Advertisement

Optical Spectra and Electronic Structure

  • Guokui Liu
  • James V. Beitz

Abstract

Much of our knowledge of the electronic properties of actinides in solutions and solids is obtained from optical spectroscopy. One of the features that sets actinide spectra apart from those of other elements in the periodic table, aside from the lanthanide series, is that their f-orbitals can be considered both as containing optically active electrons and as belonging to the core of inner shells. As a result of this dominant characteristic, the spectra of these elements, particularly of the lower valence states, are moderately insensitive to changes in the ionic environment. Although ion–ligand interactions shift and split the energy levels of the f-orbitals, the scale of this crystal–field splitting is generally smaller than the intra-ionic Coulomb interaction and spin–orbit coupling. The relative insensitivity of these f-electrons to external forces also means that for these elements there is a close connection between energy levels in compounds and those in gaseous free atoms and ions. Table 18.1 lists the scales of various mechanisms of electronic interactions that will be discussed in this chapter through analysis and modeling of the optical spectra of the various valence states of actinide ions in solutions and compounds.

Keywords

Optical Spectrum Energy Level Structure Trivalent Actinide Actinide Series Intermediate Coupling Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auzel, F., Hubert, S., Delamoye, P., and Hussonnois, M. (1982) J. Lumin., 26, 251–62.CrossRefGoogle Scholar
  2. Auzel, F. and Malta, O. L. (1983) J. Phys., 44, 201–6.Google Scholar
  3. Axe, J. D., Stapleton, H. J., and Jeffiries, C. D. (1961) Phys. Rev., 121, 1630–7.CrossRefGoogle Scholar
  4. Baybarz, R. D., Asprey, L. B., Strouse, C. E., and Fukushima, E. (1972) J. Inorg. Nucl. Chem., 34, 3427–31.CrossRefGoogle Scholar
  5. Beitz, J. V. and Hessler, J. P. (1980) Nucl. Technol., 51, 169–77.Google Scholar
  6. Beitz, J. V., Carnall, W. T., and Wester, D. W. (1981) in Lawrence Berkeley Laboratory Report LBL-12441, Lawrence Berkeley Laboratory, Berkeley, CA, pp. 108–10.Google Scholar
  7. Beitz, J. V., Williams, C. W., and Carnall, W. T. (1982) J. Chem. Phys., 76, 2756–7.CrossRefGoogle Scholar
  8. Beitz, J. V., Wester, D. W., and Williams, C. W. (1983) J. Less Common Metals, 93, 331–8.CrossRefGoogle Scholar
  9. Beitz, J. V., Jursich, G., and Sullivan, J. C. (1987) in Rare Earths 1986, Proc. of the 17th Rare Earth Research Conference, vol. 1 (eds. H. B. Silber, L. R. Morss, and L. E. DeLong), Elsevier Sequoia, Lausanne, p. 301.Google Scholar
  10. Beitz, J. V., Bowers, D. L., Doxtader, M. M., Maroni, V. A., and Reed, D. T. (1988) Radiochim. Acta, 44/45, 87–93.Google Scholar
  11. Beitz, J. V. (1994a) J. Alloys Compds, 207/208, 41–50.CrossRefGoogle Scholar
  12. Beitz, J. V. (1994b) in Handbook on the Physics and Chemistry of Rare Earths, vol. 18 (eds. K. A. Gschneidner Jr, L. Eyring, G. R. Choppin, and G. H. Lander), North-Holland, Amsterdam, pp. 159–95.Google Scholar
  13. Beitz, J. V., Williams, C. W., and Liu, G. K. (1998) J. Alloys Compds, 271, 850–3.CrossRefGoogle Scholar
  14. Bell, J. T. (1969) J. Inorg. Nucl. Chem., 31, 703–10.CrossRefGoogle Scholar
