Magnetic Properties

  • Norman M. Edelstein
  • Gerard H. Lander

Abstract

The magnetic properties of actinide ions and compounds arise from the spin and orbital angular momenta of the unpaired electrons. The theoretical basis for understanding these properties was provided by Van Vleck in 1932 in his classic work The Theory of Electric and Magnetic Susceptibilities (Van Vleck, 1932).

Keywords

Magnetic Susceptibility Electron Paramagnetic Resonance Spectrum Magnetic Data Electron Paramagnetic Resonance Measurement Ground Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam, A. and Bleaney, B. (1970) Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford.Google Scholar
  2. Abraham, M. M., Judd, B. R., and Wickman, H. H. (1963) Phys. Rev., 130, 611–12.Google Scholar
  3. Abraham, M. M., Finch, C. B., and Clark, G. W. (1968) Phys. Rev., 168, 933.Google Scholar
  4. Abraham, M. M., Boatner, L. A., Finch, C. B., Reynolds, R. W., and Zeldes, H. (1970) Phys. Rev. B, 1, 3555–60.Google Scholar
  5. Abraham, M. M., Boatner, L. A., Finch, C. B., and Reynolds, R. W. (1971) Phys. Rev. B, 3, 2864Google Scholar
  6. Abraham, M. M., Boatner, L. A., Finch, C. B., Kot, W. K., Conway, J. G., Shalimoff, G. V., and Edelstein, N. M. (1987) Phys. Rev. B, 35, 3057–61.Google Scholar
  7. Aderhold, C., Baumgartner, F., Dornberger, E., and Kanellakopulos, B. (1978) Z. Naturforsch., 33a, 1268–80.Google Scholar
  8. Aldred, A. T., Cinader, G., Lam, D. J., and Weber, L. W. (1979) Phys. Rev. B, 19, 300–5.Google Scholar
  9. Alessandrini, V. A., Cracknell, A. P., and Przystawa, J. A. (1976) Commun. Phys., 1, 51–5.Google Scholar
  10. Allen, S. J. (1968a) Phys. Rev., 167, 492–6.Google Scholar
  11. Allen, S. J. (1968b) Phys. Rev., 166, 530–9.Google Scholar
  12. Allen, S., Barlow, S., Halasyamani, P. S., Mosselmans, J. F. W., O’Hare, D., Walker, S. M., and Walton, R. I. (2000) Inorg. Chem., 39, 3791–8.Google Scholar
  13. Almond, P. M., Deakin, L., Porter, M. J., Mar, A., and Albrecht- Schmitt, T. E. (2000) Chem. Mater., 12, 3208–13.Google Scholar
  14. Amberger, H. -D., Fischer, R. D., and Kanellakopulos, B. (1975) Theor. Chim. Acta, 37, 105–27.Google Scholar
  15. Amberger, H.-D. (1976a) J. Organomet. Chem., 116, 219–29.Google Scholar
  16. Amberger, H.-D. (1976b) J. Organomet. Chem., 110, 59–66.Google Scholar
  17. Amberger, H.-D., Fischer, R. D., and Kanellakopulos, B. (1976) Z. Naturforsch., B31, 12–21.Google Scholar
  18. Amoretti, G., Blaise, A., Caciuffo, R., Fournier, J. M., Hutchings, M. T., Osborn, R., and Taylor, A. D. (1989) Phys. Rev. B, 40, 1856–70.Google Scholar
  19. Amoretti, G., Blaise, A., Caciuffo, R. C., Di Cola, D., Fournier, J. M., Hutchings, M. T., Lander, G. H., Osborn, R., Severing, A., and Taylor, A. D. (1992) J. Phys. Condensed Matter, 4, 3459–78.Google Scholar
  20. Arliguie, T., Lance, M., Nierlich, M., Vigner, J., and Ephritikhine, M. (1995) J. Chem. Soc. Chem. Commun., 183–4.Google Scholar
  21. Arrott, A. and Goldman, J. E. (1957) Phys. Rev., 108, 948.Google Scholar
  22. Axe, J. D. (1960) University of California, Radiation Laboratory Report, UCRL-9293.Google Scholar
  23. Axe, J. D., Stapleton, H. J., and Jeffries, C. D. (1961) Phys. Rev., 121, 1630.Google Scholar
  24. Bacon, G. E. (1962) Neutron Diffraction, Oxford University Press, Oxford.Google Scholar
  25. Baybarz, R. D., Asprey, L. B., Strouse, C. E., and Fukushima, E. (1972) J. Inorg. Nucl. Chem., 34, 3427–31.Google Scholar
  26. Berger, M. and Sienko, M. J. (1967) Inorg. Chem., 6, 324–6.Google Scholar
  27. Bernhoeft, N., Sato, N., Roessli, B., Aso, N., Hiess, A., Lander, G. H., Endoh, Y., and Komatsubara, T. (1998) Phys. Rev. Lett., 81, 4244.Google Scholar
  28. Bernstein, E. R. and Keiderling, T. A. (1973) J. Chem. Phys., 59, 2105–22.Google Scholar
  29. Bernstein, E. R. and Dennis, L. W. (1979) Phys. Rev. B, 20, 870.Google Scholar
  30. Bickel, M. and Kanellakopulos, B. (1993) J. Solid State Chem., 107, 273–84.Google Scholar
  31. Blaise, A., Genet, M., Chong- Li, S., and Soulie, E. (1986) J. Less Common Metals, 121, 209–15.Google Scholar
  32. Blake, P. C., Lappert, M. F., Atwood, J. L., and Zhang, H. (1986) J. Chem. Soc., Chem. Commun., 1148.Google Scholar
  33. Blake, P. C., Edelstein, N. M., Hitchcock, P. B., Kot, W. K., Lappert, M. F., Shalimoff, G. V., and Tian, S. (2001) J. Organomet. Chem., 636, 124–9.Google Scholar
  34. Blume, M. (1966) Phys. Rev., 141, 517–24.Google Scholar
  35. Blume, M. (1985) J. Appl. Phys., 57, 3615.Google Scholar
  36. Blume, M. and Gibbs, D. (1988) Phys. Rev. B, 37, 1779.Google Scholar
  37. Boatner, L. A., Reynolds, R. W., Finch, C. B., and Abraham, M. M. (1972) Phys. Lett. A, 42, 93–4.Google Scholar
  38. Boatner, L. A., Reynolds, R. W., Finch, C. B., and Abraham, M. M. (1976) Phys. Rev. B, 13, 953–8.Google Scholar
  39. Boatner, L. A. and Abraham, M. M. (1978) Rep. Prog. Phys., 41, 87–155.Google Scholar
