Abstract

The actinide series of elements encompasses all the 15 chemical elements that have properties attributable to the presence of low-lying 7p, 6d, and 5f orbitals such that their tripositive ions have electronic configurations 7p06d05f n , where n = 0,1,2,…,14. According to this definition, actinium, element 89, is the first member of the actinide series of elements, although it has no 5f electrons in its metallic, gaseous, or ionic forms. As such, its position in group 3 (in current IUPAC terminology) or group 3B (commonly used in some American textbooks) of the periodic table is analogous to that of its homolog, lanthanum, in the lanthanide series. This definition, which includes actinium as the first of the actinides (Seaborg, 1994), parallels the accepted inclusion of lanthanum as the first member of the lanthanide series (Moeller, 1963).

Keywords

Rare Earth Nuclear Property Nuclear Regulatory Commission Lanthanide Series Actinide Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramov, A. A., Eliseeva, O. V., and Iofa, B. Z. (1998) Radiochemistry, 40, 302–5; Radiokhimiya, 40, 292–5.Google Scholar
  2. Adloff, J. P. (2000) Radiochim. Acta, 88, 123–7.Google Scholar
  3. Ahmad, I. (2002) Unpublished; personal communication to L. Morss.Google Scholar
  4. Allison, M., Moore, R. W., Richardson, A. E., Peterson, D. T., and Voight, A. F. (1954) Nucleonics, 12(5), 32–4.Google Scholar
  5. Andrews, H. C. and Hagemann, F. (1948) in Summary Report for April, May, and June 1948. Chemistry Division, Section C-I, ANL–4176 (eds. W. M. Manning and D. W. Osborne), pp. 13–6.Google Scholar
  6. Arblaster, J. W. (1995) Calphad, 19, 373.Google Scholar
  7. Arnoux, M. and Giaon, A. (1969) C. R. Acad. Sci. Paris, 269B, 317–20.Google Scholar
  8. Aziz, A. and Lyle, S. J. (1970) J. Inorg. Nucl. Chem., 32, 1925–32.Google Scholar
  9. Backe, H., Dretzke, A., Eberhardt, K., Fritsche, S., Grüning, C., Gwinner, G., Haire, R. G., Huber, G., Kratz, J. V., Kube, G., Kunz, P., Lassen, J., Lauth, W., Passler, G., Repnow, R., Schwalm, D., Schwamb, P., Sewtz, M., Thörle, P., Trautmann, N., and Waldek, A. (2002) J. Nucl. Sci. Technol., (Suppl. 3), 86–9.Google Scholar
  10. Baetslé, L. H., Dejonghe, P., Demildt, A. C., De Troyer, A., Droissart, A., and Dumont, G. (1967) Ind. Chim. Belge, 32 (2), 56–60.Google Scholar
  11. Baetslé, L. H., Brabers, M. J., Dejonghe, P., Demildt, A. C., De Troyer, A., Droissart, A., and Poskin, M. (1972) Proc. 4th UN Int. Conf. on Peaceful Uses of Atomic Energy. A/CONF.49/P/287, United Nations, New York, pp. 191–203.Google Scholar
  12. Baetslé, L. H. (1973) in CEN-SCK Annual Scientific Report, 1972, Belgian Report BLG–481 (eds. R. Billiau, K. Bobin, W. Drent, and L. Hespeels), ch. 6.Google Scholar
  13. Baetslé, L. H. and Droissart, A. (1973) Production and Applications of227Ac. Belgian Report BLG 483.Google Scholar
  14. Bagnall, K. W. (1957) in Chemistry of the Rare Radioelements: Polonium–Actinium, Butterworths, London, pp. 15–45.Google Scholar
  15. Barkatt, A., Barkatt, A., and Sousanpour, W. (1982) Nucl. Technol., 60, 218–27.Google Scholar
  16. Bastin-Scoffier, G. (1967) C. R. Acad. Sci. Paris, 265B, 863–5.Google Scholar
  17. Baybarz, R. D., Bohet, J., Buijs, K., Colson, L., Müller, W., Reul, J., Spirlet, J. C., and Toussaint, J. C. (1976) Transplutonium Elements. Proc. 4th Int. Transplutonium Elements Symp., 1975 (eds. W. Müller and R. Lindner), North Holland, Amsterdam, pp. 61–8.Google Scholar
