huber, J. G., Braun, E., Oster, F., Brück, E., Roden, B., and Wohlleben, D. (1987) J. Magn. Magn. Mater., 63/64, 597–9.Google Scholar
  754. Shalek, P. D. (1963) J. Am. Ceram. Soc., 46, 155–61.Google Scholar
  755. Shannon, R. D. (1976) Acta Crystallogr. A, 32, 751–67.Google Scholar
  756. Shchukarev, S. A., Novikov, G. I., and Suvorov, A. V. (1956) Russ. J. Inorg. Chem., 9, 13–8.Google Scholar
  757. Shetty, S. Y., Sathe, R. M., and Shanker Das, M. (1976) Indian J. Chem., 4A, 719–20.Google Scholar
  758. Shoun, R. R. and McDowell, W. J. (1980) in Actinide Separations (ACS Symp. Ser. no. 117), American Chemical Society, Washington, DC, pp. 71–87.Google Scholar
  759. Sibieude, F. (1970) C. R. Acad. Sci. Paris C, 271, 130–3.Google Scholar
  760. Siddham, S. and Narayanan, K. (1979) J. Catal., 59, 405–22;Google Scholar
  761. Karuppannasamy, S., Narayanan, K., and Pilai, C. N. (1980) J. Catal., 63, 433–7.Google Scholar
  762. Siegel, S. (1956) Acta Crystallogr., 9, 827.Google Scholar
  763. Sieverts, A. and Roell, E. (1926) Z. Anorg. Allg. Chem., 153, 289–308.Google Scholar
  764. Sillen, L. G. and Martell, A. (1964) Stability Constants of Metal-ion Complexes, Special Publication n°17, The Chemical Society, Burlington House, London, p. 534.Google Scholar
  765. Sillen, L. G. and Martell, A. (1971) Stability Constants of Metal-ion Complexes, Supplement n°1, Special Publication n°25, The Chemical Society, Burlington House, London, p. 203.Google Scholar
  766. Silvestre, J. P. (1978) Rev. Chim. Miner., 15, 412–22.Google Scholar
  767. Silvestre, J. P., Pagès, M., and Freundlich, W. (1971) C. R. Acad. Sci. Paris C, 272, 1808–10.Google Scholar
  768. Singer, N., Studd, B. F., and Swallow, A. G. (1970) J. Chem. Soc. Chem. Commun., 342–8.Google Scholar
  769. Singh, N. P., Ibrahim, S. A., Cohen, N., and Wrenn, M. E. (1979) Anal. Chem., 51, 207–10; 1978–81.Google Scholar
  770. Singh Mudher, K. D., Keskar, M., and Venugopal, V. (1995) Proceedings of Nuclear and Radiochemistry Symposium (eds. S. G. Kulkarni, S. B. Manohar, D. D. Sood), Kalpakkam, India, pp. 234–5.Google Scholar
  771. Skriver, H. L. and Mertig, I. (1985) Phys. Rev., B32, 4431–41.Google Scholar
  772. Skriver, H. L., Eriksson, O., Mertig, I., and Mrosan, E. (1988) Phys. Rev., B37, 1706–10.Google Scholar
  773. Smith, E. F. and Harris, H. B. (1895) J. Am. Chem. Soc., 17, 654–6.Google Scholar
  774. Smith, J. F., Carlson, O. N., Peterson, D. T., and Scott, T. E. (1975) Thorium: Preparation and Properties, Iowa State University Press, Ames, Iowa.Google Scholar
  775. Smithells, C. J. (1922) J. Chem. Soc., 2236–8.Google Scholar
  776. Sollman, T. and Brown, E. D. (1907) Am. J. Physiol., 18, 426–56.Google Scholar