  40. Boerrigter, P. M., Baerends, E. J., and Snijders, J. G. (1988) Chem. Phys., 122, 357–74.Google Scholar
  41. Boeuf, A., Rustichelli, F., Fournier, J. M., Gueugnon, J. F., Manes, L., and Rebizant, J. (1979) J. Phys. (Paris), Lett., 40, L335–8.Google Scholar
  42. Boeuf, A., Caciuffo, R. C., Fournier, J. M., Manes, L., Rebizant, J., Rustichelli, F., Spirlet, J. C., and Wright, A. (1983) Phys. Status Solidi A, 79, K1–3.Google Scholar
  43. Bombardi, A., Kernavanois, N., Dalmas de Réotier, P., Lander, G. H., Sanchez, J. P., Yaouanc, A., Burlet, P., Lelievre-Berna, E., Rogalev, A., Vogt, O., and Mattenberger, K. (2001) Eur. Phys. J. B, 21, 547Google Scholar
  44. Boudreaux, E. A. and Mulay, L. N. (1976) Theory and Applications of Molecular Paramagnetism, Wiley, New York.Google Scholar
  45. Brandt, O. G. and Walker, C. T. (1967) Phys. Rev. Lett., 18, 11.Google Scholar
  46. Brandt, O. G. and Walker, C. T. (1968) Phys. Rev., 170, 528–41.Google Scholar
  47. Brennan, J. G., Andersen, R. A., and Zalkin, A. (1986) Inorg. Chem, 25, 1761–5.Google Scholar
  48. Brodsky, M. B. (1978) Rep. Prog. Phys., 41, 1547–608.Google Scholar
  49. Brooks, M. S. S., Johansson, B., and Skriver, H. L. (1984) in Handbook of the Physics and Chemistry of the Actinides (ed. A. J. Freeman and G. H. Lander), North-Holland, Amsterdam, pp. 153–269.Google Scholar
  50. Brown, D., Lidster, P., Whittaker, B., and Edelstein, N. (1976) Inorg. Chem., 15, 511–14.Google Scholar
  51. Butler, J. E. and Hutchison, C. A. Jr (1981) J. Chem. Phys., 74, 3102–19.Google Scholar
  52. Caciuffo, R. C., Lander, G. H., Spirlet, J. C., Fournier, J. M., and Kuhs, W. F. (1987) Solid State Commun., 64, 149.Google Scholar
  53. Caciuffo, R. C., Amoretti, G., Santini, P., Lander, G. H., Kulda, J., and Du Plessis, P. D. V. (1999) Phys. Rev. B, 59, 13892.Google Scholar
  54. Carnall, W. T., Kanellakopulos, B., Klenze, R., and Stollenwerk, A. (1980) in Proc. 10eme Journees des Actinides (eds. B. Johansson and A. Rosengren), pp. 201–16.Google Scholar
  55. Carnall, W. T. (1992) J. Chem. Phys., 96, 8713–26.Google Scholar
  56. Carra, P. and Altarelli, M. (1990) Phys. Rev. Lett., 64, 1286.Google Scholar
  57. Chan, S. K. and Lam, D. J. (1974) in The Actinide Electronic Structure and Related Properties, vol. 1 (ed. A. J. Freeman and J. B. Darby), Academic Press, New York.Google Scholar
  58. Chang, A. H. H. and Pitzer, R. M. (1989) J. Am. Chem. Soc., 111, 2500Google Scholar
  59. Chang, C. T., Haire, R. G., and Nave, S. E. (1990) Phys. Rev. B Condensed Matter, 41, 9045–8.Google Scholar
  60. Colarieti-Tosti, M., Eriksson, O., Nordström, L., Wills, J., and Brooks, M. S. S. (2002) Phys. Rev. B, 65, 195102Google Scholar
  61. Collins, S. P., Laundy, D., Tang, C. C., and Cernik, R. J. (1995) J. Phys. Condensed Matter, 7, L223.Google Scholar
  62. Cowley, R. A. and Dolling, G. (1968) Phys. Rev., 167, 464.Google Scholar
  63. Cox, D. E. and Frazer, B. C. (1967) J. Phys. Chem. Solids, 28, 1649.Google Scholar
  64. Crosswhite, H. M., Crosswhite, H., Carnall, W. T., and Paszek, A. P. (1980) J. Chem. Phys., 72, 5103–17.Google Scholar
  65. Cunningham, B. B. (1962) Thermodynamics of the Actinides. Thermodynamics of Nuclear Materials. International Atomic Energy Agency Symposium held in Vienna, Austria, May 21–25, 1962. Proc. Ser. STI/PUB/58, 61–70.Google Scholar
  66. Dallinger, R. F., Stein, P., and Spiro, T. G. (1978) J. Am. Chem. Soc., 100, 7865Google Scholar
  67. Dalmas de Réotier, P., Yaouanc, A., Van Der Laan, G., Kernavanois, N., Sanchez, J. P., Smith, J. L., Hiess, A., Huxley, A., and Rogalev, A. (1999) Phys. Rev. B, 60, 10606.Google Scholar
  68. Delamoye, P., Krupa, J. C., Kern, S., Loong, C. -K., and Lander, G. H. (1986) J. Less Common Metals, 122, 59–63.Google Scholar
  69. Dell, R. M. and Bridger, N. J. (1972) in MTP International Review of Science, Inorganic Chemistry, ser. I, Lanthanides and Actinides, vol. 7 (ed. K. W. Bagnall), Butterworths, London, pp. 211–74.Google Scholar
  70. Denning, R. G. (1992) Struc. Bonding (Berlin), 79, 215–71.Google Scholar
  71. Dolling, G., Woods, A. B. D., and Cowley, R. A. (1965) Can. J. Phys., 43, 1397.Google Scholar
  72. Dornberger, E., Kanellakopulos, B., Klenze, R., and Stollenwerk, A. H. (1980) Crystal field spectra and magnetic properties of neptuniumtetracyclopentadienide, (C5H5)4Np, and triscyclopentadienylneptuniumchloride, (C5H5)3NpCl, in Proc. 10eme Journees des Actinides (ed. B. Johansson and A. Rosengren), pp. 58–73.Google Scholar
  73. Drifford, M., Rigny, P., and Plurien, P. (1968) Phys. Lett., 27A, 620.Google Scholar
  74. Dunlap, B. D., Kalvius, G. M., Lam, D. J., and Brodsky, M. B. (1968) J. Phys. Chem. Solids, 29, 1365.Google Scholar
  75. Edelstein, N., Easley, W., and Mclaughlin, R. (1966) J. Chem. Phys., 44, 3130–1.Google Scholar
  76. Edelstein, N. and Easley, W. (1968) J. Chem. Phys., 48, 2110.Google Scholar
