Advertisement

X-Ray Absorption Spectroscopy of the Actinides

  • Mark R. Antonio
  • Lynda Soderholm

Abstract

The recent availability of synchrotron radiation has revolutionized actinide chemistry. This is particularly true in environmental studies, where heterogeneous samples add to the already multifaceted chemistry exhibited by these ions. Environmental samples are often inhomogeneous, chemically diverse, and amorphous or poorly crystalline. Even surrogates prepared in the laboratory to simplify the natural complexity are plagued by multiple oxidation state and varied coordination polyhedra that are a reflection of inherent 5f chemistry. For example, plutonium can be found as Pu3+ Pu4+ Pu(V)O2 +, and Pu(VI)O2 2 + within naturally occurring pH–Eh conditions, consequently complex equilibria are found between these oxidation states in one solution. In addition, dissolved actinides have significant affinities for various mineral surfaces, to which they can adsorb with or without concomitant reduction–oxidation (redox) activity, depending on details of the solution and surface conditions.

Keywords

Hydration Number EXAFS Spectrum Savannah River Site EXAFS Data Equatorial Coordination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aberg, M. (1970) Acta Chem. Scand., 24, 2901–15.Google Scholar
  2. Aberg, M., Ferri, D., Glaser, J., and Grenthe, I. (1983) Inorg. Chem., 22, 3986–9.Google Scholar
  3. Allard, T., Ildefonse, P., Beaucaire, C., and Calas, G. (1999) Chem. Geol., 158, 81–103.Google Scholar
  4. Allen, G. C., Butler, I. S., and Tuan, N. A. (1987) J. Nucl. Mater., 144, 17–19.Google Scholar
  5. Allen, P. G., Bucher, J. J., Clark, D. L., Edelstein, N. M., Ekberg, S. A., Gohdes, J. W., Hudson, E. A., Kaltsoyannis, N., Lukens, W. W., Neu, M. P., Palmer, P. D., Reich, T., Shuh, D. K., Tait, C. D., and Zwick, B. D. (1995) Inorg. Chem., 34, 4797–807.Google Scholar
  6. Allen, P. G., Shuh, D. K., Bucher, J. J., Edelstein, N. M., Reich, T., Denecke, M. A., and Nitsche, H. (1996a) Inorg. Chem., 35, 784–7.Google Scholar
  7. Allen, P. G., Veirs, D. K., Conradson, S. D., Smith, C. A., and Marsh, S. F. (1996b) Inorg. Chem., 35, 2841–5.Google Scholar
  8. Allen, P. G., Bucher, J. J., Shuh, D. K., Edelstein, N. M., and Reich, T. (1997) Inorg. Chem., 36, 4676–83.Google Scholar
  9. Allen, P. G., Bucher, J. J., Shuh, D. K., Edelstein, N. M., and Craig, I. (2000) Inorg. Chem., 39, 595–601.Google Scholar
  10. Ankudinov, A. L., Conradson, S. D., de Leon, J. M., and Rehr, J. J. (1998) Phys. Rev. B, 57, 7518–25.Google Scholar
  11. Antonio, M. R., Teo, B. -K.,Cleland, W. E., and Averill, B. A. (1983) J. Am. Chem. Soc., 105, 3477–84.Google Scholar
  12. Antonio, M. R., Soderholm, L., and Song, I. (1997) J. Appl. Electrochem., 27, 784–92.Google Scholar
  13. Antonio, M. R., Soderholm, L., Williams, C. W., Blaudeau, J. P., and Bursten, B. E. (2001) Radiochim. Acta, 89, 17–25.Google Scholar
  14. Antonio, M. R., Williams, C. W., and Soderholm, L. (2002) Radiochim. Acta, 90, 851–6.Google Scholar
  15. Archer, M. D. (1989) ACS Symp. Ser., 390, 115–26.Google Scholar
  16. Babu, C. S. Lim, C. and (1999) J. Phys. Chem. B, 103, 7958–68.Google Scholar
  17. Baes, C. E. and Mesmer, R. F. (1976) The Hydrolysis of Cations, John Wiley, New York.Google Scholar
  18. Bailey, E. H., Mosselmans, J. F. W., and Schofield, P. F. (2004) Geochim. Cosmochim. Acta, 68, 1711–22.Google Scholar
  19. Banaszak, J. E., Webb, S. M., Rittmann, B. E., Gaillard, J. F., and Reed, D. T. (1999) Mater. Res. Soc. Symp. Proc., 556, 1141–9.Google Scholar
  20. Bardin, N., Rubini, P., and Madic, C. (1998) Radiochim. Acta, 83, 189–94.Google Scholar
  21. Bargar, J. R., Reitmeyer, R., and Davis, J. A. (1999a) Environ. Sci. Technol., 33, 2481–4.Google Scholar
  22. Bargar, J. R., Reitmeyer, R. L., and Davis, J. A. (1999b) Abstr. Pap. Am. Chem. Soc., 217, 143-NUCLGoogle Scholar
  23. Bargar, J. R., Reitmeyer, R., Lenhart, J. J., and Davis, J. A. (2000) Geochim. Cosmochim. Acta, 64, 2737–49.Google Scholar
  24. Barnes, C. E., Shin, Y., Saengkerdsub, S., and Dai, S. (2000) Inorg. Chem., 39, 862–4.Google Scholar
  25. Bawson, J. K., Wait, Z., Alcock, K., and Chilton, D. R. (1956) J. Chem. Soc., 1956, 3531–40.Google Scholar
  26. Bernhard, G., Geipel, G., Brendler, V., and Nitsche, H. (1996) Radiochim. Acta, 74, 87–91.Google Scholar
  27. Bernhard, G., Geipel, G., Reich, T., Brendler, V., Amayri, S., and Nitsche, H. (2001) Radiochim. Acta., 89, 511–18.Google Scholar
  28. Bertagnolli, H. and Ertel, T. S. (1994) Angew. Chem. Int. Edn. Engl., 33, 45–66.Google Scholar
  29. Bertsch, P. M., Hunter, D. B., Sutton, S. R., Bajt, S., and Rivers, M. L. (1994) Environ. Sci. Technol., 28, 980–4.Google Scholar
  30. Biwer, B. M., Ebert, W. L., and Bates, J. K. (1990) J. Nucl. Mater., 175, 188–93.Google Scholar
  31. Biwer, B. M., Soderholm, L., Greegor, R. B., and Lytles, F. W. (1997) Mater. Res. Soc. Symp. Proc., 465, 229–36.Google Scholar
  32. Blaudeau, J. P., Zygmunt, S. A., Curtiss, L. A., Reed, D. T., and Bursten, B. E. (1999) Chem. Phys. Lett., 310, 347–54.Google Scholar
  33. Bleise, A., Danesi, P. R., and Burkart, W. (2003) J. Environ. Radioact., 64, 93–112.Google Scholar
  34. Bolvin, H., Wahlgren, U., Moll, H., Reich, T., Geipel, G., Fanghaenel, T., and Grenthe, I. (2001) J. Phys. Chem. A, 105, 11441–5.Google Scholar
  35. Bostick, B. C. and Fendorf, S. (2002) Soil Sci. Soc. Am. J., 66, 99–108.Google Scholar
  36. Brannon, J. C., Cole, S. C., Podosek, F. A., Ragan, V. M., Coveney, R. M. J., Wallace, M. W., and Bradley, A. J. (1996) Science, 271, 491–3.Google Scholar