  18. Beckmann, W. (1955) Z. Phys., 142, 585–601.Google Scholar
  19. Bhatki, K. S. and Adloff, J. P. (1964) Radiochim. Acta, 3, 123–6.Google Scholar
  20. Bjornholm, S., Nielsen, B., and Sheline, R. K. (1956) Nature, 178, 1110–1.Google Scholar
  21. Bjornholm, S., Nathan, O., Nielsen, O. B., and Sheline, R. K. (1957) Nucl. Phys., 4, 313–24.Google Scholar
  22. Boll, R. A., Malkemus, D., and Mirzadeh, S. (2004) Appl. Radiat. Isot., 62, 667–9.Google Scholar
  23. Bouissières, G. (1960) in Nouveau Traité de Chimie Minérale (ed. P. Pascal), Masson, Paris 7, pp. 1413–46.Google Scholar
  24. Bouissières, G., Haïssinsky, M., and Legoux, Y. (1961) Bull. Soc. Chim. Fr., 1028–30.Google Scholar
  25. Bouissières, G. and Legoux, Y. (1965) Bull. Soc. Chim. Fr., 386–8.Google Scholar
  26. Bratsch, S. G. and Lagowski, J. J. (1986) J. Phys. Chem., 90, 307–12.Google Scholar
  27. Brewer, L. (1971a) J. Opt. Soc. Am., 61, 1101–11.Google Scholar
  28. Brewer, L. (1971b) J. Opt. Soc. Am., 61, 1666–82.Google Scholar
  29. Browne, E. (2001) Nucl. Data Sheets, 93, 763.Google Scholar
  30. Bryukher, E. (1963) Sov. Radiochem., 5, 123–5; Radiokhimiya, 5, 142–3.Google Scholar
  31. Burns, W. G., Hughes, A. E., Marples, J. A. C., Nelson, R. S., and Stoneham, A. M. (1982) J. Nucl. Mater., 107, 245–70.Google Scholar
  32. Butterfield, D. and Woollatt, R. (1968) J. Inorg. Nucl. Chem., 30, 801–5.Google Scholar
  33. Cabell, M. J. (1959) Can. J. Chem., 37, 1094–1103.Google Scholar
  34. Carlson, T. A., Nestor, C. W. J., Wasserman, N., and McDowell, J. F. (1970) Comprehensive Calculation of Ionization Potentials and Binding Energies for Multiply-Charged Ions, US Report ORNL-4562.Google Scholar
  35. Chayawattanangkur, K., Herrmann, G., and Trautmann, N. (1973) J. Inorg. Nucl. Chem., 35, 3061–73.Google Scholar
  36. Clarke, R. W. (1954) Actinium. A Bibliography of Unclassified and Declassified Atomic Energy Project Reports and References to the Published Literature (1906–1953), UK Report AERE Inf/Bib 95.Google Scholar
  37. Clarke, R. W. (1958) Abstracts of Atomic Energy Project Unclassified Reports and Published Literature on the Actinide Elements (Papers dated 1957 noted up to February, 1958), Part I. Actinium, Protactinium, Neptunium, UK Report AERE C/R 2472.Google Scholar
  38. Dalmasso, J., Herment, M., and Ythier, C. (1974) C. R. Acad. Sci. Paris, 278B, 97–100.Google Scholar
  39. Danon, J. (1956) J. Am. Chem. Soc., 78, 5953–4.Google Scholar
  40. Danon, J. (1958) J. Inorg. Nucl. Chem., 5, 237–9.Google Scholar
  41. David, F. (1970a) Rev. Chim. Minér., 7, 1–11.Google Scholar
  42. David, F. (1970b) C. R. Acad. Sci. Paris, 271, 440–2.Google Scholar
  43. David, F. (1970c) Radiochem. Radioanal. Lett., 5, 279–85.Google Scholar
  44. David, F. and Bouissières, G. (1965) Bull. Soc. Chim. Fr., 1001–7.Google Scholar
  45. David, F. and Bouissières, G. (1966) in Physico-Chimie du Protactinium, Colloques internationaux du CNRS, Paris, No. 154, pp. 301–6.Google Scholar
  46. David, F. and Bouissières, G. (1968) Inorg. Nucl. Chem. Lett., 4, 153–9.Google Scholar
  47. David, F., Samhoun, K., Guillaumont, R., and Edelstein, N. (1978) J. Inorg. Nucl. Chem., 40, 69–74.Google Scholar
  48. Deal, K. A., Davis, I. A., Mirzadeh, S., Kennel, S. J., and Brechbiel, M. W. (1999) J. Med. Chem., 42, 2988–92.Google Scholar