  77. Edelstein, N., Mollet, H. F., Easley, W. C., and Mehlhorn, R. J. (1969) J. Chem. Phys., 51, 3281–5.Google Scholar
  78. Edelstein, N., Conway, J. G., Fujita, D., Kolbe, W., and Mclaughlin, R. (1970) J. Chem. Phys., 52, 6425–6.Google Scholar
  79. Edelstein, N. (1971) J. Chem. Phys., 54, 2488–91.Google Scholar
  80. Edelstein, N. and Karraker, D. G. (1975) J. Chem. Phys., 62, 938–40.Google Scholar
  81. Edelstein, N., Streitwieser, A. J., Morrell, D. G., and Walker, R. (1976) Inorg. Chem., 15, 1397–8.Google Scholar
  82. Edelstein, N. (1977) Rev. Chim. Miner., 14, 149.Google Scholar
  83. Edelstein, N., Kolbe, W., and Bray, J. E. (1980) Phys. Rev. B, 21, 338–42.Google Scholar
  84. Eichberger, K. and Lux, F. (1980) Ber. Bunsenges. Phys. Chem., 84, 800–7.Google Scholar
  85. Eisenstein, J. C. and Pryce, M. H. L. (1955) Proc. R. Soc. A, A229, 20–38.Google Scholar
  86. Eisenstein, J. C. and Pryce, M. H. L. (1960) Proc. R. Soc. Lond. A, A255, 181–98.Google Scholar
  87. Erdos, P., Solt, G., Zolnierek, Z., Blaise, A., and Fournier, J. M. (1980) Physica, 102B, 164–70.Google Scholar
  88. Evans, D. F. (1959) J. Chem. Soc., 2003–5.Google Scholar
  89. Faber, J., Lander, G. H., and Cooper, B. R. (1975) Phys. Rev. Lett., 35, 1770–3.Google Scholar
  90. Faber, J. Jr and Lander, G. H. (1976) Phys. Rev. B, 14, 1151–64.Google Scholar
  91. Finazzi, M., Sainctavit, P., Dias, A. M., Kappler, J. P., Krill, G., Sanchez, J. P., Dalmas De Rotier, P., Yaouanc, A., Rogalev, A., and Goulon, J. (1997) Phys. Rev. B, 55, 3010.Google Scholar
  92. Flotow, H. E. and Tetenbaum, M. (1981) J. Chem. Phys., 74, 5269.Google Scholar
  93. Folcher, G., Marquet- Ellis, H., Rigny, P., Soulie, E., and Goodman, G. (1976) J. Inorg. Nucl. Chem., 38, 747–53.Google Scholar
  94. Fournier, J. M., Blaise, A., Muller, W., and Spirlet, J. C. (1977) Physica B, 86–88, 30–1.Google Scholar
  95. Fournier, J. M. (1985) Magnetic properties of actinide solids, in Structure and Bonding 59/60: Actinides-Chemistry and Physical Properties (ed. L. Manes), Springer-Verlag, Berlin, pp. 127–96.Google Scholar
  96. Francis, R. J., Halasyamani, P. S., and O’Hare, D. (1998) Chem. Mater., 10, 3131–39.Google Scholar
  97. Frazer, B. C., Shirane, G., Cox, D. E., and Olsen, C. E. (1965) Phys. Rev A, 140, 1448–52.Google Scholar
  98. Freeman, A. J. and Darby, J. B. J. (1974) The Actinides: Electronic Structure and Related Properties, vols. 1 and 2, Academic Press, New York.Google Scholar
  99. Friedt, J. M., Litterst, F. J., and Rebizant, J. (1985) Phys. Rev. B, 32, 257Google Scholar
  100. Fuji, K., Miyake, C., and Imoto, S. (1979) J. Nucl. Sci. Technol., 16, 207–13.Google Scholar
  101. Fujita, D. K. (1969) University of California Radiation Laboratory Report, UCRL-19507.Google Scholar
  102. Fujita, D. K., Parsons, T. C., Edelstein, N., Noe, M., and Peterson, J. R. (1976) The magnetic susceptibility of 244Cm metal and 249Cf metal, in Transplutonium Elements (eds. W. Muller and R. Lindner), North-Holland, Amsterdam, pp. 173–8.Google Scholar
  103. Gajek, Z., Lahalle, M. P., Krupa, J. C., and Mulak, J. (1988) J. Less Common Metals, 139, 351.Google Scholar
  104. Gamp, E., Edelstein, N., Khan Malek, C., Hubert, S., and Genet, M. (1983) J. Chem. Phys., 79, 2023–6.Google Scholar
  105. Gamp, E., Shinomoto, R., Edelstein, N., and McGarvey, B. R. (1987) Inorg. Chem., 26, 2177.Google Scholar
  106. Giannozzi, P. and Erdos, P. (1987) J. Magn. Magn. Mater., 67, 75.Google Scholar
  107. Gibbs, D., Hrashman, D. R., Isaacs, E. D., Mcwhan, D. B., Mills, D., and Vettier, C. (1988) Phys. Rev. Lett., 61, 1241.Google Scholar
  108. Gourier, D., Caurant, D., Berthet, J. C., Boisson, C., and Ephritikhine, M. (1997) Inorg. Chem., 36, 5931–36.Google Scholar
  109. Gourier, D., Caurant, D., Arliguie, T., and Ephritikhine, M. (1998) J. Am. Chem. Soc., 120, 6084–92.Google Scholar
  110. Gruen, D. M. (1955) J. Chem. Phys., 23, 1708–10.Google Scholar
  111. Handler, P. and Hutchison, C. A. Jr (1956) J. Chem. Phys., 25, 1210–13.Google Scholar
  112. Hannon, J. P., Trammell, G. T., Blume, M., and Gibbs, D. (1988) Phys. Rev. Lett., 62, 2644.Google Scholar
  113. Hauck, J. (1976) Inorg. Nucl. Chem. Lett., 12, 617–22.Google Scholar
  114. Hayes, R. G. and Edelstein, N. (1972) J. Am. Chem. Soc., 94, 8688.Google Scholar
  115. Heaton, L., Mueller, M. H., and Williams, J. M. (1967) J. Phys. Chem. Solids, 28, 1651.Google Scholar
  116. Hecht, H. G., Lewis, W. B., and Eastman, M. P. (1971) Adv. Chem. Phys., 21, 351.Google Scholar
  117. Hendricks, M. E., Jones, E. R. Jr, Stone, J. A., and Karraker, D. G. (1971) J. Chem. Phys., 55, 2993–7.Google Scholar
  118. Hendricks, M. E., Jones, E. R. Jr, Stone, J. A., and Karraker, D. G. (1974) J. Chem. Phys. 60, 2095–103.Google Scholar
  119. Hinatsu, Y., Miyake, C., and Imoto, S. (1981) J. Nucl. Sci. Technol., 18, 349–54.Google Scholar