  15. Blaise, J., Fred, M. S., Carnall, W. T., Crosswhite, H. M., and Crosswhite, H. (1983) ACS Symp. Ser., 216, 173–98.CrossRefGoogle Scholar
  16. Brewer, L. (1971a) J. Opt. Soc. Am., 61, 1101–11.CrossRefGoogle Scholar
  17. Brewer, L. (1971b) J. Opt. Soc. Am., 61, 1666–82.CrossRefGoogle Scholar
  18. Brewer, L. (1983) in Systematics and the Properties of the Lanthanides, Reidel, Boston, pp. 17–63.Google Scholar
  19. Brito, H. F. and Liu, G. K. (2000) J. Chem. Phys., 112, 4334–41.CrossRefGoogle Scholar
  20. Brown, D. (1968) Halides of the Lanthanides and Actinides, John Wiley, New York.Google Scholar
  21. Brown, D., Whittaker, B., and Edelstein, N. (1974) Inorg. Chem., 13, 1805–8.CrossRefGoogle Scholar
  22. Brown, D., Lidster, P., Whittaker, B., and Edelstein, N. (1976) Inorg. Chem., 15, 511–14.CrossRefGoogle Scholar
  23. Carnall, W. T., Walker, A., and Neufeldt, S. J. (1966) Inorg. Chem., 5, 2135–40.CrossRefGoogle Scholar
  24. Carnall, W. T., Fields, P. R., and Rajnak, K. (1968) J. Chem. Phys., 49, 4412–23.CrossRefGoogle Scholar
  25. Carnall, W. T., Fields, P. R., and Sarup, R. (1969) J. Chem. Phys., 51, 2587–91.CrossRefGoogle Scholar
  26. Carnall, W. T., Fields, P. R., and Sarup, R. (1971) J. Chem. Phys., 54, 1476–9.CrossRefGoogle Scholar
  27. Carnall, W. T. (1973) in Gmelin Handbuch der Anorganishce Chemie, Vol. Transurane A2, Verlag Chemie, Weinheim, pp. 49–80.Google Scholar
  28. Carnall, W. T. Rajnak, and K. (1975) J. Chem. Phys., 63, 3510–14.CrossRefGoogle Scholar
  29. Carnall, W. T. (1979a) in Handbook on the Physics and Chemistry of the Rare Earths, vol. 3 (eds. K. A. Gschneidner Jr, and L. Eyring) North-Holland, Amsterdam, pp. 171–208.Google Scholar
  30. Carnall, W. T. (1979b) NATO Adv. Study Inst. Ser., Ser. C: Math. Phys. Sci., 44, 281–307.Google Scholar
  31. Carnall, W. T. (1982) in Gmelin Handhuch der Anorganischen Chemie, 8th edn., Uranium Suppl. A5, Springer-Verlag, Berlin, pp. 69–161.Google Scholar
  32. Carnall, W. T., Beitz, J. V., Crosswhite, H., Rajnak, K., and Mann, J. B. (1983) in Systematics and the Properties of the Lanthanides (ed. S. P. Sinha), Reidel, Dordrecht, pp. 389–450.Google Scholar
  33. Carnall, W. T., Beitz, J. V., and Crosswhite, H. (1984) J. Chem. Phys., 80, 2301–8.CrossRefGoogle Scholar
  34. Carnall, W. T. and Crosswhite, H. M. (1985) Argonne National Laboratory Report ANL-84-90, Argonne National Laboratory, Argonne, IL, 154 pp.Google Scholar
  35. Carnall, W. T., Crosswhite, H., and Rajnak, K. (1985) in Rare Earths Spectroscopy (eds. B. Jezowska-Trzebiatowska, J. Legendziewicz, and W. Strek), World Scientific Publishing, Singapore, pp. 267–97.Google Scholar
  36. Carnall, W. T. (1989) Argonne National Laboratory Report ANL-89/39, Argonne National Laboratory, Argonne, IL, p. 285.Google Scholar
  37. Carnall, W. T., Goodman, G. L., Rajnak, K., and Rana, R. S. (1989) J. Chem. Phys., 90, 3443–57.CrossRefGoogle Scholar
  38. Carnall, W. T., Liu, G. K., Williams, C. W., and Reid, M. F. (1991) J. Chem. Phys., 95, 7194–203.CrossRefGoogle Scholar
  39. Carnall, W. T. (1992) J. Chem. Phys., 96, 8713–26.CrossRefGoogle Scholar
  40. Claassen, H. H. (1959) J. Chem. Phys., 30, 968–9.CrossRefGoogle Scholar
  41. Condon, E. U. and Shortley, G. H. (1963) The Theory of Atomic Spectra, Cambridge University Press, Cambridge.Google Scholar