  777. Sorby, M. H., Fjellvag, H., Hauback, B. C., Maeland, A. J., and Yartys, V. A. (2000) J. Alloys Compds, 309, 154–64.Google Scholar
  778. Spedding, F. H., Wilhelm, H. A., Keller, W. H., Iliff, J. E., and Neher, C. (1952) in Katzin (1952), paper 8.4, p. 428.Google Scholar
  779. Spirlet, M. R., Rebizant, J., Apostolidis, C., Kanellakopoulos, B., and Dornberger, E. (1992) Acta Crystallogr., C48, 1161–4.Google Scholar
  780. Stackelberg, M. V. and Neumann, F. (1932) Z. Phys. Chem. B, 19, 314–20.Google Scholar
  781. Starks, D. V., Parsons, T. C., Streitwieser, A. Jr, and Edelstein, N. (1974) Inorg. Chem., 13, 1307–8.Google Scholar
  782. Staun Olsen, J., Gerward, L., Benedict, U., Luo, H., and Vogt, O. (1988) Report KU-HCOE-FL-R-88–8(Fys. Lab., Univ. Copenhagen, Copenhagen, Den.) 15 pp.; (1989) J. Appl.Crystallogr., 22, 61–3.Google Scholar
  783. Stecher, P., Benesovsky, F., and Nowotny, H. (1963) Monatsh. Chem., 94, 549–64.Google Scholar
  784. Stecher, P., Neckel, A., Benesovsky, F., and Nowotny, H. (1964) Planseeber. Pulvermetall., 12, 181–95.Google Scholar
  785. Storms, E. K. (1967) Refractory Carbides, Academic Press, New York and London, p. 160.Google Scholar
  786. Streitwieser, A. Jr and Yoshida, N. (1969) J. Am. Chem. Soc., 91, 7528.Google Scholar
  787. Strotzer, E. F., Biltz, W., and Meisel, K. (1938) Z. Anorg. Allg. Chem., 238, 69–80.Google Scholar
  788. Strotzer, E. F. and Zumbusch, M. (1941) Z. Anorg. Allg. Chem., 247, 415–28.Google Scholar
  789. Struss, A. W. and Corbett, J. D. (1978) Inorg. Chem., 17, 965–9.Google Scholar
  790. Sugar, J. (1974) J. Chem. Phys., 60, 4103.Google Scholar
  791. Surbeck, H. (1995) Sci. Total Environ., 173–174, 91–9.Google Scholar
  792. Suzuki, T., Takagi, S., Niitsuma, N., Takegahara, K., Kasuya, T., Yanase, A., Sakakibara, T., Date, M., Markowski, P. J., and Henkie, Z. (1982) High Field Magnetism, Proc. Int. Symp., pp. 183–7.Google Scholar
  793. Szilard, B. (1907) J. Chem. Phys., 5, 488–94.Google Scholar
  794. Szymanski, J. T., Owens, D. R., Roberts, A. C., Ansell, H. G., and Chao, G. Y. (1982) Can. Mineral., 20, 65–75.Google Scholar
  795. Tabata, K. and Kido, H. (1987) Phys. Status Solidi A, 99, K121.Google Scholar
  796. Tanaka, Y., Hattori, H., and Tanabe, K. (1978) Bull. Chem. Soc. Jpn, 51, 3641–2;Google Scholar
  797. Tanaka, K. and Okuhara, T. (1980) J. Catal., 65, 1–8.Google Scholar
  798. Taoudi, A., Mikou, A., and Laval, J. P. (1996) Eur. J. Solid State Inorg. Chem., 33, 1051–62.Google Scholar
  799. Taylor, J. C., Mueller, M. H., and Hitterman, R. L. (1966) Acta Crystallogr., 20, 842–51.Google Scholar
  800. Taylor, J. C. (1976) Coord. Chem. Rev., 20, 197–273.Google Scholar
  801. Taylor, M. and Ewing, R. C. (1978) Acta Crystallogr., B34, 1074–5.Google Scholar