  120. Hinatsu, Y. and Edelstein, N. (1991) J. Solid State Chem., 93, 173.Google Scholar
  121. Hinatsu, Y., Fujino, T., and Edelstein, N. (1992a) J. Solid State Chem., 99, 182–8.Google Scholar
  122. Hinatsu, Y., Fujino, T., and Edelstein, N. (1992b) J. Solid State Chem., 99, 95–102.Google Scholar
  123. Hinatsu, Y. (1994a) J. Alloys Compd, 203, 251–7.Google Scholar
  124. Hinatsu, Y. (1994b) J. Solid State Chem., 109, 1–6.Google Scholar
  125. Holland-Moritz, E. and Lander, G. H. (1994) in Handbook on the Physics and Chemistry of Rare Earths, vol. 19 (eds. K. A. Gschneidner Jr, L. Eyring, G. H. Lander, and G. R. Choppin), North-Holland Physics, Amsterdam, pp. 1–121.Google Scholar
  126. Howland, J. J. Jr and Calvin, M. (1950) J. Chem. Phys., 18, 239.Google Scholar
  127. Hubert, S., Thouvenot, P., and Edelstein, N. (1993) Phys. Rev. B, 48, 5751–60.Google Scholar
  128. Huray, P. G., Nave, S. E., Peterson, J. R., and Haire, R. G. (1980) Physica, 102B+C, 217–20.Google Scholar
  129. Huray, P. G. and Nave, S. E. (1987) Magnetic studies of transplutonium actinides, in Handbook on the Physics and Chemistry of the Actinides, vol. 5 (eds. A. J. Freeman and G. H. Lander), North-Holland, Amsterdam, pp. 311–72.Google Scholar
  130. Hutchison, C. A. Jr, Llewellyn, P. M., Wong, E., and Dorain, P. B. (1956) Phys. Rev., 102, 292.Google Scholar
  131. Hutchison, C. A. Jr and Candela, G. A. (1957) J. Chem. Phys., 27, 707–10.Google Scholar
  132. Hutchison, C. A. Jr and Weinstock, B. (1960) J. Chem. Phys., 32, 56–61.Google Scholar
  133. Hutchison, C. A. Jr, Tsang, T., and Weinstock, B. (1962) J. Chem. Phys., 37, 555–62.Google Scholar
  134. Ikushima, K., Tsutsui, S., Haga, Y., Ysauoka, H., Walstedt, R. E., Masaki, N. M., Nakamura, A., Nasu, S., and Onuki, Y. (2001) Phys. Rev. B, 63, 104404.Google Scholar
  135. James, R. W. (1958) The Optical Principles of the Diffraction of X Rays, G. Bell & Sons, London.Google Scholar
  136. Johnston, D. A., Satten, R. A., Schreiber, C. L., and Wong, E. Y. (1966) J. Chem. Phys., 44, 3141.Google Scholar
  137. Jones, E. R. Jr and Stone, J. A. (1972) J. Chem. Phys., 56, 1343.Google Scholar
  138. Jones, E. R. Jr, Hendricks, M. E., Stone, J. A., and Karraker, D. G. (1974) J. Chem. Phys., 60, 2088–94.Google Scholar
  139. Jones, W. M., Gordon, J., and Long, E. A. (1952) J. Chem. Phys., 20, 695.Google Scholar
  140. Judd, B. R. (1963) Operator Techniques in Atomic Spectroscopy, McGraw-Hill, New York.Google Scholar
  141. Kalina, D. G., Marks, T. J., and Wachter, W. A. (1977) J. Am. Chem. Soc., 99, 3877–9.Google Scholar
  142. Kalvius, G. M., Ruby, S. L., Dunlap, B. D., Shenoy, G. K., Cohen, D., and Brodsky, M. B. (1969) Phys. Lett. B, 29, 489.Google Scholar
  143. Kalvius, G. M., Noakes, D. R., and Hartmann, O. (2001) (μ)SR studies of rare earth and actinide magnetic materials, in Handbook on the Physics and Chemistry of Rare Earths, vol. 32 (eds. K. A. Gschneidner Jr, L. Eyring, and G. H. Lander), North-Holland, Amsterdam.Google Scholar
  144. Kanellakopulos, B., Dornberger, E., and Baumgartner, F. (1974) Inorg. Nucl. Chem. Lett., 10, 155–60.Google Scholar
  145. Kanellakopulos, B., Blaise, A., Fournier, J. M., and Muller, W. (1975) Solid State Commun., 17, 713–15.Google Scholar
  146. Kanellakopulos, B., Aderhold, C., Dornberger, E., Müller, W., and Baybarz, R. D. (1978) Radiochim. Acta, 25, 85–92.Google Scholar
  147. Kanellakopulos, B. (1979) Cyclopentadienyl compounds of the actinide elements, in Organometallics of the f-Elements (eds. T. J. Marks and R. D. Fischer), Reidel, Boston, pp. 1–35.Google Scholar
  148. Kanellakopulos, B., Henrich, E., Keller, C., Baumgartner, F., Konig, E., and Desai, V. P. (1980a) Chem. Phys., 53, 197–213.Google Scholar
  149. Kanellakopulos, B., Keller, C., Klenze, R., and Stollenwerk, A. H. (1980b) Physica, 102B, 221–5.Google Scholar
  150. Kanellakopulos, B., Klenze, R., and Stollenwerk, A. (1980c) Magnetic properties of the cubic octa-thiocyanato complexes, (Et4N)4An(NCS)8, and of the tetra-chlorides, AnCl4, of uranium and neptunium, in Proc. 10eme Journees des Actinides (eds. B. Johansson and A. Rosengren), pp. 217–31.Google Scholar
  151. Karbowiak, M. and Drozdzynski, J. (1998a) J. Alloys Compds, 271–273, 863–6.Google Scholar
  152. Karbowiak, M. and Drozdzynski, J. (1998b) J. Alloys Compds, 275–277, 848–51.Google Scholar
  153. Karbowiak, M., Hanuza, J., Drozdzynski, J., and Hermanowicz, K. (1996) J. Solid State Chem., 121, 312–18.Google Scholar
  154. Karbowiak, M., Drozdzynski, J., Hubert, S., Simoni, E., and Strek, W. (1998) J. Chem. Phys., 108, 10181–6.Google Scholar
  155. Karraker, D. G., Stone, J. A., Jones, E. R. Jr, and Edelstein, N. (1970) J. Am. Chem. Soc., 92, 4841.Google Scholar
  156. Karraker, D. G. (1971) Inorg. Chem., 10, 1564–6.Google Scholar
  157. Karraker, D. G. (1973) Inorg. Chem., 12, 1105–8.Google Scholar
  158. Karraker, D. G. (1975a) J. Chem. Phys., 63, 3174–5.Google Scholar