  49. Debierne, A. (1899) C. R. Acad. Sci. Paris, 129, 593–5.Google Scholar
  50. Debierne, A. (1900) C. R. Acad. Sci. Paris, 130, 906–8.Google Scholar
  51. Debierne, A. (1904) C. R. Acad. Sci. Paris, 139, 538–40.Google Scholar
  52. Dempster, A. J. (1935) Nature, 136, 180.Google Scholar
  53. De Troyer, A. and Dejonghe, P. (1966) in Large Scale Production and Applications of Radioisotopes, US Report DP 1066, edn 1, session III, pp. 63–9.Google Scholar
  54. Deworm, J. P., Fieuw, G., and Marlein, J. (1979) Ann. Belg. Ver. Stralingsbescherming, 4, 107–28; Chem. Abstr., 93, 83093b.Google Scholar
  55. Duyckaerts, G. and Lejeune, R. (1960) J. Chromatogr., 3, 58–62.Google Scholar
  56. Dzhelepov, B. S., Ivanov, R. B., Mikhailova, M. A., Moskvin, L. N., Nazarenko, O. M., and Rodionov, V. F. (1967) Bull. Acad. Sci. USSR, Phys. Ser., 31, 563–74; Dokl. Akad. Nauk USSR, Fiz. Ser., 31, 568–80.Google Scholar
  57. Eichelberger, J. F., Grove, G. R., and Jones, L. V. (1964) Mound Laboratory Progress Report for April, 1964. US Report MLM-1196, pp. 9–11.Google Scholar
  58. Eichelberger, J. F., Grove, G. R., and Jones, L. V. (1965) Mound Laboratory Progress Report for November, 1964. US Report MLM-1227.Google Scholar
  59. Eliav, E., Shmulyian, S., and Kaldor, U. (1998) J. Chem. Phys., 109, 3954–8.Google Scholar
  60. Engle, P. M. (1950) Preliminary Report on the Actinium Separation Project. US Report MLM-454.Google Scholar
  61. Farr, J. D., Giorgi, A. L., Money, R. K., and Bowman, M. G. (1953) The Crystal Structure of Actinium Metal and Actinium Hydride. US Report LA-1545, Los Alamos National Laboratory.Google Scholar
  62. Farr, J. D., Giorgi, A. L., Bowman, M. G., and Money, R. K. (1961) J. Inorg. Nucl. Chem., 18, 42–7.Google Scholar
  63. Firestone, R. B. and Shirley, V. S. (eds.) (1996) Table of Isotopes, Wiley, New York.Google Scholar
  64. Foster, K. W. (1966) Radioisotopes for Heat Sources. II. Calculations for preparation of Ac-227 by Neutron Irradiation of Ra-226. US Report MLM-1297.Google Scholar
  65. Foster, K. W. and Fauble, L. G. (1960) J. Phys. Chem., 64, 958–9.Google Scholar
  66. Fournier, J. M. (1976) J. Phys. Chem. Solids, 37, 235–44.Google Scholar
  67. Fred, M., Tomkins, F. S., and Meggers, W. F. (1955) Phys. Rev., 98, 1514.Google Scholar
  68. Fried, S., Hagemann, F., and Zachariasen, W. H. (1950) J. Am. Chem. Soc., 72, 771–5.Google Scholar
  69. Fukusawa, T., Kawasuji, I., Mitsugashira, T., Sato, A., and Suzuki, S. (1982) Bull. Chem. Soc. Jpn., 55, 726–9.Google Scholar
  70. Geerlings, M. W., Kaspersen, F. M., Apostolidis, C., and Van Der Hout, R. (1993) Nucl. Med. Commun., 14, 121–5.Google Scholar
  71. Geibert, W., Rutgers van der Loeff, M. M., Hanfland, C., and Dauelsberg, H.-J. (2002) Earth Planet. Sci. Lett., 198, 147–65.Google Scholar
  72. Giesel, F. (1902) Ber. Dtsch. Chem. Ges., 35, 3608–11.Google Scholar
  73. Giesel, F. (1903) Ber. Dtsch. Chem. Ges., 36, 342–7.Google Scholar
  74. Giesel, F. (1904a) Ber. Dtsch. Chem. Ges., 37, 1696–9.Google Scholar
  75. Giesel, F. (1904b) Ber. Dtsch. Chem. Ges., 37, 3963–6.Google Scholar
  76. Giesel, F. (1905) Ber. Dtsch. Chem. Ges., 38, 775–8.Google Scholar
  77. Gmelin (1942) Handbuch der Anorganischen Chemie, 8. Auflage, System-Nummer 40, Actinium und Isotope (MsTh2), Verlag Chemie, Berlin, (English translation by G. A. Young (1954)). U.S. Report AEC-tr-l734.Google Scholar