  37. Bratsch, S. G. (1989) J. Phys. Chem. Ref. Data, 18, 1–21.Google Scholar
  38. Breit, G. N. (1995) Econ. Geol., 90, 407–17.Google Scholar
  39. Bridgeman, A. J. and Cavigliasso, G. (2003) Faraday Discuss., 124, 239–58.Google Scholar
  40. Brooks, S. C., Fredrickson, J. K., Carroll, S. L., Kennedy, D. W., Zachara, J. M., Plymale, A. E., Kelly, S. D., Kemner, K. M., and Fendorf, S. (2003) Environ. Sci. Technol., 37, 1850–8.Google Scholar
  41. Brown, I. D. (1981) in Structure and Bonding in Crystals, vol. 2 (eds. M. O’Keeffe and A. Navrotsky), Academic Press, New York, pp. 1––52.Google Scholar
  42. Brown, I. D. (1987) Phys. Chem. Miner., 15, 30–4.Google Scholar
  43. Brown, I. D. (1996) J. Appl. Crystallogr., 29, 479–80.Google Scholar
  44. Brown, I. D. (2002) The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, Oxford University Press, Oxford.Google Scholar
  45. Burns, J. H., Baldwin, W. H., and Stokely, J. R. (1973) Inorg. Chem., 12, 466–9.Google Scholar
  46. Burns, P. C., Ewing, R. C., and Hawthorne, F. C. (1997) Can. Mineral., 35, 1551–70.Google Scholar
  47. Calas, G., Brown, G. E. Jr, Waychunas, G. A., and Petiau, J. (1987) Phys. Chem. Miner., 15, 19–29.Google Scholar
  48. Carroll, S. A. and Bruno, J. (1991) Radiochim. Acta, 52–53, 187–93.Google Scholar
  49. Carroll, S. A., Bruno, J., Petit, J. C., and Dran, J. C. (1992) Radiochim. Acta, 58–59, 245–52.Google Scholar
  50. Charpin, P., Dejean, A., Folcher, G., Rigny, P., and Navaza, P. (1985) J. Chim. Phys. Phys.-Chim. Biol., 82, 925–32.Google Scholar
  51. Chiang, M.-H., Soderholm, L., and Antonio, M. R. (2003) Eur. J. Inorg. Chem., 2929–36.Google Scholar
  52. Chisholm-Brause, C., Conradson, S., Eller, P. G., and Morris, D. E. (1992) Mater. Res. Soc. Symp. Proc., 257, 315–22.Google Scholar
  53. Chisholm-Brause, C., Conradson, S. D., Buscher, C. T., Eller, P. G., and Morris, D. E. (1994) Geochim. Cosmochim. Acta, 58, 3625–31.Google Scholar
  54. Clark, D. L., Hobart, D. E., and Neu, M. P. (1995) Chem. Rev., 95, 25–48.Google Scholar
  55. Clark, D. L., Conradson, S. D., Ekberg, S. A., Hess, N. J., Janecky, D. R., Neu, M. P., Palmer, P. D., and Tait, C. D. (1996a) New J. Chem., 20, 211–20.Google Scholar
  56. Clark, D. L., Conradson, S. D., Ekberg, S. A., Hess, N. J., Neu, M. P., Palmer, P. D., Runde, W., and Tait, C. D. (1996b) J. Am. Chem. Soc., 118, 2089–90.Google Scholar
  57. Clark, D. L., Conradson, S. D., Neu, M. P., Palmer, P. D., Runde, W., and Tait, C. D. (1997) J. Am. Chem. Soc., 119, 5259–60.Google Scholar
  58. Clark, D. L., Conradson, S. D., Keogh, D. W., Palmer, P. D., Scott, B. L., and Tait, C. D. (1998) Inorg. Chem., 37, 2893–9.Google Scholar
  59. Clark, D. L., Conradson, S. D., Donohoe, R. J., Keogh, D. W., Morris, D. E., Palmer, P. D., Rogers, R. D., and Tait, C. D. (1999) Inorg. Chem., 38, 1456–66.Google Scholar
  60. Coda, A., Giusta, A. D., and Tazzoli, V. (1981) Acta Crystallogr. B, 37, 1496–500.Google Scholar
  61. Cohen, D. and Hindman, J. C. (1952) J. Am. Chem. Soc., 74, 4679–82.Google Scholar
  62. Combes, J. M., Chisholm-Brause, C. J., Brown, G. E. Jr, Parks, G. A., Conradson, S. D., Eller, P. G., Triay, I. R., Hobart, D. E., and Miejer, A. (1992) Environ. Sci. Technol., 26, 376–82.Google Scholar
  63. Comodi, P., Liu, Y., Zanazzi, P. F., and Montagnoli, M. (2001) Phys. Chem. Miner., 28, 219–24.Google Scholar
  64. Conradson, S. D. (1998) Appl. Spectrosc., 52, 252A–79A.Google Scholar
  65. Conradson, S. D., Al Mahamid, I., Clark, D. L., Hess, N. J., Hudson, E. A., Neu, M. P., Palmer, P. D., Runde, W. H., and Tait, C. D. (1998) Polyhedron, 17, 599–602.Google Scholar
  66. Conradson, S. D., Begg, B. D., Clark, D. L., Den Auwer, C., Espinosa-Faller, F. J., Gordon, P. L., Hess, N. J., Hess, R., Keogh, D. W., Morales, L. A., Neu, M. P., Runde, W., Tait, C. D., Veirs, D. K., and Villella, P. M. (2003) Inorg. Chem., 42, 3715–17.Google Scholar
  67. Conradson, S. D., Abney, K. D., Begg, B. D., Brady, E. D., Clark, D. L., Den Auwer, C., Ding, M., Dorhout, P. K., Espinosa-Faller, F. J., Gordon, P. L., Haire, R. G., Hess, N. J., Hess, R. F., Keogh, D. W., Lander, G. H., Lupinetti, A. J., Morales, L. A., Neu, M. P., Palmer, P. D., Paviet-Hartmann, P., Reilly, S. D., Runde, W. H., Tait, C. D., Veirs, D. K., and Wastin, F. (2004) Inorg. Chem., 43, 116–31.Google Scholar
  68. Cossy, C., Helm, L., Powell, D. H., and Merbach, A. E. (1995) New J. Chem., 19, 27–35.Google Scholar
  69. Cotton, F. A., Wilkinson, G., Murillo, C., and Bochmann, M. (1999) Advanced Inorganic Chemistry, John Wiley, New York.Google Scholar
  70. Daehn, R., Scheidegger, A. M., Manceau, A., Curti, E., Baeyens, B., Bradbury, M. H., and Chateigner, D. (2002) J. Colloid Interface Sci., 249, 8–21.Google Scholar
  71. Dal Negro, A. and Ungaretti, L. (1971) Am. Mineral., 56, 768–72.Google Scholar
  72. Danesi, P. R., Markowicz, A., Chinea-Cano, E., Burkart, W., Salbu, B., Donohue, D., Ruedenauer, F., Hedberg, M., Vogt, S., Zahradnik, P., and Ciurapinski, A. (2003) J. Environ. Radioact., 64, 143–54.Google Scholar
  73. David, F., Revel, R., Fourest, B., Hubert, S., Le Du, J. F., Den Auwer, C., Madic, C., Morss, L. R., Ionova, G., Mikhalko, V., Vokhmin, V., Nikonov, M., Berthet, J. C., and Ephritikhine, M. (1998) in Speciation, Techniques and Facilities for Radioactive Materials at Synchrotron Light Sources, Nuclear Energy Agency: Organisation for Economic Co–Operation and Development, Grenoble, France, pp. 95–100.Google Scholar
  74. David, F. H. and Vokhmin, V. (2003) New J. Chem., 27, 1627–32.Google Scholar