  159. Karraker, D. G. (1975b) J. Chem. Phys., 62, 1444–6.Google Scholar
  160. Karraker, D. G. and Dunlap, B. D. (1976) J. Chem. Phys., 65, 2032–3.Google Scholar
  161. Karraker, D. G., and Stone, J. A. (1980) Phys. Rev. B, 22, 111–14.Google Scholar
  162. Keller, C. (1972) in MTP International Review of Science, Inorganic Chemistry, ser. I, Lanthanides and Actinides, vol. 7 (ed. K. W. Bagnall), Butterworths, London, pp. 47–85.Google Scholar
  163. Kelly, P. J. and Brooks, M. S. S. (1987) J. Chem. Soc., Faraday Trans. 2, 83, 1189–203.Google Scholar
  164. Kern, S., Loong, C.-K., and Lander, G. H. (1985) Phys. Rev. B, 32, 3051–7.Google Scholar
  165. Kern, S., Morris, J., Loong, C. K., Goodman, G. L., Lander, G. H., and Cort, B. (1988) J. Appl. Phys., 63, 3598–600.Google Scholar
  166. Kern, S., Loong, C.-K., Goodman, G. L., Cort, B., and Lander, G. H. (1990) J. Phys. Condensed Matter, 2, 1933–40.Google Scholar
  167. Kern, S., Robinson, R. A., Nakotte, H., Lander, G. H., Cort, B., Watson, P., and Vigil, F. A. (1999) Phys. Rev. B, 59, 104–6.Google Scholar
  168. Kolbe, W. and Edelstein, N. (1971) Phys. Rev. B, 4, 2869–75.Google Scholar
  169. Kolbe, W., Edelstein, N., Finch, C. B., and Abraham, M. M. (1972) J. Chem. Phys., 56, 5432–3.Google Scholar
  170. Kolbe, W., Edelstein, N., Finch, C. B., and Abraham, M. M. (1973) J. Chem. Phys., 58, 820–1.Google Scholar
  171. Kolbe, W., Edelstein, N., Finch, C. B., and Abraham, M. M. (1974) J. Chem. Phys., 60, 607–9.Google Scholar
  172. Kolberg, D., Wastin, F., Rebizant, J., Boulet, P., Lander, G. H., and Schoenes, J. (2002) Phys. Rev. B, 66, 214418.Google Scholar
  173. Kopmann, W., Litterst, F. J., Klauss, H. H., Hillberg, M., Wagener, W., Kalvius, G. M., Schreier, E., Burghart, F. J., Rebizant, J., and Lander, G. H. (1998) J. Alloys Compds, 271, 463–6.Google Scholar
  174. Korobkov, I., Gambarotta, S., Yap, G. P. A., Thompson, L., and Hay, P. J. (2001) Organometallics, 20, 5440–5.Google Scholar
  175. Kostorz, G. E. (1979) Neutron scattering, in Treatise on Materials Science and Technology, vol. 15, Academic Press, New York.Google Scholar
  176. Kot, W., Shalimoff, G., Edelstein, N., Edelman, M. A., and Lappert, M. F. (1988) J. Am. Chem. Soc., 110, 986.Google Scholar
  177. Kot, W. K., Edelstein, N. M., Abraham, M. M., and Boatner, L. A. (1993a) Phys. Rev. B, 48, 12704–12.Google Scholar
  178. Kot, W. K., Edelstein, N. M., Abraham, M. M., and Boatner, L. A. (1993b) Phys. Rev. B, 47, 3412–14.Google Scholar
  179. Kot, W. K. and Edelstein, N. M. (1995) New J. Chem., 19, 641–54.Google Scholar
  180. Lam, D. J. and Aldred, A. T. (1974) in The Actinides: Electronic Structure and Related Properties, vol. I, Academic Press, New York, pp. 109–79.Google Scholar
  181. Lam, D. J. and Chan, S. K. (1974) Phys. Rev. B, 9, 808–14.Google Scholar
  182. Lämmermann, H. and Conway, J. G. (1963) J. Chem. Phys., 38, 259–69.Google Scholar
  183. Lämmermann, H. and Stapleton, H. J. (1961) J. Chem. Phys., 35, 1514–16.Google Scholar
  184. Lander, G. H., Brown, P. J., Spirlet, J. C., Rebizant, J., Kanellakopulos, B., and Klenze, R. (1985) J. Chem. Phys., 83, 5988–97.Google Scholar
  185. Lander, G. H. and Aeppli, G. (1991) J. Magn. Magn. Mater., 100, 151–72.Google Scholar
  186. Lander, G. H. (1993) in Handbook on the Physics and Chemistry of Rare Earths, vol. 17 (eds. K. A. Gschneidner Jr, L. Eyring, G. H. Lander, and G. R. Choppin), North-Holland Physics, Amsterdam, pp. 635–709.Google Scholar
  187. Lander, G. H. (2002) J. Magn. Magn. Mater., 242–245, 3–8.Google Scholar
  188. Langridge, S., Stirling, W. G., Lander, G. H., and Rebizant, J. (1994a) Phys. Rev. B, 49, 12010–21.Google Scholar
  189. Langridge, S., Stirling, W. G., Lander, G. H., and Rebizant, J. (1994b) Phys. Rev. B, 49, 12022.Google Scholar
  190. Langridge, S., Lander, G. H., Bernhoeft, N., Stunault, A., Vettier, C., Grübel, G., Sutter, C., Nuttall, W. J., Stirling, W. G., Mattenberger, K., and Vogt, O. (1997) Phys. Rev. B, 55, 6392.Google Scholar
  191. Lea, K., Leask, M., and Wolf, W. (1962) J. Phys. Chem. Solids, 23, 1381–405.Google Scholar
  192. Le Borgne, T., Riviere, E., Marrot, J., Thuery, P., Girerd, J. J., and Ephritikhine, M. (2002) Chem. Eur. J., 8, 774–83.Google Scholar
  193. Leung, A. F. and Poon, Y. M. (1977) Can. J. Phys., 55, 937–42.Google Scholar
  194. Lewis, W. B., Hecht, H. G., and Eastman, M. P. (1973) Inorg. Chem., 12, 1634–9.Google Scholar
  195. Li, J. and Bursten, B. E. (1997) J. Am. Chem. Soc., 119, 9021–32.Google Scholar
  196. Liu, G. K., Beitz, J. V., and Huang, J. (1993) J. Chem. Phys., 99, 3304–11.Google Scholar
  197. Lovesey, S. W. and Collins, S. P. (1996) X-ray Scattering and Absorption by Magnetic Materials, Oxford Science Publications, New York.Google Scholar
  198. Lukens, W. W. (1995) Trivalent Metallocene Chemistry of Some Uranium, Titanium, and Zirconium Complexes, Ph.D. Thesis, LBL-37646, University of California, Berkeley.Google Scholar