  78. Gmelin (1981) Handbook of Inorganic Chemistry, Actinium, 8th edn, System Number 40 Suppl. vol. 1, Springer-Verlag, Berlin.Google Scholar
  79. Godlewski, T. (1904–5) Nature, 71, 294–5.Google Scholar
  80. Godlewski, T. (1905) Phil. Mag., 10, 35–45.Google Scholar
  81. Gomm, P. J. and Eakins, I. D. (1966) The Determination of Actinium-227 in Urine. UK Report AERE-R 4972.Google Scholar
  82. Gomm, P. J. and Eakins, J. D. (1968) Analyst, 93, 228–34.Google Scholar
  83. Hagemann, F. (1950) J. Am. Chem. Soc., 72, 768–71.Google Scholar
  84. Hagemann, F. T. (1954) The Chemistry of Actinium, in The Actinide Elements, Nat. Nucl. En. Ser. Div. IV, 14A (eds. G. T. Seaborg and J. J. Katz), McGraw-Hill, New York, pp. 14–44.Google Scholar
  85. Hahn, O. (1905) Jahrb. Radioaktivitat Elektronik, 2, 233–66.Google Scholar
  86. Hahn, O. (1906a) Ber. Dtsch. Chem. Ges., 39, 1605–7.Google Scholar
  87. Hahn, O. (1906b) Phys. Z., 7, 855–64.Google Scholar
  88. Hahn, O. (1907) Ber. Dtsch. Chem. Ges., 40, 1462–9.Google Scholar
  89. Hahn, O. (1908) Phys. Z., 9, 146–8.Google Scholar
  90. Hahn, O. and Meitner, L. (1918) Phys. Z., 19, 208–18.Google Scholar
  91. Hahn, O. and Erbacher, O. (1926) Phys. Z., 27, 531–3.Google Scholar
  92. Heath, R. L. (1974) Gamma-ray Spectrum Catalogue. Ge(Li) and Si(Li) Spectrometry. US Report ANCR-1000-2, 3rd edn, vol. 2.Google Scholar
  93. Heydemann, A. (1969) in Handbook of Geochemistry (ed. K. H. Wedepohl), Springer-Verlag, New York, vol. 1, pp. 276–412.Google Scholar
  94. Hill, H. H. (1972) Chem. Phys. Lett., 16, 114–8.Google Scholar
  95. Holden, N. E. (1977) Isotopic Composition of the Elements and Their Variation in Nature A Preliminary Report, BNL-NCS–50605; (1979) Pure Appl. Chem., 52, 2371.Google Scholar
  96. Horen, D. J. (1973) Nucl. Data Sheets, 10, 387–90.Google Scholar
  97. Huys, D. and Baetslé, L. H. (1967) Separation of 226Ra, 227Ac and 228Th by Ion Exchange. Belgian Report BLG 422.Google Scholar
  98. Hyde, E. K., Perlman, I., and Seaborg, G. T. (1964) The Nuclear Properties of the Heavy Elements, vol. 2, Prentice-Hall, Englewood Cliffs, NJ, pp. 584–6.Google Scholar
  99. Ihde, A. J. (1964) The Development of Modern Chemistry, Harper & Row, New York, p. 492.Google Scholar
  100. Jordan, K. C. and Blanke, B. C. (1967) in Standardization of Radionuclides, IAEA Proc. Series STI/PUB/139. IAEA, Vienna, pp. 567–78.Google Scholar
  101. Kahn, M. (1951) in Radioactivity Applied to Chemistry (eds. A. C. Wahl and N. A. Bonner) Wiley, New York, pp. 403–33.Google Scholar
  102. Karalova, Z. K., Rodionova, L. M., Pyzhova, Z. I., and Myasoedov, B. F. (1977a) Soviet Radiochem., 19, 31–3; Radiokhimiya, 19, 38–41.Google Scholar
  103. Karalova, Z. K., Rodionova, L. M., Pyzhova, Z. I., and Myasoedov, B. F. (1977b) Sov. Radiochem., 19, 34–7; Radiokhimiya, 19, 42–5.Google Scholar
  104. Karalova, Z. K., Nekrasova, V. V., Pyzhova, Z. I., Rodionova, L. M., and Myasoedov, B. F. (1978a) Radiokhimiya, 20, 845–50.Google Scholar
  105. Karalova, Z. K., Rodionova, L. M., Pyzhova, Z. I., and Myasoedov, B. F. (1978b) Sov. Radiochem., 20, 30–3; Radiokhimiya, 20, 42–6.Google Scholar
  106. Karalova, Z. K. (1979) Sov. Radiochem., 20, 712–20; Radiokhimiya, 20, 834–44.Google Scholar
  107. Karalova, Z. K., Rodionova, L. M., Pyzhova, Z. I., and Myasoedov, B. F. (1979a) Sov. Radiochem., 21, 7–10; Radiokhimiya, 21, 11–4.Google Scholar