  75. de Leon, J. M., Rehr, J. J., Zabinsky, S. I., and Albers, R. C. (1991) Phys. Rev., B44, 4146–56.Google Scholar
  76. de Villiers, J. P. R. (1971) Am. Mineral., 56, 758–66.Google Scholar
  77. Deer, W. A., Howie, R. A., and Zussman, J. (1992) The Rock Forming Minerals, Longman Scientific and Technical, Hong Kong.Google Scholar
  78. Den Auwer, C., Grégoire-Kappenstein, A. C., and Moisy, P. (2003a) Radiochim. Acta, 91, 773–6.Google Scholar
  79. Den Auwer, C., Simoni, E., Conradson, S., and Madic, C. (2003b) Eur. J. Inorg. Chem., 3843–59.Google Scholar
  80. Denecke, M. A., Pompe, S., Reich, T., Moll, H., Bubner, M., Heise, K. H., Nicolai, R., and Nitsche, H. (1997a) Radiochim. Acta, 79, 151–9.Google Scholar
  81. Denecke, M. A., Reich, T., Pompe, S., Bubner, M., Heise, K. H., Nitsche, H., Allen, P. G., Bucher, J. J., Edelstein, N. M., and Shuh, D. K. (1997b) J. Phys. IV, 7, 637–8.Google Scholar
  82. Denecke, M. A., Reich, T., Bubner, M., Pompe, S., Heise, K. H., Nitsche, H., Allen, P. G., Bucher, J. J., Edelstein, N. M., and Shuh, D. K. (1998a) J. Alloy. Compd., 271, 123–7.Google Scholar
  83. Denecke, M. A., Reich, T., Pompe, S., Bubner, M., Heise, K. H., Nitsche, H., Allen, P. G., Bucher, J. J., Edelstein, N. M., Shuh, D. K., and Czerwinski, K. R. (1998b) Radiochim. Acta., 82, 103–8.Google Scholar
  84. Denecke, M. A., Bublitz, D., Kim, J. I., Moll, H., and Farkes, I. (1999) J. Synchrotron. Radiat., 6, 394–6.Google Scholar
  85. Denecke, M. A., Marquardt, C. M., Rothe, J., Dardenne, K., and Jensen, M. P. (2002) J. Nucl. Sci. Technol., Suppl. 3, 410–13.Google Scholar
  86. Denecke, M. A., Rothe, J., Dardenne, K., and Lindqvist-Reis, P. (2003) Phys. Chem. Chem. Phys., 5, 939–46.Google Scholar
  87. Dent, A. J., Ramsay, J. D. F., and Swanton, S. W. (1992) J. Colloid Interface Sci., 150, 45–60.Google Scholar
  88. Djogic, R. and Branica, M. (1991) Mar. Chem., 36, 121–35.Google Scholar
  89. Docrat, T. I., Mosselmans, J. F. W., Charnock, J. M., Whiteley, M. W., Collison, D., Livens, F. R., Jones, C., and Edmiston, M. J. (1999) Inorg. Chem., 38, 1879–82.Google Scholar
  90. Dodge, C. J. and Francis, A. J. (1997) Environ. Sci. Technol., 31, 3062–7.Google Scholar
  91. Dodge, C. J. and Francis, A. J. (2003) Radiochim. Acta, 91, 525–32.Google Scholar
  92. Duff, M. C. and Amrhein, C. (1996) Soil Sci. Soc. Am. J., 60, 1393–400.Google Scholar
  93. Duff, M. C., Amrhein, C., Bertsch, P. M., and Hunter, D. B. (1997) Geochim. Cosmo-chim. Acta, 61, 73–81.Google Scholar
  94. Duff, M. C., Hunter, D. B., Triay, I. R., Bertsch, P. M., Reed, D. T., Sutton, S. R., Shea-Mccarthy, G., Kitten, J., Eng, P., Chipera, S. J., and Vaniman, D. T. (1999a) Environ. Sci. Technol., 33, 2163–9.Google Scholar
  95. Duff, M. C., Newville, M., Hunter, D. B., Bertsch, P. M., Sutton, S. R., Triay, I. R., Vaniman, D. T., Eng, P., and Rivers, M. L. (1999b) J. Synchrotron. Radiat., 6, 350–2.Google Scholar
  96. Duff, M. C., Morris, D. E., Hunter, D. B., and Bertsch, P. M. (2000) Geochim. Cosmo-chim. Acta, 64, 1535–50.Google Scholar
  97. Duff, M. C., Hunter, D. B., Triay, I. R., Bertsch, P. M., Kitten, J., and Vaniman, D. T. (2001) J. Contam. Hydrol., 47, 211–18.Google Scholar
  98. Duff, M. C., Coughlin, J. U., and Hunter, D. B. (2002) Geochim. Cosmochim. Acta, 66, 3533–47.Google Scholar
  99. Effenberger, H., Mereiter, K., and Zemann, H. (1981) Z. Kristallogr., 156, 233–43.Google Scholar
  100. Efurd, D. W., Runde, W., Banar, J. C., Janecky, D. R., Kaszuba, J. P., Palmer, P. D., Roensch, F. R., and Tait, C. D. (1998) Environ. Sci. Technol., 32, 3893–900.Google Scholar
  101. Egami, T. and Aur, S. (1987) J. Non-Cryst. Solids, 89, 60–74.Google Scholar
  102. Eller, P. G., Jarvinen, G. D., Purson, J. D., Penneman, R. A., Ryan, R. R., Lytle, F. W., and Greegor, R. B. (1985) Radiochim. Acta, 39, 17–22.Google Scholar
  103. Elless, M. P. and Lee, S.-Y. (1994) Physicochemical and Mineralogical Characterization of Transuranic Contaminated Soils for Uranium Soil Integrated Demonstration, ORNL/ TM-12848, Oak Ridge National Laboratory, Oak Ridge, TN.Google Scholar
  104. Evans, H. T. Jr (1963) Science, 141, 154–8.Google Scholar
  105. Fahey, J. A. (1986) in The Chemistry of the Actinide Elements, vol. 1 (eds. J. J. Katz, G. T. Seaborg, and L. R. Morss), Chapman & Hall, London, pp. 443–98.Google Scholar
  106. Farges, F. (1991) Geochim. Cosmochim. Acta, 55, 3303–19.Google Scholar
  107. Farley, N. R. S., Gurman, S. J., and Hillman, A. R. (1999) Electrochem. Commun., 1, 449–52.Google Scholar
  108. Fein, J. B., Daughney, C. J., Yee, N., and Davis, T. A. (1997) Geochim. Cosmochim. Acta, 61, 3319–28.Google Scholar
  109. Felmy, A. R., Rai, D., Sterner, S. M., Mason, N. J., Hess, N. J., and Conradson, S. D. (1997) J. Solution Chem., 26, 233–48.Google Scholar
  110. Fenter, P. A., Rivers, M. L., Sturchio, N. C., and Sutton, S. R. (eds.) (2002) Applications of Synchrotron Radiation in Low-Temperature Geochemistry and Environmental Science, Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Washington DC.Google Scholar
  111. Fetter, S. and von Hippel, F. N. (1999) Sci. Globe Security, 8, 125–61.Google Scholar
  112. Filipponi, A. (2001) J. Phys.: Condens. Matter, 13, R23–R60.Google Scholar
  113. Fourest, B., Morss, L. R., Blain, G., David, F., and M’Halla, J. (1995) Radiochim. Acta, 69, 215–19.Google Scholar
  114. Francis, A. J., Dodge, C. J., Lu, F. L., Halada, G. P., and Clayton, C. R. (1994) Environ. Sci. Technol., 28, 636–9.Google Scholar
  115. Francis, A. J., Gillow, J. B., Dodge, C. J., Dunn, M., Mantione, K., Strietelmeier, B. A., Pansoy-Hjelvik, M. E., and Papenguth, H. W. (1998) Radiochim. Acta, 82, 347–54.Google Scholar