  42. Cone, R. L. and Meltzer, R. S. (1987) in Spectroscopy of Solids Containing Rare Earth Ions (eds. A. A. Kaplyanskii and R. M. Macfarlane), North-Holland, Amsterdam, pp. 481–556.Google Scholar
  43. Conway, J. G. (1964) J. Chem. Phys., 41, 904–5.CrossRefGoogle Scholar
  44. Copland, G. M., Newman, D. J., and Taylor, C. D. (1971) Journal of Physics B: Atomic and Molecular Physics, 4, 1605–10.CrossRefGoogle Scholar
  45. Cowan, R. D. and Griffin, C. D. (1976) J. Opt. Soc. Am., 66, 1010–14.CrossRefGoogle Scholar
  46. Cowan, R. D. (1981) The Theory of Atomic Structure and Spectra, University of California Press, Berkeley.Google Scholar
  47. Crosswhite, H. M., Dieke, G. H., and Carter, W. J. (1965) J. Chem. Phys., 43, 2047–54.CrossRefGoogle Scholar
  48. Crosswhite, H., Crosswhite, H. M., and Judd, B. R. (1968) Phys. Rev., 174, 89–94.CrossRefGoogle Scholar
  49. Crosswhite, H. M., Crosswhite, H., Kaseta, F. W., and Sarup, R. (1976) J. Chem. Phys., 64, 1981–5.CrossRefGoogle Scholar
  50. Crosswhite, H. M. (1977) Colloq. Int. CNRS, 255, 65–9.Google Scholar
  51. Crosswhite, H. M., Crosswhite, H., Carnall, W. T., and Paszek, A. P. (1980) J. Chem. Phys., 72, 5103–7.CrossRefGoogle Scholar
  52. Crosswhite, H. M. (1982) in Gmelin Handbuch der Anorganischen Chemie, 8th edn, Uranium Suppl. A5, Springer-Verlag, Berlin, pp. 1–68.Google Scholar
  53. Crosswhite, H. M. and Crosswhite, H. (1984) J. Opt. Soc. Am. B, 1, 246–54.CrossRefGoogle Scholar
  54. de Bruin, T. L., Klinkenberg, P. F. A., and Schuutmans, P. (1941) Z. Phys., 118, 58–87.CrossRefGoogle Scholar
  55. DeKock, R. L., Baerends, E. J., Boerrigter, P. M., and Snijders, J. G. (1985) Chem. Phys. Lett., 105, 308–16.CrossRefGoogle Scholar
  56. Delamoye, P., Rajnak, K., Genet, M., and Edelstein, N. (1983) Phys. Rev. B, 28, 4923–30.CrossRefGoogle Scholar
  57. Denning, R. G., Norris, J. O. W., Short, I. G., Snellgrove, T. R., and Woodwark, D. R. (1980) in ACS Symposium Series: Lanthanide and Actinide Chemistry and Spectros-copy, vol. 131 (ed. N. Edelstein), American Chemical Society, Washington, DC, pp. 313–30.CrossRefGoogle Scholar
  58. Denning, R. G., Norris, J. O. W., and Brown, D. (1982) Mol. Phys., 46, 287–364.CrossRefGoogle Scholar
  59. Denning, R. G. (1992) in Structure and Bonding, vol. 79 (ed. M. J, Clarke), Springer-Verlag, Berlin, pp. 215–76.Google Scholar
  60. Denning, R. G., Green, J. C., Hutchings, T. E., Dallera, C., Tagliaferri, A., Giarda, K., Brookes, N. B., and Braicovich, L. (2002) J. Chem. Phys., 117, 8008–20.CrossRefGoogle Scholar
  61. Dexter, D. L. (1953) J. Chem. Phys., 21, 836–50.CrossRefGoogle Scholar
  62. Dick, B. G. and Overhauser, A. (1958) Phys. Rev., 112, 90–103.CrossRefGoogle Scholar
  63. Dieke, G. H. (1968) Spectra and Energy Levels of Rare Earth Ions in Crystals, John Wiley, New York.Google Scholar
  64. Downer, M. C., Cordero-Montalvo, C. D., and Crosswhite, H. (1983) Phys. Rev. B, 28, 4931–43.CrossRefGoogle Scholar
  65. Edelstein, N., Easley, W., and McLaughlin, R. (1966) J. Chem. Phys., 44, 3130–1.CrossRefGoogle Scholar
  66. Edelstein, N., Easley, W., and McLaughlin, R. (1967) Adv. Chem. Ser., 71, 203–10.CrossRefGoogle Scholar
  67. Edelstein, N. and Easley, W. (1968) J. Chem. Phys., 48, 2110–15.CrossRefGoogle Scholar