  108. Karalova, Z. K., Rodionova, L. M., Pyzhova, Z. I., and Myasoedov, B. F. (1979b) Sov. Radiochem., 21, 335–9; Radiokhimiya, 21, 394–9.Google Scholar
  109. Katz, J. J. and Seaborg, G. T. (1957) in The Chemistry of the Actinide Elements, Methuen, London, pp. 5–15.Google Scholar
  110. Keller, C. and Mosdzelewski, K. (1967) Radiochim. Acta, 7, 185–8.Google Scholar
  111. Keller, C. and Schreck, H. (1969) J. Inorg. Nucl. Chem., 31, 1121–32.Google Scholar
  112. Keller, C. (1977) Chem.-Z., 101, 500–7.Google Scholar
  113. Kennel, S. J., Chappell, L. L., Dadachova, K., Brechbiel, M. W., Lankford, T. K., Davis, I. A., Stabin, M., and Mirzadeh, S. (2000) Cancer Biotherapy Radiopharm., 15, 235–44.Google Scholar
  114. Kennel, S. J., Brechbiel, M. W., Milenic, D. E., Schlom, J., and Mirzadeh, S. (2002) Cancer Biotherapy Radiopharm., 17, 219–31.Google Scholar
  115. Khalkin, V. A., Tsupko- Sitnikov, V. V., and Zaitseva, N. G. (1997) Radiochemistry, 39, 481–90; Radiokhimiya, 39, 483–92.Google Scholar
  116. Kirby, H. W. (1951) Mound Laboratory Report for General Research. December 11, 1950 to April 2, 1951 (Actinium volume). US Report MLM-558, pp. 13–4.Google Scholar
  117. Kirby, H. W. (1952) Tentative Procedure for the Analysis of Mixtures Containing Radium-226, Actinium-227 and Thorium-228. US Report MLM-773.Google Scholar
  118. Kirby, H. W., Grove, G. R., and Timma, D. L. (1956) Phys. Rev., 102, 1140–1.Google Scholar
  119. Kirby, H. W. (1967) Prog. Nucl. Energy, Ser. IX, 8(1), 89–139.Google Scholar
  120. Kirby, H. W. (1969) J. Inorg. Nucl. Chem., 31, 3375–85.Google Scholar
  121. Kirby, H. W. (1970) J. Inorg. Nucl. Chem., 32, 2823–37.Google Scholar
  122. Kirby, H. W. (1971) Isis, 62, 290–308.Google Scholar
  123. Kirby, H. W. (1974) Geochemistry of the Naturally Occurring Radioactive Series. US Report MLM-2111.Google Scholar
  124. Korotkin, Y. S. (1981) Sov. Radiochem., 23, 145–9; Radiokhimiya, 23, 181–5.Google Scholar
  125. Kosynkin, V. D., Moiseev, S. D., and Vdovichev, V. S. (1995) J. Alloys Compds., 225, 320–3.Google Scholar
  126. Kraus, K. A. (1979) J. Chromatogr., 178, 163–8.Google Scholar
  127. Küchle, W., Dolg, M., and Stoll, H. (1997) J. Phys. Chem. A, 101, 7128–33.Google Scholar
  128. Kulikov, E. V., Novgorodov, A. F., and Schumann, D. (1992) J. Radioanal. Nucl. Chem., Lett., 164, 103–8.Google Scholar
  129. Kumok, V. N. (1978) Sov. Radiochem., 20, 590–4; Radiokhimiya, 20, 691–4.Google Scholar
  130. Laerdahl, J. K., Faegri, J., Visscher, L., and Saue, T. (1998) J. Chem. Phys., 109, 10806–17.Google Scholar
  131. Lange, R. G. and Mastal, E. F. (1994) A tutorial review of radioisotope power systems in A Critical Review of Space Nuclear Power and Propulsion, 1984–1993 (ed. M. S. El-Genk), American Institute of Physics, New York, pp. 1–20.Google Scholar
  132. Lecoin, M., Perey, M., Riou, M., and Teillac, J. (1950) J. Phys. Radium., 11, 227–34.Google Scholar
  133. Maly, J. (1969) J. Inorg. Nucl. Chem., 31, 1007–17.Google Scholar
  134. Makarova, T. P., Sinitsyna, G. S., Stepanov, A. V., Shestakova, I. A., and Shestakov, B. I. (1972) Sov. Radiochem., 14, 555–8; Radiokhimiya, 14, 538–41.Google Scholar
  135. Makarova, T. P., Stepanov, A. V., and Shestakov, B. I. (1973) Russ. J. Inorg. Chem., 18, 783–785; Zh. Neorg. Khim., 18, 1845–9.Google Scholar
  136. Makarova, T. P., Sinitsyna, G. S., Stepanov, A. V., Gritschenko, I. A., Shestakova, I. A., and Shestakov, B. I. (1974) Chem. Abs., 82, 176644.Google Scholar