  802. Templeton, C. C. and Hall, N. F. (1947) J. Phys. Coll. Chem., 51, 1441–9.Google Scholar
  803. Ter Haar, G. L. and Dubeck, M. (1964) Inorg. Chem., 3, 1648–50.Google Scholar
  804. Thakur, L., Thakur, A. K., and Ahmad, M. F. (1980) Indian J. Chem., A19, 792–5.Google Scholar
  805. Thoma, R. E. and Carlton, T. S. (1961) J. Inorg. Nucl. Chem., 17, 88–97.Google Scholar
  806. Thoma, R. E. (1972) J. Inorg. Nucl. Chem., 34, 2747–60.Google Scholar
  807. Thomas, A. C., Dacheux, N., Le Coustumer, P., Brandel, V., and Genet, M. (2000) J.Nucl. Mater., 281, 91–105.Google Scholar
  808. Thomas, A. C., Dacheux, N., Le Coustumer, P., Brandel, V., and Genet, M. (2001) J.Nucl. Mater., 295, 249–64.Google Scholar
  809. Thomke, K. (1977) Z. Phys. Chem., 107, 99–108.Google Scholar
  810. Thoret, J., Rimsky, A., and Freundlich, W. (1968) C. R. Acad. Sci. Paris C, 267, 1682–4.Google Scholar
  811. Thoret, J., Rimsky, A., and Freundlich, W. (1970) C. R. Acad. Sci. Paris C, 270, 2045–7.Google Scholar
  812. Thoret, J. (1971) C. R. Acad. Sci. Paris C, 273, 1431–4.Google Scholar
  813. Thoret, J. (1974) Rev. Chim. Minér., 11, 237–61.Google Scholar
  814. Tiwari, R. N. and Sinha, D. N. (1980) Indian Chem. J., 14, 25–8.Google Scholar
  815. Topic, M., Prodic, B., and Popovic, S. (1970) Czech J. Phys., 20, 1003–6.Google Scholar
  816. Tougait, O., Potel, M., and Noël, H. (1998) Inorg. Chem., 37, 5088–91.Google Scholar
  817. Trauger, D. B. (1978) Ann. Nucl. Energy, 5, 375–403.Google Scholar
  818. Troost, L. (1883) C. R. Acad. Sci. Paris, 116, 1229Google Scholar
  819. Troost, L. and Ouvrard, L. (1885) C. R. Acad. Sci. Paris, 101, 210–2; (1886) C. R. Acad. Sci. Paris, 102, 1422–7; (1887) C. R. Acad. Sci. Paris, 105, 30–4.Google Scholar
  820. Troost, L. and Ouvrard, L. (1889) Ann. Chim. Phys., 6 (17), 227–45.Google Scholar
  821. Trunov, V. K. and Kovba, L. M. (1963) Vestn. Mosk. Univer., Ser. II, Khim., 18, 60–3.Google Scholar
  822. Trunov, V. K. and Kovba, L. M. (1966) Zh. Strukt. Khim., 7, 896–7.Google Scholar
  823. Trunov, V. K., Efremova, A., and Kovba, L. M. (1966) Radiokhimiya, 8, 717–18; Sov. Radiochem., 8, 658–9.Google Scholar
  824. Ueki, T., Zalkin, A., and Templeton, D. H. (1966) Acta Crystallogr., 20 836–41.Google Scholar
  825. Ueno, K. and Hoshi, M. (1970) J. Inorg. Nucl. Chem., 32, 3817–22.Google Scholar
  826. Urbain, G. (1896) Bull. Soc. Chim., 3 (15), 347–9.Google Scholar
  827. van Arkel, A. E. and de Boer, J. H. (1925) Z. Anorg. Allg. Chem., 148, 345–50.Google Scholar
  828. Van Houten, R. and Bartram, S. (1971) Metall. Trans., 2, 527–30.Google Scholar
  829. Vasilega, N. D., Tishchenko, A. F., Lugovskaya, E. S., Badaev, Yu. V., and Pavlikov, V. N. (1980) Dopov. Akad. Nauk Ukr. RSR, B11, 34–8.Google Scholar