  116. Francis, A. J., Dodge, C. J., Gillow, J. B., and Papenguth, H. W. (2000) Environ. Sci. Technol., 34, 2311–17.Google Scholar
  117. Francis, A. J. (2002) in Uranium in the Aquatic Environment (eds. B. J. Merkel, B., Planer-Friedrich, and C. Wolkersdorfer), Springer-Verlag, Berlin, pp. 451–8.Google Scholar
  118. Francis, A. J., Joshi-Tope, G. A., and Dodge, C. J., Gillow, J. B. (2002) J. Nucl. Sci. Technol., Suppl. 3, 935–8.Google Scholar
  119. Fredrickson, J. K., Zachara, J. M., Kennedy, D. W., Duff, M. C., Gorby, Y. A., Li, S.-M. W., and Krupka, K. M. (2000) Geochim. Cosmochim. Acta, 64, 3085–98.Google Scholar
  120. Fredrickson, J. K., Zachara, J. M., Kennedy, D. W., Liu, C., Duff, M. C., Hunter, D. B., and Dohnalkova, A. (2002) Geochim. Cosmochim. Acta, 66, 3247–62.Google Scholar
  121. Fuller, C. C., Bargar, J. R., Davis, J. A., and Piana, M. J. (2002) Environ. Sci. Technol., 36, 158–65.Google Scholar
  122. Gale, R. J. (ed.) (1988) Spectroelectrochemistry: Theory and Practice, Plenum Press, New York.Google Scholar
  123. Garnov, A. Y., Krot, N. N., Bessonov, A. A., and Perminov, V. P. (1996) Radiochem., Engl. Transl., 38, 402–6.Google Scholar
  124. Geipel, G., Reich, T., Brendler, V., Bernhard, G., and Nitsche, H. (1997) J. Nucl. Mater., 248, 408–11.Google Scholar
  125. Giaquinta, D. M., Soderholm, L., Yuchs, S. E., and Wasserman, S. R. (1997a) J. Alloys. Compd., 249, 142–5.Google Scholar
  126. Giaquinta, D. M., Soderholm, L., Yuchs, S. E., and Wasserman, S. R. (1997b) Radio-chim. Acta, 76, 113–21.Google Scholar
  127. Gillow, J. B., Francis, A. J., Dodge, C. J., Harris, R., Beveridge, T. J., Brady, P. V., and Papenguth, H. W. (1999) Mater. Res. Soc. Symp. Proc., 556, 1133–40.Google Scholar
  128. Giordano, T. H. (1994) in Organic Acids in Geological Processes (eds. E. D. Pittman and M. D. Lewan), Springer-Verlag, Berlin, pp. 319–54.Google Scholar
  129. Glebov, V. A., Nikitina, T. M., and Tikhonov, M. R. (1977) Sov. Radiochem., Engl. Transl. 19, 231–2.Google Scholar
  130. Gorby, Y. A. and Lovley, D. R. (1992) Environ. Sci. Technol., 26, 205–7.Google Scholar
  131. Görller-Walrand, C. and Colen, W. (1982) Chem. Phys. Lett., 93, 82–5.Google Scholar
  132. Goulon, J., Goulon-Ginet, C., Friant, P., Poncet, J. L., Guilard, R., and Battioni, J. P., Mansuy, D. (1983) Proc. 4th Int. Conf. on Organic Chemistry of Selenium and Tellurium, Birmingham, England, 1983: pp. 379–90.Google Scholar
  133. Greathouse, J. A., O’Brian, R. J., Bemis, G., and Pabalan, R. T. (2002) J. Phys. Chem. B, 106, 1546–655.Google Scholar
  134. Greaves, G. N., Barrett, N. T., Antonini, G. M., Thronley, F. R., Willis, B. T. M., and Steel, A. (1989) J. Amer. Chem. Soc., 111, 4313–20.Google Scholar
  135. Greegor, R. B., Pingitore, N. E. Jr., and Lytle, F. W. (1997) Science, 275, 1452–5.Google Scholar
  136. Guilbaud, P. and Wipff, G. (1993) J. Phys. Chem., 97, 5685–92.Google Scholar
  137. Habenschuss, A. and Spedding, F. H. (1980) J. Chem. Phys., 73, 442–50.Google Scholar
  138. Hanchar, J. M. (1999) in Uranium: Mineralogy, Geochemistry and the Environment, vol. 38 (eds. P. C. Burns and R. Finch), Mineralogical Society of America, Washington DC, pp. 500–19.Google Scholar
  139. Haschke, J. M., Allen, T. H., and Morales, L. A. (2000) Science 287, 285–7.Google Scholar
  140. Haschke, J. M., Allen, T. H., and Morales, L. A. (2001) J. Alloys Compd., 314, 78–91.Google Scholar
  141. Haschke, J. M. and Allen, T. H. (2002) J. Alloys Compd., 336, 124–31.Google Scholar
  142. Haschke, J. M. and Oversby, V. M. (2002) J. Nucl. Mater., 305, 187–201.Google Scholar
  143. Hay, P. J., Martin, R. L., and Schreckenbach, G. (2000) J. Phys. Chem. A, 104, 6259–70.Google Scholar
  144. Hem, J. D. (1985) Study and Interpretation of the Chemical Characteristics of Natural Water, U.S. Geological Survey Water Supply Paper 2254, U.S. Geological Survey.Google Scholar
  145. Hennig, C., Panak, P. J., Reich, T., Rossberg, A., Raff, J., Selenska-Pobell, S., Matz, W., Bucher, J. J., Bernhard, G., and Nitsche, H. (2001a) Radiochim. Acta, 89, 625–31.Google Scholar
  146. Hennig, C., Reich, T., Funke, H., Rossberg, A., Rutsch, M., and Bernhard, G. (2001b) J. Synchrotron. Radiat., 8, 695–7.Google Scholar
  147. Hennig, C., Reich, T., Daehn, R., and Scheidegger, A. M. (2002) Radiochim. Acta, 90, 653–7.Google Scholar
  148. Hess, N. J., Felmy, A. R., Rai, D., and Conradson, S. D. (1997) Mater. Res. Soc. Symp. Proc., 465, 729–34.Google Scholar
  149. Hess, N. J., Weber, W. J., and Conradson, S. (1998) J. Alloys Compd., 271–273, 240–3.Google Scholar
  150. Ho, C. H. and Doern, D. C. (1985) Can. J. Chem., 63, 1100–4.Google Scholar
  151. Hoekstra, H. and Siegel, S. (1964) J. Inorg. Nucl. Chem., 26, 693–700.Google Scholar
  152. Hsi, C. K. D. and Langmuir, D. (1985) Geochim. Cosmochim. Acta, 49, 1931–41.Google Scholar
  153. Hudson, E. A., Rehr, J. J., and Bucher, J. J. (1995a) Phys. Rev. B, 52, 13815–26.Google Scholar
  154. Hudson, E. A., Terminello, L. J., Viani, B. E., Reich, T., Bucher, J. J., Shuh, D. K., and Edelstein, N. M. (1995b) Mater. Res. Soc. Symp. Proc., 375, 235–40.Google Scholar
  155. Hudson, E. A., Allen, P. G., Terminello, L. J., Denecke, M. A., and Reich, T. (1996) Phys. Rev. B, 54, 156–65.Google Scholar
  156. Hudson, E. A., Terminello, L. J., Viani, B. E., Denecke, M., Reich, T., Allen, P. G., Bucher, J. J., Shuh, D. K., and Edelstein, N. M. (1999) Clays Clay Miner., 47, 439–57.Google Scholar
  157. Hunter, D. B. and Bertsch, P. M. (1998) J. Radioanal. Nucl. Chem., 234, 237–42.Google Scholar