  137. Maples, C. (1973) Nucl. Data Sheets, 10, 643–71.Google Scholar
  138. Marckwald, W. (1909) Am. Chem. J., 41, 515–57.Google Scholar
  139. Martin, P., Hancock, G. J., Paulka, S., and Akber, R. A. (1995) Appl. Radiat. Isot., 46, 1065–70.Google Scholar
  140. Matthias, B. T., Zachariasen, W. H., Webb, G. W., and Engelhardt, J. J. (1967) Phys. Rev. Lett., 18, 781–4.Google Scholar
  141. McDevitt, M. R., Ma, D., Lai, L. T., Simon, J., Borchardt, P., Frank, R. K., Wu, K., Pellegrini, V., Curcio, M. J., Miederer, M., Bander, N. H., and Scheinberg, D. A. (2001) Science, 294, 1537–40.Google Scholar
  142. Meggers, W. F., Fred, M., and Tomkins, F. S. (1951) J. Opt. Soc. Am., 41, 867–8.Google Scholar
  143. Meggers, W. F. (1957) Spectrochim. Acta, 10, 195–200.Google Scholar
  144. Meggers, W. F., Fred, M., and Tomkins, F. S. (1957) J. Res. NBS, 58, 297–315.Google Scholar
  145. Mikhailichenko, A. I., Goryacheva, E. G., Aksenova, N. M., and Denisov, A. F. (1982) Sov. Radiochem., 24, 173–5; Radiokhimiya, 24, 207–9.Google Scholar
  146. Mikheev, N. B., Kamenskaya, A. N., Rumer, I. A., Kulyukhin, S. A., and Novichenko, V. L. (1994) Radiokhimiya, 36, 160–2; Radiochemistry, 36, 173–5.Google Scholar
  147. Mikheev, N. B., Veleshko, I. E., Kamenskaya, A. N., and Rumer, I. A. (1995) Radio-khimiya, 37, 322–5; Radiochemistry, 37, 297–9.Google Scholar
  148. Mitsugashira, T., Yamana, H., and Suzuki, S. (1977) Bull. Chem. Soc. Jpn, 50, 2913–6.Google Scholar
  149. Moeller, T. and Kremers, H. E. (1945) Chem. Rev., 37, 97–159.Google Scholar
  150. Moeller, T. (1963) The Chemistry of the Lanthanides, Reinhold, New York.Google Scholar
  151. Monsecour, M., De Regge, P., and Demildt, A. (1973) Radiochem. Radioanal. Lett., 14, 365–71.Google Scholar
  152. Monsecour, M., De Regge, P., Demildt, A., and Baetslé, L. H. (1974) J. Inorg. Nucl. Chem., 36, 719–23.Google Scholar
  153. Monsecour, M. and De Regge, P. (1975) J. Inorg. Nucl. Chem., 37, 1841–3.Google Scholar
  154. Mosdzelewski, K. (1966) Die Extraktion der Elemente Radium, Actinium, Protactinium, Americium, und Curium mit 8-Hydroxychinolin, Thesis. German Report KFK–432.Google Scholar
  155. Moutte, A. and Guillaumont, R. (1969) Rev. Chim. Minér., 6, 603–10.Google Scholar
  156. Nelson, F. (1964) J. Chromatogr., 16, 538–40.Google Scholar
  157. Nikula, T. K., McDevitt, M. R., Finn, R. D., Wu, C., Kozak, R. W., Garmestani, K., Brechbiel, M. W., Curcio, M. J., Pippin, C. G., Tiffany-Jones, L., Geerlings, M. W., Sr., Apostolidis, C., Molinet, R., Geerlings, M. W. Jr., Gansow, O. A., and Scheinberg, D. A. (1999) J. Nucl. Med., 40, 166–76.Google Scholar
  158. Novikova, G. I., Volkova, E. A., Gol'din, L. L., Ziv, D. M., and Tret'yakov, E. F. (1960) Sov. Phys. JETP, 37, 663–9; Zh. Eks. Teor. Fiz., 37, 928–37.Google Scholar
  159. Nozaki, Y. (1984) Nature, 310, 486–8.Google Scholar
  160. Nugent, L. J., Baybarz, R. D., Burnett, J. L., and Ryan, J. L. (1973a) J. Phys. Chem., 77, 1528–39.Google Scholar
  161. Nugent, L. J., Burnett, J. L., and Morss, L. R. (1973b) J. Chem. Thermodyn., 5, 665–78.Google Scholar
  162. Nugent, L. J., and Vander Sluis, K. L. (1971) J. Opt. Soc. Am., 61, 1112–5.Google Scholar
  163. Ouadi, A., Loussouarn, A., Remaud, P., Morandeau, L., Apostolidis, C., Musikas, C., Fauve-Chauvet, A., and Gestin, J.-F. (2000) Tetrahedron Lett., 41, 7207–9.Google Scholar