  830. Vdovenko, V. M., Gershanovich, A. Y., and Suglobova, I. G. (1974) Sov. Radiochem.,16, 863–5.Google Scholar
  831. Vedrine, A., Barackic, L., and Cousseins, J. C. (1973) Mater. Res. Bull., 8, 581–8.Google Scholar
  832. Vera Tomé, F., Jurado Vargas, M., and Martin Sanchez, A. (1994) Appl. Radiat. Isot., 45, 449–52.Google Scholar
  833. Vigato, P. A., Casellato, U., and Vidali, M. (1977) Gazz. Chim. Ital., 107, 61–6.Google Scholar
  834. Vohra, Y. K. (1991) Scr. Met. Mater., 25, 2787–9.Google Scholar
  835. Vohra, Y. K. and Akella, J. (1991) Phys. Rev. Lett, 67, 3563–6.Google Scholar
  836. Vohra, Y. K. and Akella, J. (1992) High Pressure Res., 10, 681–5.Google Scholar
  837. Vohra, Y. K. (1993) Physica B, 190, 1–4.Google Scholar
  838. Vokhmyakov, A. N., Desyatnik, V. N., and Kurbatov, N. N. (1973) At. Energy (USSR), 35, 424.Google Scholar
  839. Volck, C. (1894) Z. Anorg. Chem., 6, 161–7.Google Scholar
  840. Voliotis, S. and Rimsky, A. (1975) Acta Crystallogr., B31, 2615–20.Google Scholar
  841. Voliotis, S. (1979) Acta Crystallogr. B, 35, 2899–904.Google Scholar
  842. Voliotis, S., and Rimsky, A. (1988) Acta Crystallogr., B44, 77–88.Google Scholar
  843. Volkov, Yu. F., Kapshukov, I. I., and Vasil'ev, V. Ya. (1974) 1st Vses. Konf. Khim. Urana, p. 26.Google Scholar
  844. Volkov, Yu. F. (1999) Radiochemistry (Moscow) (Translation of Radiokhimiya), 41, 168–74.Google Scholar
  845. Voliotis, S., Fromage, F., Faucherre, J., and Dervin, J. (1977) Rev. Chim. Minér., 14, 441–6.Google Scholar
  846. von Bolton, W. (1908) Z. Elektrochem., 14, 768–70.Google Scholar
  847. von Schnering, H. G., Wittmann, M., and Nesper, R. (1980) J. Less Common Metals, 76, 213–26.Google Scholar
  848. von Schnering, H. G. and Vu, D. (1986) J. Less Common Metals, 116, 259–70.Google Scholar
  849. von Wartenberg, H. (1909) Z. Elektrochem., 15, 866–72.Google Scholar
  850. Wachtmann, K. H., Moss, M. A., Hoffmann, R.-D., and Jeitschko, W. J. (1995) J.Alloys Compds, 219, 279–84.Google Scholar
  851. Wallroth, K. A. (1883) Bull. Soc. Chim., 2 (39), 316–22.Google Scholar
  852. Wang, W., Chen, B., Wang, A., Yu, M., and Liu, X. (1982) He Huaxue Yu Fangshe Huaxue, 4, 139–46.Google Scholar
  853. Wang, W., Chen, B., Jin, Z., and Wang, A. (1983) J. Radioanal. Chem., 76, 49–62.Google Scholar
  854. Wang, X. Z., Ng, W. L., Chevalier, B., Etourneau, J., and Hagenmuller, P. (1985) Mater. Res. Bull., 20, 1229–38.Google Scholar
  855. Wang, J. and Zadeii, J. M. (1986) Anal. Chim. Acta, 188, 187–94.Google Scholar
  856. Warf, J. C. (1949) J. Am. Chem. Soc., 71, 3257–8.Google Scholar
  857. Warren, I. H. and Price, C. E. (1964) Adv. Energy Conversion, 4, 169.Google Scholar