  68. Edelstein, N., Conway, J. G., Fujita, D. K., Kolbe, W., and McLaughlin, R. (1970) J. Chem. Phys., 52, 6425–6.CrossRefGoogle Scholar
  69. Edelstein, N., Brown, D., and Whittaker, B. (1974) Inorg. Chem., 13, 563–7.CrossRefGoogle Scholar
  70. Edelstein, N. M. (1979) in Organometallics of the f-elements (eds. T. J. Marks and R. D. Fischer), Reidel, Dordrecht, pp. 37–79.Google Scholar
  71. Edelstein, N. (1987) J. Less Common Metals, 133, 39–51.CrossRefGoogle Scholar
  72. Edelstein, N. M. (1991) Eur. J. Solid State Inorg. Chem., 28, 47–55.Google Scholar
  73. Edelstein, N. (1992) in Transuranium Elements: A Half Century (eds. L. R. Morss and J. Fuger), American Chemical Society, Washington, DC, pp. 145–58.Google Scholar
  74. Edelstein, N., Kot, W. K., and Krupa, J. C. (1992) J. Chem. Phys., 96, 1–4.CrossRefGoogle Scholar
  75. Edelstein, N. M. (1995) J. Alloys Compds, 223, 197–203.CrossRefGoogle Scholar
  76. Edelstein, N. (2002) Proc. SPIE-Int. Soc. Opt. Eng., 4766, 8–21.Google Scholar
  77. Eichberger, K. and Lux, F. (1980) Ber. Bunsenges. Phys. Chem., 84, 800–7.Google Scholar
  78. Eisenstein, J. C. and Pryce, M. H. L. (1960) Proc. Roy. Soc. A, 255, 181–98.CrossRefGoogle Scholar
  79. Eisenstein, J. C. and Pryce, M. H. L. (1966) J. Res. NBS, 70A, 165–7.Google Scholar
  80. Eremin, M. V. (1989) in Spectroscopy of Crystals (ed. A. A. Kaplyanskii), Nauka, Leningrad, p. 30.Google Scholar
  81. Ermeneux, F. S., Goutaudier, C., Moncorge, R., Sun, Y., Cone, R. L., Zannoni, E., Cavalli, E., and Bettinelli, M. (2000) Phys. Rev. B, 61, 3915–21.CrossRefGoogle Scholar
  82. Esterowitz, L., Bartoli, F. J., Allen, R. E., Wortman, D. E., Morrison, C. A., and Leavitt, R. P. (1979) Phys. Rev. B, 19, 6442–55.CrossRefGoogle Scholar
  83. Faucher, M. D., Moune, O. K., Garcia, D., and Tanner, P. (1996) Phys. Rev. B, 53, 9501–4.CrossRefGoogle Scholar
  84. Fellows, R. L., Peterson, J. R., Young, J. P., and Haire, R. G. (1978) in The Rare Earths in Modern Science and Technology (eds. G. J. McCarthy and J. J. Ryne), Plenum, New York, pp. 493–9.Google Scholar
  85. Fôrster, T. (1948) Ann. Phys.(Germany), 2, 55–75.CrossRefGoogle Scholar
  86. Fred, M. (1967) in Lanthanide/Actinide Chemistry, vol. 71 (eds. P. R. Fields and T. Moeller) ACS Adv. Chem. Ser. American Chemical Society, Washington, DC, pp. 180–202.Google Scholar
  87. Garcia, D. and Faucher, M. (1995) in Handbook on the Physics and Chemistry of Rare Earths, vol.21(eds. K. A. Gschneidner Jr and L. Eyring), Elsevier, Amsterdam, p. 263.Google Scholar
  88. Gerloch, M. and Slade, R. C. (1973) Ligand-Field Parameters, Cambridge University Press, Cambridge.Google Scholar
  89. Goldschmidt, Z. B. (1978) in Handbook on the Physics and ChemistryofRare Earths, vol. 1 (eds. K. A. Gschneidner Jr and L. Eyring), North-Holland, New York, pp. 1–172.Google Scholar
  90. Goodman, G. L. and Fred, M. (1959) J. Chem. Phys., 30, 849–50.CrossRefGoogle Scholar
  91. Görller-Walrand, C., Behets, M., Porcher, P., Moune-Minn, O. K., and Laursen, I. (1985) Inorg. Chim. Acta, 109, 83–90.CrossRefGoogle Scholar
  92. Görller-Walrand, C. and Binnemans, K. (1996) in Handbook on the Physics and Chemistry of Rare Earth, vol. 23 (eds. K. A. Gschneidner Jr and L. Eyring), Elsevier, Amsterdam.Google Scholar