  164. Partington, J. R. (1964) A History of Chemistry, Macmillan, London, vol. 4, p. 938.Google Scholar
  165. Peppard, D. F., Mason, G. W., Gray, P. R., and Mech, J. F. (1952) J. Am. Chem. Soc., 74, 6081–4.Google Scholar
  166. Perey, M. (1939a) C. R. Acad. Sci. Paris, 208, 97–9.Google Scholar
  167. Perey, M. (1939b) J. Phys. Radium, 10, 435–8.Google Scholar
  168. Peterson, S. (1949) Natl. Nucl. En. Ser., Div. IV, in The Transuranium Elements (eds. G. Seaborg, J. J. Katz, and W. M. Manning), McGraw-Hill, New York, vol. 14B, pp. 1393–4.Google Scholar
  169. Pippin, C. G., Gansow, O. A., Brechbiel, M. W., Koch, L., Molinet, R., van Geel, J., Apostolidis, C., Geerlings, M. W., and Scheinberg, D. A. (1995) in Chemist's Views of Imaging Centers (ed. A. M. Emran), Plenum Press, New York, pp. 315–25.Google Scholar
  170. Poskanzer, A. M. and Foreman, B. M. J. (1961) J. Inorg. Nucl. Chem., 16, 323–36.Google Scholar
  171. Rao, C. L. and Gupta, A. R. (1961) J. Chromatogr., 5, 147–52.Google Scholar
  172. Rao, C. L., Shahani, C. I., and Mathew, K. A. (1968) Inorg. Nucl. Chem. Lett., 4, 655–9.Google Scholar
  173. Rao, V. K., Shahani, C. J., and Rao, C. L. (1970) Radiochim. Acta, 14, 31–4.Google Scholar
  174. Rutherford, E. (1904) Phil. Trans. R. Soc. Lond., 204A, 169–219.Google Scholar
  175. Rutherford, E. (1911) in Encyclopaedia Britannica, 11th edn, vol. 22, pp. 795–802.Google Scholar
  176. Salutsky, M. L. (1962) in Comprehensive Analytical Chemistry (eds. C. L. Wilson and D. W. Wilson), Elsevier, Amsterdam, 1C, pp. 492–6.Google Scholar
  177. Salutsky, M. L. and Kirby, H. W. (1956) Anal. Chem., 28, 1780–2.Google Scholar
  178. Sani, A. R. (1970) J. Radioanal. Chem., 4, 127–9.Google Scholar
  179. Seaborg, G. T. (1994) Origin of the Actinide Concept, in Handbook on the Chemistry and Physics of the Rare Earths (eds. K. A. Gschneidner, L. Eyring, G. R. Choppin, and G. Lander), North-Holland, Amsterdam, 18, 1–27.Google Scholar
  180. Sedlet, J. (1964) Actinium, Astatine, Francium, Polonium, and Protactinium, in Treatise on Analytical Chemistry, Part II, vol. 6 (eds. I. M. Kolthoff, P. J. Elving, and E. B. Sandell), Wiley, New York, pp. 435–610.Google Scholar
  181. Sekine, T., Koike, Y., and Sakairi, M. (1967) J. Nucl. Sci. Technol., 4, 308–11.Google Scholar
  182. Sekine, T., Koike, Y., and Hasegawa, Y. (1969) Bull. Chem. Soc. Japan, 42, 432–6.Google Scholar
  183. Sekine, T. and Sakairi, M. (1969) Bull. Chem. Soc. Jpn., 42, 2712–3.Google Scholar
  184. Shahani, C. J., Mathew, K. A., Rao, C. L., and Ramaniah, M. V. (1968) Radiochim. Acta, 10, 165–7.Google Scholar
  185. Shannon, R. D. (1976) Acta Crystallogr., A32, 751–67.Google Scholar
  186. Sinitsyna, G. S., Shestakova, I. A., Shestakov, B. I., Plyushcheva, N. A., and Malyshev, N. A., Belyatskii, A. F. (1977) Tezisy Dokl.-Konf. Anal. Khim. Radioakt., Nauka, Moscow.Google Scholar
  187. Sinitsyna, G. S., Shestakova, I. A., Shestakov, B. I., Plyushcheva, N. A., Malyshev, N. A., Belyatskii, A. F., and Tsirlin, V. A. (1979) Sov. Radiochem., 21, 146–51; Radiokhimiya, 21, 172–7.Google Scholar
  188. Skarnemark, G. and Skalberg, M. (1985) Int. J. Appl. Radiat. Isot., 36, 439–41.Google Scholar
  189. Soddy, F. and Cranston, J. A. (1918a) Nature, 100, 498–9.Google Scholar
  190. Soddy, F. and Cranston, J. A. (1918b) Proc. R. Soc. Lond., 94A, 384–404.Google Scholar
  191. Stein, L. and Hohorst, F. A. (1982) Envir. Sci. Technol., 16, 419–22.Google Scholar