  858. Wastin, F., Rebizant, J., Spirlet, J. C., Sari, C., Walker, C. T., and Fuger, J. (1993) J.Alloys Compds, 196, 87–92.Google Scholar
  859. Watt, G. W. and Gadd, K. F. (1973) Inorg. Nucl. Chem. Lett., 9, 203–5.Google Scholar
  860. Weaver, J. H., Knapp, J. A., Eastman, D. E., Peterson, D. T., and Satterthwaite, C. B. (1977) Phys. Rev. Lett., 39, 639–42.Google Scholar
  861. Weeks, M. E. and Leicester, H. M. (1968) Discovery of the Elements, 7th edn, Easton, PA.Google Scholar
  862. Weinland, R. F. and Kühl, H. (1907) Z. Anorg. Chem., 54, 244–52.Google Scholar
  863. Wells, H. L. and Willis, J. M. (1901) Am. J. Sci., 12, 191–2.Google Scholar
  864. Wessels, G. F. S., Leipoldt, J. G., and Bok, L. D. C. (1972) Z. Anorg. Allg. Chem., 393, 284–94.Google Scholar
  865. Westland, A. D. and Tarafder, M. T. H. (1983) Can. J. Chem., 61, 1573–7.Google Scholar
  866. White, G. M. and Ohnesorge, W. E. (1970) Anal. Chem., 42, 504–8.Google Scholar
  867. Wilhelm, H. A. and Chiotti, P. (1949) Report AECD-2718.Google Scholar
  868. Wilhelm, H. A. and Chiotti, P. (1950) Trans. Am. Soc. Met., 42, 1295–310.Google Scholar
  869. Wilke, G., Bogdanivic, B., Hardt, P., Heimbach, P., Keim, W., Kröner, M., Oberkirch, W., Tanaka, K., Steinrücke, E., Walter, D., and Zimmermann, H. (1966) Angew. Chem. (Int. Edn. Engl.), 5, 151–64.Google Scholar
  870. Winkler, C. (1891) Berl. Dtsch. Chem. Ges., 24, 873–99.Google Scholar
  871. Winter, H. (1978) Conf. Ser. Inst. Phys., 39, 713–5.Google Scholar
  872. Wirth, F. (1912) Z. Anorg. Chem., 76, 174–200.Google Scholar
  873. Wöhler, L., Plüddemann, W., and Wöhler, P. (1908) Ber. Dtsch. Chem. Ges., 41, 703–17.Google Scholar
  874. Woodward, L. A. and Ware, M. J. (1968) Spectrochim. Acta, 24A, 921–5.Google Scholar
  875. Wu, E. J., Pell, M. A., and Ibers, J. A. (1997) J. Alloys Compds., 255, 106Google Scholar
  876. Wu, Y., Zhao, Z., Liu, Y., and Yang, X. (2000) J. Mol. Catal. A. Chem., 155, 89–100.Google Scholar
  877. Wyrouboff, G. and Verneuil, A. (1898a) Bull. Soc. Chim., 3 (19), 219–27.Google Scholar
  878. Wyrouboff, G. and Verneuil, A. (1898b) C. R. Acad. Sci. Paris, 128, 1573–5.Google Scholar
  879. Wyrouboff, G. and Verneuil, A. (1899) Bull. Soc. Chim., 3 (21), 118–43.Google Scholar
  880. Wyrouboff, G. (1901) Bull. Soc. Miner., 24, 105–16.Google Scholar
  881. Wyrouboff, G. and Verneuil, A. (1905) Ann. Chim. Phys., 6, 441–507.Google Scholar
  882. Yaffe, L. (1949) Can. J. Res. B,27, 638–45.Google Scholar
  883. Yamnova, N. A., Pushcharovskii, D. Y., and Voloshin, A. V. (1990) Dokl. Akad. Nauk SSSR, 310, 99–102.Google Scholar
  884. Yen, K.-F., Li, S.-C., and Novikov, G. I. (1963) Zh. Neorg. Khim., 8, 89–93; Russ. J. Inorg. Chem., 8, 44–7.Google Scholar