  93. Görller-Walrand, C. and Binnemans, K. (1998) in Handbook on the Physics and Chemistry of Rare Earths, vol. 25 (eds. K. A. Gschneidner Jr and L. Eyring), Elsevier, Amsterdam, pp. 101–264.Google Scholar
  94. Gruen, D. M. and McBeth, R. L. (1969) Inorg. Chem., 8, 2625–33.CrossRefGoogle Scholar
  95. Hansen, J. E., Judd, B. R., and Crosswhite, H. (1996) At. Data and Nucl. Data Tables, 62, 1–49.CrossRefGoogle Scholar
  96. Hartree, D. R. (1957) The Calculation of Atomic Structures, John Wiley, New York. Hecht, H. G., Varga, L. P., Lewis, W. B., and Boring, A. M. (1979) J. Chem. Phys., 70, 101–8.Google Scholar
  97. Hessler, J. P., Brundage, R. T., Hegarty, J., and Yen, W. M. (1980) Opt. Lett., 5, 348–50.CrossRefGoogle Scholar
  98. Huang, K. and Rhys, A. (1950) Proc. Roy. Soc. A, 204, 406–23.CrossRefGoogle Scholar
  99. Hubert, S., Emery, J., Edelstein, N., and Fayet, J. C. (1985) Solid State Commun., 54, 1085–90.CrossRefGoogle Scholar
  100. Hubert, S., Thouvenot, P., and Edelstein, N. (1993) Phys. Rev. B, 48, 5751–60.CrossRefGoogle Scholar
  101. Hüfner, S. (1978) Optical Spectra of Transparent Rare Earth Compounds, Academic Press, New York.Google Scholar
  102. Hutchison, C. A. and Weinstock, B. (1960) J. Chem. Phys., 32, 56–61.CrossRefGoogle Scholar
  103. Illemassene, M., Murdoch, K. M., Edelstein, N. M., and Krupa, J. C. (1997) J. Lumin., 75, 77–87.CrossRefGoogle Scholar
  104. Inokuti, M. and Hirayama, F. (1965) J. Chem. Phys., 43, 1978–89.CrossRefGoogle Scholar
  105. Johnston, D. R., Satten, R. A., Schreiber, C. L., and Wong, E. Y. (1966a) J. Chem. Phys., 44, 3141–3.CrossRefGoogle Scholar
  106. Johnston, D. R., Satten, R. A., and Wong, E. Y. (1966b) J. Chem. Phys., 44, 687–91.CrossRefGoogle Scholar
  107. Jϕrgensen, C. K. (1957) Acta Chem. Scand., 11, 166–78.CrossRefGoogle Scholar
  108. Jϕrgensen, C. K. (1959) Mol. Phys., 2, 96–108.CrossRefGoogle Scholar
  109. Jϕrgensen, C. K. (1962) Orbits in Atoms and Molecules, Academic Press, London.Google Scholar
  110. Jϕrgensen, C. K., Pappalardo, R., and Schmidtke, H. H. (1963) J. Chem. Phys., 39, 1422–30.CrossRefGoogle Scholar
  111. Jϕrgensen, C. K. (1970) Prog. Inorg. Chem., 12, 101–52.CrossRefGoogle Scholar
  112. Jϕrgensen, C. K. (1975) in Structure and Bonding, vol. 22, Springer-Verlag, New York, pp. 49–81.Google Scholar
  113. Jϕrgensen, C. K. (1980) Isr J. Chem., 19, 174–92.Google Scholar
  114. Jϕrgensen, C. K. (1982) Chem. Phys. Lett., 89, 455–8.CrossRefGoogle Scholar
  115. Judd, B. R. (1962) Phys. Rev., 127, 750–61.CrossRefGoogle Scholar
  116. Judd, B. R. (1963a) Proc. Phys. Soc., (London) 82, 874–81.CrossRefGoogle Scholar
  117. Judd, B. R. (1963b) Operator Techniques in Atomic Spectroscopy, McGraw-Hill, New York.Google Scholar
  118. Judd, B. R. (1966) Phys. Rev., 141, 4–14.CrossRefGoogle Scholar
  119. Judd, B. R. (1968a) Phys. Rev., 173, 40–3.CrossRefGoogle Scholar
  120. Judd, B. R. (1968b) Phys. Rev., 173, 39–40.CrossRefGoogle Scholar
  121. Judd, B. R., Crosswhite, H. M., and Crosswhite, H. (1968) Phys. Rev., 169, 130–8.CrossRefGoogle Scholar
  122. Judd, B. R. (1975) Angular Momentum Theory for Diatomic Molecules, Academic Press, New York.Google Scholar
  123. Judd, B. R. (1977a) Phys. Rev. Lett., 39, 242–4.CrossRefGoogle Scholar
  124. Judd, B. R. (1977b) J. Chem. Phys., 66, 3163–70.CrossRefGoogle Scholar
  125. Judd, B. R. (1979) J. Lumin., 18–19, 604–8.CrossRefGoogle Scholar