  192. Stevenson, P. C. and Nervik, W. E. (1961) The Radiochemistry of the Rare Earths, Scandium, Yttrium and Actinium. US Report NAS-NS 3020. All the volumes of the series “The Radiochemistry of…” can be found on the site http://lib-www.lanl.gov/ radiochemistry/elements.htmGoogle Scholar
  193. Stites, J. G. Jr., Salutsky, M. L., and Stone, B. D. (1955) J. Am. Chem. Soc., 77, 237–40.Google Scholar
  194. St. John, D. S. and Toops, E. C. (1958) Formation of U-232 During the Irradiation of Thorium. US Report DP-279.Google Scholar
  195. Sugar, J. (1973) J. Chem. Phys., 59, 788–91.Google Scholar
  196. Sugar, J. (1984) Personal communication to L. R. Morss.Google Scholar
  197. Szeglowski, Z. and Kubica, B. (1990) J. Radioanal. Nucl. Chem., 143, 389–95.Google Scholar
  198. Szeglowski, Z. and Kubica, B. (1991) J. Radioanal. Nucl. Chem. Lett., 153, 67–74.Google Scholar
  199. Taylor, S. R. (1964) Geochim. Cosmochim. Acta, 28, 1273–85.Google Scholar
  200. Tomkins, F. S., Fred, M., and Meggers, W. F. (1951) Phys. Rev., 84, 168.Google Scholar
  201. Tousset, J. (1961) Les Spectres Béta de Faible Energie de Que1ques Eléments Lourds, Thesis, Univ. Lyon (F.) French Report NP-13367.Google Scholar
  202. Tsoupko-Sitnikov, V., Norseev, Y., and Khalkin, C. (1996) J. Radioanal. Nucl. Chem., 205, 75–83.Google Scholar
  203. U.S. Department of Energy (1987) Atomic Power in Space: a History (excerpted in Nuclear News, May 2003, pp. 37–44).Google Scholar
  204. U.S. Nuclear Regulatory Commission (2005) U.S. Code of Federal Regulations, 10 CFR 20.Google Scholar
  205. Valli, K. (1964) Ann. Acad. Sci. Fenn., Ser. A, VI, no. 165.Google Scholar
  206. Vander Sluis, K. L. and Nugent, L. J. (1972) Phys. Rev. A, 6, 86–94.Google Scholar
  207. Vander Sluis, K. L. and Nugent, L. J. (1974) J. Opt. Soc. Am., 64, 687–95.Google Scholar
  208. Wagman, D. D., Evans, W. E., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., and Nuttall, R. L. (1982) J. Phys. Chem. Ref. Data, 11, Suppl. No. 2.Google Scholar
  209. Ward, J. W., Kleinschmidt, P. D., and Peterson, D. E. (1986) in Handbook on the Physics and Chemistry of the Actinides, vol. 4 (eds. A. J. Freeman and C. Keller), ch. 7.Google Scholar
  210. Weeks, M. E. and Leicester, H. M. (1968) Discovery of the Elements, Journal of Chemical Education, Easton, PA, p. 794.Google Scholar
  211. Weigel, F. and Hauske, H. (1977) J. Less-Common Met., 55, 243–7.Google Scholar
  212. Wlodzimirska, B., Bartoś, B., and Bilewicz, A. (2003) Radiochim. Acta, 91, 553–6.Google Scholar
  213. Xu, J., He, P., and Zhu, Y. (1983) He Huaxue Yu Fangshe Huaxue, 5, 202–10; Chem. Abstr., 99, 192397.Google Scholar
  214. Yamana, H., Mitsugashira, T., and Shiokawa, Y. (1983) J. Radioanal. Nucl. Chem., 76, 19–26.Google Scholar
  215. Zachariasen, W. H. (1961) in The Metal Plutonium (eds. W. N. Miner and A. S. Coffinberry), University of Chicago Press, Chicago, pp. 99–107.Google Scholar
  216. Zachariasen, W. H. (1973) J. Inorg. Nucl. Chem., 35, 3487–97.Google Scholar
  217. Ziv, D. M. and Shestakova, I. A. (1965a) Sov. Radiochem., 7, 168–75; Radiokhimiya, 7, 166–75.Google Scholar
  218. Ziv, D. M. and Shestakova, I. A. (1965b) Sov. Radiochem., 7, 176–86; Radiokhimiya, 7, 175–87.Google Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • H. W. Kirby
    • 1
  • Lester R. Morss
    1. 1.Mound LaboratoryMiamisburgUSA

    Personalised recommendations