  885. Yoshida, S., Oyamada, R., and Kawamura, K. (1978) Bull. Chem. Soc. Japan, 51, 25–7.Google Scholar
  886. Young, R. C. (1935) J. Am. Chem. Soc., 57, 997–9.Google Scholar
  887. Young, R. C. and Fletcher, H. G. (1939) in Inorganic Synthesis, vol. I (ed. H. S. Booth), McGraw-Hill, New York, pp. 51–4.Google Scholar
  888. Yu, Z., Gao, L., Yuan, S., and Wu, Y. (1992) J. Chem. Soc., Faraday Trans., 88, 3245–9.Google Scholar
  889. Zachariasen, W. H. (1948a) Report AECD-2163.Google Scholar
  890. Zachariasen, W. H. (1948b) Acta Crystallogr., 1, 265–8.Google Scholar
  891. Zachariasen, W. H. (1948c) J. Am. Chem. Soc., 70, 2147–51.Google Scholar
  892. Zachariasen, W. H. (1949a) Acta Crystallogr., 2, 388–90.Google Scholar
  893. Zachariasen, W. H. (1949b) Acta Crystallogr., 2, 390–3.Google Scholar
  894. Zachariasen, W. H. (1949c) Acta Crystallogr., 2, 291–6.Google Scholar
  895. Zachariasen, W. H.(1949d) Acta Crystallogr., 2, 288–91.Google Scholar
  896. Zachariasen, W. H. (1953) Acta Crystallogr., 6, 393–5.Google Scholar
  897. Zaitseva, L. L. Vakhrushin, YuA., and Shepel'kov, S. V. (1984) Zh. Neorg. Khim., 29, 768–72; Russ. J. Inorg. Chem., 29, 443–5.Google Scholar
  898. Zalkin, A. and Templeton, D. H. (1950) J. Chem. Phys., 18, 391.Google Scholar
  899. Zalkin, A. and Templeton, D. H. (1953) Acta Crystallogr., 6, 269–72.Google Scholar
  900. Zalkin, A., Forrester, J. D., and Templeton, D. H. (1964) Inorg. Chem., 3, 639–44.Google Scholar
  901. Zalkin, A., Templeton, D. H., Le Vanda, C., and Streitwieser, A. Jr (1980) Inorg. Chem.,19, 2560–3.Google Scholar
  902. Zalubas, R. (1968) J. Opt. Soc. Am., 58, 1195–9.Google Scholar
  903. Zalubas, and R. Corliss, C. H.(1974) J. Res. NBS, 78A , 163–246.Google Scholar
  904. Zambonini, F. (1923) C. R. Acad. Sci. Paris, 176, 1473–5.Google Scholar
  905. Zhang, H. B., Lin, G. D., Wan, H. L., Liu, Y. D., Weng, W. Z., Cai, J. X., Shen, Y. F., and Tsai, K. R. (2001) Catal. Lett., 73, 141–7.Google Scholar
  906. Zhou, M. L., Jin, J. N., Xu, S. C., Liu, M. Z., Xu, D. Q., Peng, Q. X., Qi, and Sh., J. (1981) Huaxue Yu Fangshe Huaxue, 3, 136–40.Google Scholar
  907. Zhu, W. J. and Hor, P. H. (1995) J. Solid State Chem., 120 , 208–9.Google Scholar
  908. Zumbusch, M. (1941) Z. Anorg. Allg. Chem. , 245 , 402–8.Google Scholar
  909. Zunic, T. B., Scavnicar, S., and Grobenski, Z. (1984) Croat. Chem. Acta, 57, 645–51.Google Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Mathias S. Wickleder
    • 1
  • Blandine Fourest
    • 2
  • Peter K. Dorhout
    • 3
  1. 1.Carl von Ossietzky UniversitätGermany
  2. 2.Institut de Physique NucléaireFrance
  3. 3.Colorado State UniversityFort CollinsUSA

Personalised recommendations