  199. Lukens, W. W., Beshouri, S. M., Blosch, L. L., Stuart, A. L., and Andersen, R. A. (1999) Organometallics, 18, 1235–46.Google Scholar
  200. Mannix, D., Lander, G. H., Rebizant, J., Caciuffo, R., Bernhoeft, N., Lidstrom, E., and Vettier, C. (1999) Phys. Rev. B, 60, 15187–93.Google Scholar
  201. Marei, S. A. and Cunningham, B. B. (1972) J. Inorg. Nucl. Chem., 34, 1203–6.Google Scholar
  202. McCart, B., Lander, G. H., and Aldred, A. T. (1981) J. Chem. Phys., 74, 5263–8.Google Scholar
  203. McGarvey, B. R. (1998) Inorg. Chim. Acta, 272, 43–54.Google Scholar
  204. McGlynn, S. P. and Smith, J. K. (1962) J. Mol. Spectrosc., 6, 164.Google Scholar
  205. McWhan, D. B., Vettier, C., Isaacs, E. D., Ice, G. E., Siddons, D. P., Hastings, J. B., Peters, C., and Vogt, O. (1990) Phys. Rev. B, 42, 6007.Google Scholar
  206. McWhan, D. B. (1998) J. Alloys Compds, 271–273, 408.Google Scholar
  207. Metoki, N., Haga, Y., Koike, Y., and Onuki, Y. (1998) Phys. Rev. Lett., 80, 5417.Google Scholar
  208. Meyer, K., Mindiola, D. J., Baker, T. A., Davis, W. M., and Cummins, C. C. (2000) Angew. Chem. Int. Ed. Engl., 39, 3063–66.Google Scholar
  209. Milman, V., Winkler, B., and Pickard, C. J. (2003) J. Nucl. Mater., 322, 165–79.Google Scholar
  210. Miyake, C., Fuji, K., and Imoto, S. (1977a) Chem. Phys. Lett., 46, 349.Google Scholar
  211. Miyake, C., Fuji, K., and Imoto, S. (1977b) Inorg. Nucl. Chem. Lett., 13, 53–5.Google Scholar
  212. Miyake, C., Fuji, K., and Imoto, S. (1979) Chem. Phys. Lett., 61, 124–6.Google Scholar
  213. Miyake, C., Takeuchi, H., Ohya-Nishiguchi, H., and Imoto, S. (1982) Phys. Status Solidi (a), 74, 173.Google Scholar
  214. Miyake, C., Takeuchi, H., Fuji, K., and Imoto, S. (1984) Phys. Status Solidi (a), 83, 567.Google Scholar
  215. Moore, J. R., Nave, S. E., Haire, R. G., and Huray, P. G. (1986) J. Less Common Metals, 121, 187–92.Google Scholar
  216. Moore, J. R., Nave, S. E., Hart, R. C., Wilmarth, W. R., Haire, R. G., and Peterson, J. R. (1988) Phys. Rev. B Condensed Matter, 38, 2695–702.Google Scholar
  217. Morss, L. R., Fuger, J., Goffart, J., and Haire, R. G. (1983) Inorg. Chem., 22, 1993–6.Google Scholar
  218. Morss, L. R., Fuger, J., Goffart, J., Edelstein, N., and Shalimoff, G. (1987) J. Less Common Metals, 127, 251.Google Scholar
  219. Morss, L. R., Richardson, J. W. Jr, Williams, C. W., Lander, G. H., Lawson, A. C., Edelstein, N., and Shalimoff, G. (1989) J. Less Common Metals, 156, 273–89.Google Scholar
  220. Mortl, K. P., Sutter, J. P., Golhen, S., Ouahab, L., and Kahn, O. (2000) Inorg. Chem., 39, 1626–7.Google Scholar
  221. Müller-Westerhoff, U. and Streitwieser, A. J. (1968) J. Am. Chem. Soc., 90, 7364–5.Google Scholar
  222. Mulak, J. (1978) J. Solid State Chem., 25, 355–66.Google Scholar
  223. Murasik, A. and Furrer, A. (1980) Physica, 102B+C, 185–7.Google Scholar
  224. Murasik, A., Fischer, P., and Szczepaniak, W. (1981) J. Phys. C, 14, 1847–54.Google Scholar
  225. Murasik, A., Fischer, P., Furrer, A., and Szczepaniak, W. (1985) J. Phys. C: Solid State Phys., 18, 2909–21.Google Scholar
  226. Murasik, A., Fischer, P., Furrer, A., Schmid, B., and Szczepaniak, W. (1986) J. Less Common Metals, 121, 151–5.Google Scholar
  227. Murdoch, K. M., Edelstein, N. M., Boatner, L. A., and Abraham, M. M. (1996) J. Chem. Phys., 105, 2539–46.Google Scholar
  228. Myers, R. J. (1973) Molecular Magnetism and Magnetic Resonance Spectroscopy, Prentice-Hall, New York.Google Scholar
  229. Nakamoto, T., Nakada, M., Nakamura, A., Haga, Y., and Onuki, Y. (1999) Solid State Commun., 109, 77–81.Google Scholar
  230. Nakamoto, T., Nakada, M., and Nakamura, A (2001) Solid State Commun., 119, 523–6.Google Scholar
  231. Nave, S. E., Huray, P. G., and Haire, R. G. (1980) The magnetic susceptibility of sup 249/Bk metal. Proc. Int. Conf. Crystalline Electric Field and Structural Effects in f-Electron Systems, Plenum, 1980, pp. 269–74, New York.Google Scholar
  232. Nave, S. E., Haire, R. G., and Huray, P. G. (1981) in Actinides-1981, Abstracts, Lawrence Berkeley Laboratory Report LBL-12441, pp. 144–6.Google Scholar
  233. Nave, S. E., Haire, R. G., and Huray, P. G. (1983) Phys. Rev. B, 28, 2317–27.Google Scholar
  234. Nave, S. E., Moore, J. R., Spaar, M. T., Haire, R. G., and Huray, P. G. (1985) Physica, 130B+C, 225–7.Google Scholar
  235. Nave, S. E., Moore, J. R., Peterson, J. R., and Haire, R. G. (1987) J. Less Common Metals, 127, 79–85.Google Scholar
  236. Nellis, W. J. and Brodsky, M. B. (1974) in The Actinides: Electronic Structure and Related Properties, vol. II (eds. A. J. Freeman and J. B. J. Darby), Academic Press, New York, pp. 265–88.Google Scholar
  237. Newman, D. J. (1971) Adv. Phys., 20, 197–256.Google Scholar
  238. Normile, P. S., Stirling, W. G., Mannix, D., Lander, G. H., Wastin, F. J., Rebizant, J., Boudarot, F., Burlet, P., Lebech, B., and Coburn, S. (2002) Phys. Rev. B, 66, 014405.Google Scholar