  126. Judd, B. R. and Crosswhite, H. (1984) J. Opt. Soc. Am. B, 1, 255–60.CrossRefGoogle Scholar
  127. Judd, B. R. and Suskin, M. A. (1984) J. Opt. Soc. Am. B, 1, 261–5.CrossRefGoogle Scholar
  128. Judd, B. R. (1988) in Handbook on the Physics and Chemistry of Rare Earths, vol. 11 (eds. K. A. Gschneidner Jr and L. Eyring), North-Holland, Amsterdam, pp. 81–195.Google Scholar
  129. Judd, B. R. and Lo, E. (1996) At. Data Nucl. Data Tables, 62, 51–75.CrossRefGoogle Scholar
  130. Kanellakopulos, B. and Fischer, R. D. (1973) in Gmelin Handhuch der Anorganischen Chemie, Transurane A2, Verlag Chemie, Weinheim, pp. 1–48.Google Scholar
  131. Karbowiak, M., Drozdzynski, J., Murdoch, K. M., Edelstein, N. M., and Hubert, S. (1997) J. Chem. Phys., 106, 3067–77.CrossRefGoogle Scholar
  132. Karbowiak, M., Mech, A., and Drozdzynski, J. (2003) Phys. Rev. B, 67, 195108–17.CrossRefGoogle Scholar
  133. Karraker, D. G. (1964) Inorg. Chem., 3, 1618–22.CrossRefGoogle Scholar
  134. Kaufman, V. and Radziemski, L. J. (1976) J. Opt. Soc. Am., 66, 599–601.CrossRefGoogle Scholar
  135. Kiarshima, A., Kimura, T., Tochiyama, O., and Yoshida, Z. (2003) Chem. Commun., 2003, 910–11.CrossRefGoogle Scholar
  136. Kimura, T. and Choppin, G. R. (1994) J. Alloys Compds, 213/214, 313–17.CrossRefGoogle Scholar
  137. Kimura, T., Choppin, G. R., Kato, Y., and Yoshida, Z. (1996) Radiochim. Acta, 72, 61–4.Google Scholar
  138. Kimura, T., Kato, Y., and Choppin, G. R. (1997) in Recent Progress in Actinides Separation Chemistry, Proc. Workshop on Actinides Solution Chemistry, WASC ‘94, Tokai, Japan, September 1–2, 1994, pp. 149–64.Google Scholar
  139. Kimura, T. and Kato, Y. (1998) J. Alloys Compds, 271–273, 867–71.CrossRefGoogle Scholar
  140. Kimura, T., Nagaishi, R., Kato, Y., and Yoshida, Z. (2001) Radiochim. Acta, 89, 125–30.CrossRefGoogle Scholar
  141. Kramers, H. A. (1930) Proc. Amsterdam Acad., 33, 959.Google Scholar
  142. Krupa, J. C., Hubert, S., Foyentin, M., Gamp, E., and Edelstein, N. (1983) J. Chem. Phys., 78, 2175–9.CrossRefGoogle Scholar
  143. Morosin, B. (1968) J. Chem. Phys., 49, 3007–12.CrossRefGoogle Scholar
  144. Morrison, J. C. (1972) Phys. Rev. A, 6, 643–50.CrossRefGoogle Scholar
  145. Morrison, C. A. and Leavitt, R. P. (1982) in Handbook on the Physics and Chemistry of Rare Earths, vol. 5 (eds. K. A. Gschneidner Jr and L. Eyring), North-Holland, Amsterdam, pp. 461–692.Google Scholar
  146. Morss, L. R., Williams, C. W., and Carnall, W. T. (1983) ACS Symp. Ser., 216, 199–210.CrossRefGoogle Scholar
  147. Morss, L. R. (2005) in this volume, see Chapter 19.Google Scholar
  148. Moune, O. K., Faucher, M. D., and Edelstein, N. (2002) J. Lumin., 96, 51–68.CrossRefGoogle Scholar
  149. Mulford, R. N., Dewey, H. J., and Barefield II, J. E. (1991) J. Chem. Phys., 94, 4790–6.CrossRefGoogle Scholar
  150. Murdoch, K. M., Edelstein, N. M., Boatner, L. A., and Abraham, M. M. (1996) J. Chem. Phys., 105, 2539–46.CrossRefGoogle Scholar
  151. Murdoch, K. M., Nguyen, A. D., Edelstein, N. M., Hubert, S., and Gacon, J. C. (1997) Phys. Rev. B, 56, 3038–45.CrossRefGoogle Scholar
  152. Murdoch, K. M., Cavellec, R., Simoni, E., Karbowiak, M., Hubert, S., Illemassene, M., and Edelstein, N. M. (1998) J. Chem. Phys., 108, 6353–61.CrossRefGoogle Scholar