  158. Hursthouse, A. S., Baxter, M. S., Livens, F. R., and Duncan, H. J. (1991) J. Environ. Radioact., 14, 147–74.Google Scholar
  159. Igo, D. H., Elder, R. C., Heineman, W. R., and Dewald, H. D. (1991) Anal. Chem., 63, 2535–9.Google Scholar
  160. Jenne, E. A. (1977) in Molybdenum in the Environment (eds.. W. Chappel and K. Peterson), Marcel Dekker, New York, pp. 425–553.Google Scholar
  161. Jiang, J., Rao, L., Bernardo, P. D., Zanonato, P., and Bismondo, A. (2002) J. Chem. Soc., Dalton Trans., 1832–8.Google Scholar
  162. Joergensen, C. K. (1977) Rev. Chim. Miner., 14, 127–38.Google Scholar
  163. Johansson, G. and Wakita, H. (1985) Inorg. Chem., 24, 3047–52.Google Scholar
  164. Johansson, G., Magini, M., and Ohtaki, H. (1991) J. Solution Chem., 20, 775–92.Google Scholar
  165. Karim, D. P., Georgopoulos, P., and Knapp, G. S. (1980) Nucl. Technol., 51, 162–8.Google Scholar
  166. Kaszuba, J. P. and Runde, W. H. (1999) Environ. Sci. Technol., 33, 4427–33.Google Scholar
  167. Keeney-Kennicutt, W. L. and Morse, J. W. (1985) Geochim. Cosmochim. Acta, 49, 2577–88.Google Scholar
  168. Kelly, S. D., Kemner, K. M., Fein, J. B., Fowle, D. A., Boyanov, M. I., Bunker, B. A., and Yee, N. (2002) Geochim. Cosmochim. Acta, 66, 3855–71.Google Scholar
  169. Kelly, S. D., Newville, M. G., Cheng, L., Kemner, K. M., Sutton, S. R., Fenter, P., Sturchio, N. C., and Spoetl, C. (2003) Environ. Sci. Technol., 37, 1284–7.Google Scholar
  170. Kitano, Y. and Oomori, T. J. (1971) J. Oceanogr. Soc. Jpn., 27, 34–42.Google Scholar
  171. Koningsberger, D. C. and Prins, R. (1988) X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, John Wiley, New York.Google Scholar
  172. Krot, N. N. and Gelman, A. D. (1967) Dokl. Akad. Nauk. SSSR, Engl. Transl., 177, 124–6.Google Scholar
  173. Ku, T.-L., Knauss, K. G., and Mathieu, G. G. (1977) Deep-Sea Res., 24, 1005–17.Google Scholar
  174. Langmuir, D. (1978) Geochim. Cosmochim. Acta, 42, 547–69.Google Scholar
  175. Latrous, H. and Oliver, J. (1999) J. Mol. Liq., 81, 115–21.Google Scholar
  176. Leciejewicz, J., Alcock, N. W., and Kemp, T. J. (1995) Struct. Bond., 82, 43–84.Google Scholar
  177. Lee, P. A., Citrin, P. H., Eisenberger, P., and Kincaid, B. M. (1981) Rev. Mod. Phys., 53, 769–806.Google Scholar
  178. Li, Y., Kato, Y., and Yoshida, Z. (1993) Radiochim. Acta, 60, 115–19.Google Scholar
  179. Lieser, K. H. (1995) Radiochim. Acta, 70–71, 355–75.Google Scholar
  180. Locock, A. J. and Burns, P. C. unpublished data.Google Scholar
  181. Lovley, D. R., Phillips, E. J. P., Gorby, Y. A., and Landa, E. R. (1991) Nature, 350, 413–16.Google Scholar
  182. Lytle, F. W. (1999) J. Synchrotron. Radiat., 6, 123–34.Google Scholar
  183. Manceau, A., Charlet, L., Boisset, M. C., Didier, B., and Spadini, L. (1992) Appl. Clay Sci., 7, 201–23.Google Scholar
  184. Martens, G., Rabe, P., and Wenck, P. (1985) Phys. Status Solidi A: Appl. Res., 88, 103–11.Google Scholar
  185. Mashirov, L. G., Suglobov, D. N., and Shcherbakov, V. A. (1975) Sov. Radiochem., Engl. Transl., 17, 768–70.Google Scholar
  186. Mauerhofer, E., Zhernosekov, K., and Rösch, F. (2004) Radiochim. Acta, 92, 5–10.Google Scholar
  187. Maya, L. (1982) Radiochim. Acta, 31, 147–51.Google Scholar
  188. Meece, D. E. and Benninger, l. K. (1993) Geochim. Cosmochim. Acta, 57, 1447–58.Google Scholar
  189. Merroun, M., Hennig, C., Rossberg, A., Geipel, G., Reich, T., and Selenska- Pobell, S. (2002a) Biochem. Soc. Trans., 30, 669–72.Google Scholar
  190. Merroun, M., Hennig, C., Rossberg, A., Reich, T., Nicolai, R., Heise, K. H., and Selenska-Pobell, S. (2002b) in Uranium in the Aquatic Environment (eds. B. J. Merkel, B. Planer-Friedrich, and C. Wolkersdorfer), Springer-Verlag, Berlin, pp. 509–15.Google Scholar
  191. Michard, P., Guibal, E., Vincent, T., and Le Cloirec, P. (1996) Microporous Mater., 5, 309–24.Google Scholar
  192. Moll, H., Farkas, I., Jalilehvand, F., Sandström, M., Szabó, Z., Grenthe, I., Denecke, M. A., and Wahlgren, U. (1998) in Speciation, Techniques and Facilities for Radioactive Materials at Synchrotron Light Sources, Organisation for Economic Co– Operation and Development, Nuclear Energy Agency, Grenoble, France: pp. 261–8.Google Scholar
  193. Moll, H., Denecke, M. A., Jalilehvand, F., Sandstrom, M., and Grenthe, I. (1999) Inorg. Chem., 38, 1795–9.Google Scholar
  194. Moll, H., Reich, T., Hennig, C., Rossberg, A., Szabo, Z., and Grenthe, I. (2000a) Radiochim. Acta, 88, 559–66.Google Scholar
  195. Moll, H., Reich, T., and Szabo, Z. (2000b) Radiochim. Acta, 88, 411–15.Google Scholar
  196. Moll, H., Geipel, G., Reich, T., Bernhard, G., Fanghänel, T., and Grenthe, I. (2003) Radiochim. Acta, 91, 11–20.Google Scholar
  197. Morris, D. E., Allen, P. G., Berg, J. M., Chisholm-Brause, C., Conradson, S., Donohoe, R. J., Hess, N. J., Musgrave, J. A., and Tait, C. D. (1996) Environ. Sci. Technol., 30, 2322–31.Google Scholar
  198. Morris, D. E. (2002) Inorg. Chem., 41, 3542–7.Google Scholar
  199. Morss, L. R. (1994) in Handbook on the Physics and Chemistry of Rare Earths, vol. 18 (eds. K. A. Gschneidner Jr, L. Eyring, G. R. Choppin, and G. H. Lander), Elsevier Science, Amsterdam, pp. 239–91.Google Scholar
  200. Mosselmans, J. F., Bailey, E., and Schofield, P. (2001) J. Synchrotron Radiat., 8, 660–2.Google Scholar
  201. Moyes, L. N., Parkman, R. H., Charnock, J. M., Vaughan, D. J., Livens, F. R., Hughes, C. R., and Braithwaite, A. (2000) Environ. Sci. Technol., 34, 1062–8.Google Scholar