  239. Osborn, R., Taylor, A. D., Bowden, Z. A., Hackett, M. A., Hayes, W., Hutchings, M. T., Amoretti, G., Caciuffo, R., Blaise, A., and Fournier, J. M. (1988) J. Phys. C, 21, L931–7.Google Scholar
  240. Osborne, D. W. and Westrum, E. F. (1953) J. Chem. Phys., 21, 1884.Google Scholar
  241. Paixão, J. A., Detlefs, C., Longfield, M. J., Caciuffo, R., Santini, P., Bernhoeft, N., Rebizant, J., and Lander, G. H. (2002) Phys. Rev. Lett., 89, 187202–1–4.Google Scholar
  242. Parry, J. S., Cloke, F. G. N., Coles, S. J., and Hursthouse, M. B. (1999) J. Am. Chem. Soc., 121, 6867–71.Google Scholar
  243. Piehler, D., Kot, W. K., and Edelstein, N. (1991) J. Chem. Phys., 94, 942–8.Google Scholar
  244. Pirie, J. D. and Smith, T. (1970) Phys. Status Solidi, 41, 221.Google Scholar
  245. Poirot, I., Kot, W., Shalimoff, G., Edelstein, N., Abraham, M. M., Finch, C. B., and Boatner, L. A. (1988) Phys. Rev. B, 37, 3255–64.Google Scholar
  246. Rahman, H. U. and Runciman, W. A. (1966) J. Phys. Chem. Solids, 27, 1833–5.Google Scholar
  247. Rahman, H. U. (1998) Physica B, 252, 160.Google Scholar
  248. Raison, P., Delapalme, A., Kiat, J. M., Schweiss, P., Kanellakopulos, B., Rebizant, J., Apostolides, C., Gonthier-Vassal, A., Lander, G. H., and Brown, P. J. (1994a) Z. Kristallogr., 209, 720.Google Scholar
  249. Raison, P., Lander, G. H., Delapalme, A., Williams, J. H., Kahn, R., Carlile, C. J., and Kanellakopulis, B. (1994b) Mol. Phys., 81, 369.Google Scholar
  250. Rajnak, K., Banks, R. H., Gamp, E., and Edelstein, N. (1984a) J. Chem. Phys., 80, 5951–62.Google Scholar
  251. Rajnak, K., Gamp, E., Shinomoto, R., and Edelstein, N. (1984b) J. Chem. Phys., 80, 5942–50.Google Scholar
  252. Raphael, G. and Lallement, R. (1968) Solid State Commun., 6, 383–5.Google Scholar
  253. Reisfeld, M. J. and Crosby, G. A. (1965) Inorg. Chem., 4, 65.Google Scholar
  254. Reynolds, J. G. and Edelstein, N. (1977) Inorg. Chem., 16, 2822–25.Google Scholar
  255. Reynolds, J. G., Zalkin, A., Templeton, D. H., and Edelstein, N. (1977) Inorg. Chem., 6, 599–603.Google Scholar
  256. Richardson, R. P. and Gruber, J. B. (1972) J. Chem. Phys., 56, 256–60.Google Scholar
  257. Rigny, P. and Plurien, P. (1967) J. Phys. Chem. Solids, 28, 2589.Google Scholar
  258. Rigny, P., Dianoux, A. J., and Plurien, P. (1971a) J. Phys. Chem. Solids, 32, 1175.Google Scholar
  259. Rigny, P., Dianoux, A. J., and Plurien, P. (1971b) J. Phys. Chem. Solids, 32, 1901–8.Google Scholar
  260. Rosen, R. K., Andersen, R. A., and Edelstein, N. (1990) J. Am. Chem. Soc., 112, 4588–90.Google Scholar
  261. Ross, J. W. and Lam, D. J. (1967) J. Appl. Phys., 38, 1451–3.Google Scholar
  262. Rossat-Mignod, J., Lander, G. H., and Burlet, P. (1984) in Handbook of the Physics and Chemistry of the Actinides (eds. A. J. Freeman and G. H. Lander), North-Holland, Amsterdam, pp. 415–515.Google Scholar
  263. Salmon, L., Thuery, P., Riviere, E., Girerd, J. J., and Ephritikhine, M. (2003) Chem. Commun, 21, 762–3.Google Scholar
  264. Santini, P., Lémanski, R., and Erdös, P. (1999) Adv. Phys., 48, 537–653.Google Scholar
  265. Santini, P. and Amoretti, G. (2000) Phys. Rev. Lett., 85, 2188–91.Google Scholar
  266. Santini, P. and Amoretti, G. (2002) J. Phys. Soc. Jpn., 71, 11.Google Scholar
  267. Sarrao, J. L., Morales, L. A., Thompson, J. D., Scott, B. L., Stewart, G. R., Wastin, F., Rebizant, J., Boulet, P., Colineau, E., and Lander, G. H. (2002) Nature, 420, 297–9.Google Scholar
  268. Sasaki, K. and Obata, T. (1970) J. Phys. Soc. Jpn., 28, 1157.Google Scholar
  269. Saxena, S. S., Agarwal, P., Ahilan, K., Grosche, F. M., Haselwimmer, R. K. W., Steiner, M. J., Pugh, E., Walker, I. R., Julian, S. R., Monthoux, P., Lonzarich, G. G., Huxley, A., Sheikin, I., Braithwaite, D., and Floquet, J. (2000) Nature, 406, 587.Google Scholar
  270. Schenk, H. J., Bohres, E. W., and Schwochau, K. (1975) Inorg. Nucl. Chem. Lett., 11, 201–6.Google Scholar
  271. Schmid, B., Murasik, A., Fischer, P., Furrer, A., and Kanellakopulos, B. (1990) J. Phys. Condensed Matter, 2, 3369–80.Google Scholar
  272. Schoenes, J. (1980) Phys. Rep., 63, 301–36.Google Scholar
  273. Schüssler-Langeheine, C., Weschke, E., Grigoriev, A. Y., Ott, H., Meier, R., Vyalikh, D. V., Mazumdar, C., Sutter, C., Abernathy, D., Grübel, G., and Kaindl, G. (2001) J. Electron Spectrom. Related Phenom., 114–116, 953.Google Scholar
  274. Schütz, G., Wagner, W., Wilhelm, W., Zeller, R., Frahm, R., and Materlik, G. (1987) Phys. Rev. Lett., 58, 737.Google Scholar
  275. Selbin, J., Ballhausen, C. J., and Durrett, D. G. (1972) Inorg. Chem., 11, 510.Google Scholar
  276. Selbin, J. and Sherrill, H. J. (1974) Inorg. Chem., 13, 1235.Google Scholar
  277. Seyferth, D. (2004) Organometallics, 23, 3562–83.Google Scholar
  278. Shinomoto, R., Gamp, E., Edelstein, N., Templeton, D. H., and Zalkin, A. (1983) Inorg. Chem., 22, 2351.Google Scholar