  153. Nave, S., Haire, R. G., and Huary, P. G. (1983) Phys. Rev. B, 28, 2317–27.CrossRefGoogle Scholar
  154. Newman, D. J. (1970) Chem. Phys. Lett., 6, 288–90.CrossRefGoogle Scholar
  155. Newman, D. J. (1971) Adv. Phys., 20, 197–256.CrossRefGoogle Scholar
  156. Newman, D. J. (1975) J. Phys. C: Solid State Phys., 8, 1862–8.CrossRefGoogle Scholar
  157. Newman, D. J. and Ng, B. (1989a) J. Phys.: Condensed Matter, 1, 1613–19.CrossRefGoogle Scholar
  158. Newman, D. J. and Ng, B. (1989b) Rep. Prog. Phys., 52, 699–763.CrossRefGoogle Scholar
  159. Newman, D. J. and Ng, B. (2000) in Crystal Field Handbook (eds. D. J. Newman and B. Ng), Cambridge University Press, Cambridge, pp. 140–59.CrossRefGoogle Scholar
  160. Nielson, C. W. and Koster, G. F. (1963) Spectroscopic Coefficients for the pn, dn, and fn Configurations, MIT Press, Cambridge.Google Scholar
  161. Ofelt, G. S. (1962) J. Chem. Phys., 37, 511–20.CrossRefGoogle Scholar
  162. Peterson, J. R. (1976) in Gmelin Handhuch der Anorganischen Chemie., 8th edn, Uranium Suppl. A5, Springer-Verlag, Berlin, pp. 57–84.Google Scholar
  163. Peterson, J. R., Fellows, R. L., Young, J. P., and Haire, R. G. (1977) Radiochem. Radioanal. Lett., 31, 277–82.Google Scholar
  164. Piehler, D., Kot, W. K., and Edelstein, N. (1991) J. Chem. Phys., 94, 942–8.CrossRefGoogle Scholar
  165. Poon, Y. M. and Newman, D. J. (1982) J. Chem. Phys., 77, 1077–9.CrossRefGoogle Scholar
  166. Poon, Y. M. and Newman, D. J. (1983) J. Phys. B: At. Mol. Phys., 16, 2093–101.CrossRefGoogle Scholar
  167. Racah, G. (1949) Phys. Rev., 76, 1352–65.CrossRefGoogle Scholar
  168. Rajnak, K. and Wybourne, B. G. (1963) Phys. Rev., 132, 280–90.CrossRefGoogle Scholar
  169. Rajnak, K. and Wybourne, B. G. (1964) J. Chem. Phys., 41, 565–9.CrossRefGoogle Scholar
  170. Rana, R. S., Cordero- Montalvo, C. D., and Bloembergen, N. (1984) J. Chem. Phys., 81, 2951–2.CrossRefGoogle Scholar
  171. Reid, M. F. and Richardson, F. S. (1984) Mol. Phys., 51, 1077–94.CrossRefGoogle Scholar
  172. Reid, M. F. and Richardson, F. S. (1985) J. Chem. Phys., 63, 95.Google Scholar
  173. Reid, M. F. (1987) J. Chem. Phys., 87, 2875–84.CrossRefGoogle Scholar
  174. Reid, M. F. (2000) in Crystal Field Handbook (eds. D. J. Newman and B. Ng), Cambridge University Press, Cambridge, pp. 190–226.CrossRefGoogle Scholar
  175. Reisfeld, M. J. and Crosby, G. A. (1965) Inorg. Chem., 4, 65–70.CrossRefGoogle Scholar
  176. Richman, I., Kisliuk, P., and Wong, E. Y. (1967) Phys. Rev., 155, 262–7.CrossRefGoogle Scholar
  177. Riseberg, L. A. and Moos, H. W. (1967) Phys. Rev. Lett., 25, 1423–6.CrossRefGoogle Scholar
  178. Riseberg, L. A. and Moos, H. W. (1968) Phys. Rev., 174, 429–38.CrossRefGoogle Scholar
  179. Rotenberg, M., Bivins, R., Metropolis, R. B. N., and Wooten, J. K. Jr (1959) The 3-j and 6-j Symbols, MIT Press, Cambridge.Google Scholar
  180. Ryan, J. L. (1971) J. Inorg. Nucl. Chem., 33, 153–77.CrossRefGoogle Scholar
  181. Satten, R. A., Schreiber, C. L., and Wong, E. Y. (1983) J. Chem. Phys., 78, 79–87.CrossRefGoogle Scholar
  182. Seijo, L. and Barandiaran, Z. (2001) J. Chem. Phys., 115, 55554–60.CrossRefGoogle Scholar
  183. Shen, Y. and Bray, K. L. (1998) Phys. Rev. B, 58, 5305–13.CrossRefGoogle Scholar
  184. Slater, J. C. (1960) Quantum Theory of Atomic Structure, McGraw-Hill, New York.Google Scholar