  202. Moyes, L. N., Jones, M. J., Reed, W. A., Livens, F. R., Charnock, J. M., Mosselmans, J. F. W., Hennig, C., Vaughan, D. J., and Pattrick, R. A. D. (2002) Environ. Sci. Technol., 36, 179–83.Google Scholar
  203. Musikas, C. and Narten, A. H. (1978) Inorg. Nucl. Chem. Lett., 14, 283–5.Google Scholar
  204. Nace, R. L. (1967) Are We Running Out of Water?, U.S. Geological Survey Circular 536.Google Scholar
  205. Nagy, B., Gauthier-Lafaye, F., Holliger, P., Davis, D. W., Mossman, D. J., Leventhal, J. S., Rigali, M. J. and Parnell, J. (1991) Nature, 354, 472–4.Google Scholar
  206. Neck, V. and Kim, J. I. (2001) Radiochim. Acta, 89, 1–16.Google Scholar
  207. Neck, V., Müller, R., Bouby, M., Altmaier, M., Rothe, J., Denecke, M. A., and Kim, J. I. (2002) Radiochim. Acta, 90, 485–94.Google Scholar
  208. Neilson, G. W., Schioeberg, D., and Luck, W. A. P. (1985) Chem. Phys. Lett., 122, 475–9.Google Scholar
  209. Newville, M., Sutton, S., Rivers, M., and Eng, P. (1999) J. Synchrotron. Radiat., 6, 353–5.Google Scholar
  210. Nitsche, H. (1997) in The Robert A. Welch Foundation, Proc. 41st Conf. on Chemical Research. The Transactinide Elements, Robert A. Welch Foundation, Houston, TX, ch. 5.Google Scholar
  211. Nitsche, H., Silva, R. J., Brendler, V., Geipel, G., Reich, T., Teterin, Y. A., Thieme, M., Baraniak, L., and Bernhard, G. (1999) in Actinide Speciation in High Ionic Strength Media (eds. D. T. Reed, S. B. Clark, and L. Rao), Kluwer Academic Publishers, New York, pp. 11–38.Google Scholar
  212. Oesthols, E. (1995) Geochim. Cosmochim. Acta, 59, 1235–49.Google Scholar
  213. Oesthols, E., Manceau, A., Farges, F., and Charlett, L. (1997) J. Colloid Interface Sci., 194, 12–21.Google Scholar
  214. O’Loughlin, E. J., Kelly, S. D., Cook, R. E., Csencsits, R., and Kemner, K. M. (2003) Environ. Sci. Technol., 37, 721–7.Google Scholar
  215. Ordonez-Regil, E., Drot, R., Simoni, E., and Ehrhardt, J. J. (2002) Langmuir, 18, 7977–84.Google Scholar
  216. Paciolla, M. D., Davies, G., and Jansen, S. A. (1999) Environ. Sci. Technol., 33, 1814–18.Google Scholar
  217. Palacios, M. L. and Taylor, S. H. (2000) Appl. Spectrosc., 54, 1372–8.Google Scholar
  218. Panak, P. J., Raff, J., Selenska-Pobell, S., Geipel, G., Bernhard, G., and Nitsche, H. (2000) Radiochim. Acta, 88, 71–6.Google Scholar
  219. Panak, P. J. and Nitsche, H. (2001) Radiochim. Acta, 89, 499–504.Google Scholar
  220. Panak, P. J., Booth, C. H., Caulder, D. L., Bucher, J. J., Shuh, D. K., and Nitsche, H. (2002a) Radiochim. Acta, 90, 315–21.Google Scholar
  221. Panak, P. J., Knopp, R., Booth, C. H., and Nitsche, H. (2002b) Radiochim. Acta, 90, 779–83.Google Scholar
  222. Pauling, L. (1929) J. Am. Chem. Soc., 51, 1010–26.Google Scholar
  223. Pingitore, N. E. Jr., Iglesias, A., Lytle, F., and Wellington, G. M. (2002) Microchem. J., 71, 261–6.Google Scholar
  224. Pittman, E. D. and Lewan, M. D. (eds) (1994) Organic Acids in Geological Processes, Springer-Verlag, Berlin.Google Scholar
  225. Pocev, S. and Johansson, G. (1973) Acta Chem. Scand., 27, 2146–60.Google Scholar
  226. Pompe, S., Bubner, M., Denecke, M. A., Reich, T., Brachmann, A., Geipel, G., Nicolai, R., Heise, K. H., and Nitsche, H. (1996) Radiochim. Acta, 74, 135–40.Google Scholar
  227. Pourbaix, M. (1974) Atlas of Electrochemical Equilibria in Aqueous Solutions, Cebelcor, Brussels.Google Scholar
  228. Priest, N. D. (2001) Lancet, 357, 244–6.Google Scholar
  229. Quinn, B. M., Ding, Z., Moulton, R., and Bard, A. J. (2002) Langmuir, 18, 1734–42.Google Scholar
  230. Rai, D., Felmy, A. R., Hess, N. J., Moore, D. A., and Yui, M. (1998) Radiochim. Acta, 82, 17–25.Google Scholar
  231. Rai, D., Hess, N. J., Felmy, A. R., Moore, D. A., and Yui, M. (1999a) Radiochim. Acta, 84, 159–69.Google Scholar
  232. Rai, D., Hess, N. J., Felmy, A. R., Moore, D. A., Yui, M., and Vitorge, P. (1999b) Radiochim. Acta, 86, 89–99.Google Scholar
  233. Rakovan, J., Newville, M., and Sutton, S. (2001) Am. Mineral., 86, 697–700.Google Scholar
  234. Rakovan, J., Reeder, R. J., Elzinga, E. J., Cherniak, D. J., Tait, C. D., and Morris, D. E. (2002) Environ. Sci. Technol., 36, 3114–17.Google Scholar
  235. Rao, L., Jiang, D. L., Zanonato, P., Di Bernardo, P., Bismondo, A., and Garnov, A. Y. (2002) Radiochim. Acta, 90, 581–8.Google Scholar
  236. Reddon, G., Bargar, J. R., and Bencheikh-Latmani, R. (2001) J. Colloid. Interface Sci., 244, 211–19.Google Scholar
  237. Reeder, R. J. (1983) in Reviews of Mineralogy, vol. 23 (ed. R. J. Reeder), Mineralogical Society of America, Washington DC, pp. 1–47.Google Scholar
  238. Reeder, R. J., Nugent, M., Lamble, G. M., Tait, C. D., and Morris, D. E. (2000) Environ. Sci. Technol., 34, 638–44.Google Scholar
  239. Reeder, R. J., Nugent, M., Tait, C. D., Morris, D. E., Heald, S. M., Beck, K. M., and Hess, W. P. (2001) Geochim. Cosmochim. Acta, 65, 3491–503.Google Scholar
  240. Rehr, J. J., de Leon, J. M., Zabinsky, S. I., and Albers, R. C. (1991) J. Am. Chem. Soc., 113, 5135–40.Google Scholar
  241. Rehr, J. J., Albers, R. C., and Zabinsky, S. I. (1992) Phys. Rev. Lett., 69, 3397–400.Google Scholar
  242. Rehr, J. J. and Albers, R. C. (2000) Rev. Mod. Phys., 72, 621–54.Google Scholar
  243. Reich, T., Denecke, M. A., Pompe, S., Bubner, M., Heise, K.-H., Schmidt, M., Brendler, V., Baraniak, L., Nitsche, H., Allen, P. G., Bucher, J. J., Edelstein, N. M., and Shuh, D. K. (1996a) in Synchrotron Radiation Techniques in Industrial, Chemical, and Materials Science (eds. K. L. D’Amico, L. J. Terminello, and D. K. Shuh), Plenum Press, New York, pp. 215–28.Google Scholar