  279. Shull, C. G. and Wilkinson, M. K. (1955) Oak Ridge National Laboratory, ORNL-1879, pp. 24–7.Google Scholar
  280. Sidall, T. H., III. (1976) in Theory and Applications of Molecular Paramagnetism (eds. E. A. Boudreaux and L. N. Mulay), Wiley-Interscience, New York, pp. 317–48.Google Scholar
  281. Siemann, R. and Cooper, B. R. (1979) Phys. Rev. B, 20, 2869–85.Google Scholar
  282. Skanthakumar, S., Williams, C. W., and Soderholm, L. (2001) Phys. Rev. B Condensed Matter, 64, 144521/1–8.Google Scholar
  283. Skold, K. and Price, D. L. (1987) Neutron Scattering, Parts A, B, and C, Academic Press, New York.Google Scholar
  284. Soderholm, L., Edelstein, N., Morss, L. R., and Shalimoff, G. V. (1986) J. Magn. Magn. Mater., 54–57, 597–8.Google Scholar
  285. Soderholm, L., Goodman, G. L., Welp, U., Williams, C. W., and Bolender, J. (1989) Physica C, 161, 252–6.Google Scholar
  286. Soderholm, L. (1992) J. Alloys Compds, 181, 13–22.Google Scholar
  287. Soderholm, L., Williams, C., Skanthakumar, S., Antonio, M. R., and Conradson, S. (1996) Z. Phys. B, 101, 539–45.Google Scholar
  288. Soderholm, L., Skanthakumar, S., and Williams, C. W. (1999) Phys. Rev. B Condensed Matter, 60, 4302–8.Google Scholar
  289. Solt, G. and Erdos, P. (1980) J. Magn. Magn. Mater., 15–18, 57.Google Scholar
  290. Soulie, E. and Goodman, G. (1976) Theor. Chim. Acta, 41, 17–36.Google Scholar
  291. Soulie, E. and Goodman, G. (1979) Erratum: Theor. Chim. Acta, 51, 259–60.Google Scholar
  292. Soulie, E. and Edelstein, N. (1980) Physica, 102B, 93–9.Google Scholar
  293. Spirlet, M. R., Rebizant, J., Apostolidis, C., Dornberger, E., Kanellakopulos, B., and Powietzka, B. (1996) Polyhedron, 15, 1503–8.Google Scholar
  294. Squires, G. L. (1978) Thermal Neutron Scattering, Cambridge University Press, New York.Google Scholar
  295. Stewart, J. L. (1988) Tris[bis(trimethylsilyl)amido]uranium: Compounds with Tri-, Tetra-, and Pentavalent Uranium. Ph.D. Thesis, LBL-25240, University of California, Berkeley.Google Scholar
  296. Stewart, J. L. and Andersen, R. A. (1998) Polyhedron, 17, 953–8.Google Scholar
  297. Stollenwerk, A. H., Klenze, R., and Kanellakopulos, B. (1979) J. Phys. (Paris), Colloq., 40 (C4), 179–80.Google Scholar
  298. Stollenwerk, A. H. (1980) Institut für Heisse Chemie, Kernforschungszentrum Karlsruhe, pp. 1–202.Google Scholar
  299. Stone, J. A. and Jones, E. R. Jr (1971) J. Chem. Phys., 54, 1713–18.Google Scholar
  300. Templeton, D. H. and Templeton, L. K. (1985) Acta Crystallogr., A41, 133–42.Google Scholar
  301. Thole, B. T., Van Der Laan, G., and Sawatzky, G. (1985) Phys. Rev. Lett., 55, 2086.Google Scholar
  302. Thouvenot, P., Hubert, S., and Edelstein, N. (1994) Phys. Rev. B, 50, 9715–20.Google Scholar
  303. Troc, R., Suski, W., Franse, J. J. M., and Gersdorf, R. (1991) Actinide elements and their compounds with other elements, part 1, in Landolt-Börnstein Group III: Condensed Matter Volume 19 Magnetic Properties of Metals Subvolume F1 (ed. H. P. J. Wijn), Springer-Verlag, Berlin.Google Scholar
  304. Troc, R. and Suski, W. (1993) Actinide elements and their compounds with other elements, part 2, in Landolt-Börnstein Group III: Condensed Matter Volume 19 Magnetic Properties of Metals Subvolume F2 (ed. H. P. J. Wijn), Springer-Verlag, Berlin.Google Scholar
  305. Van Vleck, J. H. (1932) The Theory of Electric and Magnetic Susceptibilities, Oxford University Press, Oxford.Google Scholar
  306. Warren, K. D. (1977) Struct. Bonding, 33, 97–138.Google Scholar
  307. Warren, K. D. (1983) Chem. Phys. Lett., 99, 427–31.Google Scholar
  308. Watson, G. M., Gibbs, D., Lander, G. H., Gaulin, B. D., Berman, L. E., Matzke, H., and Ellis, W. (1996) Phys. Rev. Lett., 77, 751.Google Scholar
  309. Watson, G. M., Gibbs, D., Lander, G. H., Gaulin, B. D., Berman, L. E., Matzke, H., and Ellis, W. (2000) Phys. Rev. B, 61, 8966.Google Scholar
  310. Wilkinson, M. K., Shull, C. G., and Rundle, R. E. (1955) Phys. Rev., 99, 627.Google Scholar
  311. Willis, B. T. M. and Taylor, R. I. (1965) Phys. Lett., 17, 188.Google Scholar
  312. Wulff, M. and Lander, G. H. (1988) J. Chem. Phys., 89, 3295.Google Scholar
  313. Wybourne, B. G. (1965) Spectroscopic Properties of Rare Earths, Interscience Publishers, New York.Google Scholar
  314. Zimmermann, M. V., Nelson, C. S., Hill, J. P., Gibbs, D., Blume, M., Casa, D., Keimer, B., Murakami, Y., Kao, C. C., Venkataraman, C., Gog, T., Tomioka, Y., and Tokura, Y. (2001) Phys. Rev. B, 64, 195133.Google Scholar
  315. Zolnierek, A., Solt, G., and Erdos, P. (1981) J. Phys. Chem. Solids, 42, 773–6.Google Scholar
  316. Zolnierek, Z., Gajek, Z., and Khan Malek, C. (1984) Physica, 125B, 199–214.Google Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Norman M. Edelstein
  • Gerard H. Lander

There are no affiliations available

Personalised recommendations