  244. Reich, T., Moll, H., Denecke, M. A., Geipel, G., Bernhard, G., Nitsche, H., Allen, P. G., Bucher, J. J., Kaltsoyannis, N., Edelstein, N. M., and Shuh, D. K. (1996b) Radiochim. Acta, 74, 219–23.Google Scholar
  245. Reich, T., Hudson, E. A., Denecke, M. A., Allen, P. G., and Nitsche, H. (1998a) Poverkhnost (4–5), 1997, pp 149–57 13, 557–68.Google Scholar
  246. Reich, T., Moll, H., Arnold, T., Denecke, M. A., Hennig, C., Geipel, G., Bernhard, G., Nitsche, H., Allen, P. G., Bucher, J. J., Edelstein, N. M., and Shuh, D. K. (1998b) J. Electron Spectrosc. Relat. Phenom., 96, 237–43.Google Scholar
  247. Reich, T., Bernhard, G., Geipel, G., Funke, H., Hennig, C., Rossberg, A., Matz, W., Schell, N., and Nitsche, H. (2000) Radiochim. Acta, 88, 633–7.Google Scholar
  248. Revel, R., Den Auwer, C., Madic, C., David, F., Fourest, B., Hubert, S., Le Du, J. F., and Morss, L. R. (1999) Inorg. Chem., 38, 4139–41.Google Scholar
  249. Riglet, C., Robouch, P., and Vitorge, P. (1989) Radiochim. Acta, 46, 85–94.Google Scholar
  250. Roehler, J. (1992) in Lattice Effects in High-Tc Superconductors: Proceedings of the Conference: Santa Fe, New Mexico, January 13–15, 1992 (eds. Y. Bar-Yam, T. Egami, J. Mustre-de Leon, and A. R. Bishop) World Scientific, Singapore, pp. 77–83.Google Scholar
  251. Rossberg, A., Baraniak, L., Reich, T., Hennig, C., Bernhard, G., and Nitsche, H. (2000) Radiochim. Acta, 88, 593–7.Google Scholar
  252. Rossberg, A., Reich, T., and Bernhard, G. (2003) Anal. Bioanal. Chem., 376, 631–8.Google Scholar
  253. Rothe, J., Denecke, M. A., Neck, V., Mueller, R., and Kim, J. I. (2002) Inorg. Chem., 41, 249–58.Google Scholar
  254. Runde, W., Neu, M. P., Conradson, S. D., Clark, D. L., Palmer, P. D., Reilly, S. D., Scott, B. L., and Tait, C. D. (1997) Mater. Res. Soc. Symp. Proc., 465, 693–703.Google Scholar
  255. Runde, W., Neu, M. P., and Reilly, S. D. (1999) in Actinide Speciation in High Ionic Strength Media (eds. D.T. Reed, S. B. Clark, and L. Rao), Kluwer Academic Publishers, New York, pp. 141–51.Google Scholar
  256. Russell, A. D., Emerson, S., Nelson, B. K., Erez, J., and Lea, D. W. (1994) Geochim. Cosmochim. Acta, 58, 671–81.Google Scholar
  257. Rykov, A. G., Andreichuk, N. N., and Vasil’ev, V. Y. (1973) Sov. Radiochem., Engl. Transl., 15, 350–5.Google Scholar
  258. Sanchez, A. L., Murray, J. W., and Silbley, T. H. (1985) Geochim. Cosmochim. Acta, 49, 2297–307.Google Scholar
  259. Sayers, D. E., Stern, E. A., and Lytle, F. W. (1971) Phys. Rev. Lett., 27, 1204–7.Google Scholar
  260. Schmeide, K., Sachs, S., Bubner, M., Reich, T., Heise, K. H., and Bernhard, G. (2003) Inorg. Chim. Acta, 351, 133–40.Google Scholar
  261. Schofield, P. F., Bailey, E. H., and Mosselmans, J. F. W. (1999) in Geochemistry of the Earth’s Surface (ed. H. Armannsson), Proc. 5th Int. Symp. on Geochemistry of the Earth’s Surface Balkema, Rotterdam, pp. 465–8.Google Scholar
  262. Schreckenbach, G., Hay, P. J., and Martin, R. L. (1998) Inorg. Chem., 37, 4442–51.Google Scholar
  263. Sémon, L., Boehme, C., Billard, I., Hennig, C., Lutzenkirchen, K., Reich, T., Rossberg, A., Rossini, I., and Wipff, G. (2001) Chem. Phys. Chem., 2, 591–8.Google Scholar
  264. Shannon, R. D. (1976) Acta Crystallogr., A32, 751–67.Google Scholar
  265. Sharpe, L. R., Heineman, W. R., and Elder, R. C. (1990) Chem. Rev., 90, 705–22.Google Scholar
  266. Shaughnessy, D. A., Nitsche, H., Booth, C. H., Shuh, D. K., Waychunas, G. A., Wilson, R. E., Gill, H., Cantrell, K. J., and Serne, R. J. (2003) Environ. Sci. Technol., 37.Google Scholar
  267. Shcherbakov, V. A., Iorga, E. V., and Mashirov, L. G. (1974) Sov. Radiochem., Engl. Transl., 16, 286–7.Google Scholar
  268. Shcherbakov, V. A. and Iorga, E. V. (1975) Sov. Radiochem., Engl. Transl., 17, 763–7.Google Scholar
  269. Shen, G. T. and Dunbar, R. B. (1995) Geochim. Cosmochim. Acta, 59, 2009–24.Google Scholar
  270. Shilov, V. P. (1998) Radiochem., Engl. Transl., 40, 11–16.Google Scholar
  271. Shilov, V. P. and Yusov, A. B. (2002) Russ. Chem. Rev., Engl. Transl., 71, 465–88.Google Scholar
  272. Silva, R. J. and Nitsche, H. (1995) Radiochim. Acta, 70–71, 377–96.Google Scholar
  273. Skanthakumar, S., Gorman-Lewis, D., Locock, A., Chiang, M.-H., Jensen, M. P., Burns, P. C., Fein, J. B., Jonah, C. D., Attenkofer, K., and Soderholm, L. (2004) Mater. Res. Soc. Symp. Proc., 802, 151–6.Google Scholar
  274. Smith, D. A., Heeg, M. J., Heineman, W. R., and Elder, R. C. (1984) J. Am. Chem. Soc., 106, 3053–4.Google Scholar
  275. Soderholm, L., Antonio, M. R., Williams, C., and Wasserman, S. R. (1999) Anal. Chem., 71, 4622–8.Google Scholar
  276. Soderholm, L., Williams, C. W., Antonio, M. R., Tischler, M. L., and Markos, M. (2000) Mater. Res. Soc. Symp. Proc., 590, 27–32.Google Scholar
  277. Songkasiri, W., Reed, D. T., and Rittmann, B. E. (2002) Radiochim. Acta, 90, 785–9.Google Scholar
  278. Sonnenberg, L. B., Johnson, J. D., and Christman, R. F. (1989) in Aquatic Humic Substances. Influence on Fate and Treatment of Pollutants (eds. I. H. Suffet and P. MacCarthy) (ACS Symp. Ser. 219), American Chemical Society, Washington, DC, pp. 3–23.Google Scholar
  279. Spencer, S., Gagliardi, L., Handy, N. C., Ioannou, A. G., Skylaris, C.-K., Willetts, A., and Simper, A. M. (1999) J. Phys. Chem. A, 103, 1831–7.Google Scholar
  280. Spitsyn, V. I., Gelman, A. D., Krot, N. N., Mefodiyeva, M. P., Zakharova, F. A., Komkov, Y. A., Shilov, V. P., and Smirnova, I. V. (1969) J. Inorg. Nucl. Chem., 31, 2733–45.Google Scholar
  281. Spoetl, C., Unterwurzacher, M., Mangini, A., and Longstaffe, F. J. (2002) J. Sediment. Res., 72, 793–808.Google Scholar
  282. Sposito, G. (1984) The Surface Chemistry of Soils, Oxford University Press, Oxford.Google Scholar
  283. Sposito, G. (1990) in Reviews in Mineralogy, vol. 23 (eds. M. F. Hochellaand A. F. White), Mineralogical Society of America, Washington DC, pp. 259–79.Google Scholar
  284. Sterne, P. A., Gonis, A., and Borovoi, A. A. (eds.) (1998) Actinides and the Environment, Kluwer Academic Publishers, Dordrecht.Google Scholar
  285. Stevenson, F. J. (1994) Humus Chemistry: Genesis, Composition, Reactions, John Wiley, New York.Google Scholar
  286. Stumpf, T., Hennig, C., Bauer, A., Denecke, M. A., and Fanghaenel, T. (2004) Radiochim. Acta, 92, 133–8.Google Scholar
  287. Sturchio, N. C., Antonio, M. R., Soderholm, L., Sutton, S. R., and Brannon, J. C. (1998) Science, 281, 971–3.Google Scholar
  288. Suzuki, Y., Kelly, S. D., Kemner, K. M., and Banfield, J. F. (2002) Nature (London), 419, 134.Google Scholar
  289. Suzuki, Y., Kelly, S. D., Kemner, K. M., and Banfield, J. F. (2003) Appl. Environ. Microbiol., 69, 1337–46.Google Scholar
  290. Sylwester, E. R., Hudson, E. A., and Allen, P. G. (2000) Geochim. Cosmochim. Acta, 64, 2431–8.Google Scholar
  291. Szabo, Z., Moll, H., and Grenthe, I. (2000) J. Chem. Soc., Dalton Trans., 3158-61.Google Scholar
  292. Szalay, A. (1991) Geochim. Int., 6, 1605–14.Google Scholar
  293. Templeton, D. H. and Templeton, L. K. (1982) Acta Crystallogr., A38, 62–7.Google Scholar
  294. Teo, B. K. (1986) EXAFS: Basic Principles and Data Analysis, Springer-Verlag, Berlin.Google Scholar
  295. Teo, B. K. and Lee, P. A. (1979) J. Am. Chem. Soc., 101, 2815–32.Google Scholar
  296. Thompson, H. A., Brown, G. E., and Parks, G. A. (1995) Physica B, 209, 167–8.Google Scholar
  297. Thompson, H. A., Brown, G. E., and Parks, G. A. (1997) Am. Mineral., 82, 483–96.Google Scholar
  298. Thompson, H. A., Parks, G. A., and Brown, G. E. (1998) in Adsorption of Metals by Geomedia (ed. E. A. Jenne), Academic Press, San Diego, pp. 349–70.Google Scholar
  299. Triay, I. R., Meijer, A., Conca, J. L., Kung, K. S., Rundberg, R. S., Strietelmeier, B. A., and Tait, C. D.(1997) Summary and Synthesis Report on Radionuclide Retardation for the Yucca Mountain Site Characterization Project, LA-13262, Los Alamos National Laboratory.Google Scholar
  300. Tsushima, S. and Suzuki, A. (2000) J. Mol. Struct. (Theochem), 529, 21–5.Google Scholar
  301. Tsushima, S. and Reich, T. (2001) Chem. Phys. Lett., 347, 127–32.Google Scholar
  302. Tsushima, S., Uchida, Y., and Reich, T. (2002) Chem. Phys. Lett., 357, 73–7.Google Scholar
  303. Vallet, V., Wahlgren, U., Schimmelpfennig, B., Moll, H., Szabo, Z., and Grenthe, I. (2001) Inorg. Chem., 40, 3516–25.Google Scholar
  304. Vallet, V., Moll, H., Wahlgren, U., Szabo, Z., and Grenthe, I. (2003) Inorg. Chem., 42, 1982–93.Google Scholar
  305. Vaniman, D. T., Chipera, S. J., Bish, D. L., Duff, M. C., and Hunter, D. B. (2002) Geochim. Cosmochim. Acta, 66, 1349–74.Google Scholar
  306. Vasil’ev, V. Y., Andreichuk, N. N., and Rykov, A. G. (1974) Sov. Radiochem., Engl. Transl., 16, 583–6.Google Scholar
  307. Vazquez, J., Bo, C., Poblet, J. M., de Pablo, J., and Bruno, J. (2003) Inorg. Chem., 42, 6136–41.Google Scholar
  308. Veirs, D. K., Smith, C. A., Berg, J. M., Zwick, B. D., Marsh, S. F., Allen, P., and Conradson, S. D. (1994) J. Alloys Compd., 213, 328–32.Google Scholar
  309. Viswanathan, H. S., Robinson, B. A., Valocchi, A. J., and Triay, I. R. (1998) J. Hydrol., 209, 251–80.Google Scholar
  310. Wahlgren, U., Moll, H., Grenthe, I., Schimmelpfennig, B., Maron, L., Vallet, V., and Gropen, O. (1999) J. Phys. Chem. A, 103, 8257–64.Google Scholar
  311. Waite, T. D., Davis, J. A., Payne, T. E., Waychunas, G. A., and Xu, N. (1994) Geochim. Cosmochim. Acta, 58, 5465–78.Google Scholar
  312. Walter, M., Arnold, T., Reich, T., and Bernhard, G. (2003) Environ. Sci. Technol., 37, 2898–904.Google Scholar
  313. Wasserman, S. R. (1997) J. Phys. IV, 7, 203–5.Google Scholar
  314. Wasserman, S. R., Allen, P. G., Shuh, D. K., Bucher, J. J., and Edelstein, N. M. (1999) J. Synchrotron Radiat., 6, 284–6.Google Scholar
  315. Wasserman, S. R., Soderholm, L., and Giaquinta, D. M. (2000) Mater. Res. Soc. Symp. Proc., 590, 39–44.Google Scholar
  316. Weiland, E., Wanner, H., Albinsson, Y., Wersin, P., and Karnland, O. (1994) SKB Technical Report 94-26, 64 pp.Google Scholar
  317. Williams, C. W., Blaudeau, J.-P., Sullivan, J. C., Antonio, M. R., Bursten, B. E., and Soderholm, L. (2001) J. Am. Chem. Soc., 123, 4346–7.Google Scholar
  318. Winick, H. and Nuhn, H.-D. (2003) http://www.lightsources.orgGoogle Scholar
  319. Yanase, N., Isobe, H., Sato, T., Sanada, Y., Matsunaga, T., and Amano, H. (2002) J. Radioanal. Nucl. Chem., 252, 233–9.Google Scholar
  320. Yang, T., Tsushima, S., and Suzuki, A. (2001) J. Phys. Chem. A, 105, 10439–45.Google Scholar
  321. Zabinsky, S. I., Rehr, J. J., Ankudinov, A., Albers, R. C., and Eller, M. J. (1995) Phys. Rev., B52, 2995–3009.Google Scholar
  322. Zachara, J. M. and McKinley, J. P. (1993) Aquat. Sci., 55, 250–61.Google Scholar
  323. Zhang, L., Crossley, M. J., Dixon, N. E., Ellis, P. J., Fisher, M. L., King, G. F., Lilley, P. E., Mac Lachlan, D., Pace, R. J., and Freeman, H. C. (1998) J. Biol. Inorg. Chem., 3, 470–83.Google Scholar
  324. Zielen, A. J. and Cohen, D. (1970) J. Phys. Chem., 74, 394–405.Google Scholar
  325. Zubavichus, Y. V. and Slovokhotov, Y. L. (2001) Russ. Chem. Rev., Engl. Transl., 70, 373–403.Google Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Mark R. Antonio
  • Lynda Soderholm

There are no affiliations available

Personalised recommendations