  185. Sobelman, I. I. (1972) Theory of Atomic Spectra, Pergamon, Oxford.Google Scholar
  186. Soulie, E. (1978) J. Phys. Chem. Solids, 39, 695–8.CrossRefGoogle Scholar
  187. Stafsudd, O. M., Leung, A. F., and Wong, E. Y. (1969) Phys. Rev., 180, 339–43.CrossRefGoogle Scholar
  188. Steindler, M. J. and Gerding, T. J. (1966) Spectrochim. Acta, 22, 1197–200.CrossRefGoogle Scholar
  189. Stevens, K. W. H. (1952) Proc. Phys. Soc., (London) A65, 209–15.Google Scholar
  190. Suger, J. (1963) J. Opt. Soc. Am., 53, 831–5.CrossRefGoogle Scholar
  191. Sullivan, J. C., Gordon, S., Mulac, W. A., Schmidt, K. H., Cohen, D., and Sjoblom, R. (1976) Inorg. Nucl. Chem. Lett., 12, 599–601.CrossRefGoogle Scholar
  192. Thouvenot, P., Hubert, S., and Edelstein, N. (1993a) Phys. Rev. B, 48, 5751–60.CrossRefGoogle Scholar
  193. Thouvenot, P., Hubert, S., Moulin, C., Decambox, P., and Mauchien, P. (1993b) Radio-chim. Acta, 61, 15–21.Google Scholar
  194. Thouvenot, P., Hubert, S., and Edelstein, N. (1994) Phys. Rev. B, 50, 9715–20.CrossRefGoogle Scholar
  195. Tinkham, M. (1964) Group Theory and Quantum Mechanics, McGraw-Hill, New York.Google Scholar
  196. Tissue, B. M. and Wright, J. C. (1987) Phys. Rev. B, 36, 9781–9.CrossRefGoogle Scholar
  197. Van Deurzen, C. H. H., Rajnak, K., and Conway, J. G. (1984) J. Opt. Soc. Am. B, 1, 45–7.Google Scholar
  198. van Pieterson, L., Reid, M. F., Burdick, G. W. and Meijerink, A. (2002a) Phys. Rev. B, 65, 045114.CrossRefGoogle Scholar
  199. van Pieterson, L., Reid, M. F., Burdick, G. W. and Meijerink, A. (2002b) Phys. Rev. B, 65, 045113.CrossRefGoogle Scholar
  200. Varga, L. P., Brown, J. D., Reisfeld, M. J., and Cowan, R. D. (1970) J. Chem. Phys., 52, 4233–41.CrossRefGoogle Scholar
  201. Wadt, W. R. (1987) J. Chem. Phys., 86, 339–46.CrossRefGoogle Scholar
  202. Weissbluth, M. (1978) Atoms and Molecules, Academic Press, New York.Google Scholar
  203. Wild, J. F., Hult, E. K., Lougheed, R. W., Hayes, W. N., Peterson, J. R., Fellows, R. L., and Young, J. P. (1978) J. Inorg. Nucl. Chem., 40, 811–16.CrossRefGoogle Scholar
  204. Worden, E. F. J., Blaise, J., Trautmann, N., and Wyart, J. F. (2005) in this volume, see Chapter 16.Google Scholar
  205. Wyart, J. F., Kaufman, V., and Suger, J. (1980) Phys. Scr., 22, 389–96.CrossRefGoogle Scholar
  206. Wybourne, B. G. (1965a) Spectroscopic Properties of Rare Earths, Wiley Interscience, New York.Google Scholar
  207. Wybourne, B. G. (1965b) J. Opt. Soc. Am., 55, 928–35.Google Scholar
  208. Wybourne, B. G. (1966) Phys. Rev., 148, 317–27.CrossRefGoogle Scholar
  209. Yen, W. M. (1987) in Spectroscopy of Solids Containing Rare Earth Ions (eds. A. A. Kaplyanskii and R. M. Macfarlane), North-Holland, Amsterdam, pp. 185–249.Google Scholar
  210. Yusov, A. B. (1987) Radiokhimiya, 29, 118–21.Google Scholar
  211. Yusov, A. B. (1990) J. Radioanal. Nucl. Chem., 143, 287–94.CrossRefGoogle Scholar
  212. Yusov, A. B. (1993) Radiokhimiya, 35, 3–25.Google Scholar
  213. Zhorin, V. V. and Liu, G. K. (1998) J. Alloys Compds, 275–277, 137–41.CrossRefGoogle Scholar
  214. Krupa, J. C. (1987) Inorg. Chim. Acta, 139, 223–41.CrossRefGoogle Scholar
  215. Krupa, J. C. and Carnall, W. T. (1993) J. Chem. Phys., 99, 8577–84.CrossRefGoogle Scholar
  216. Kugel, R., Williams, C., Fred, M., Malm, J. G., Carnall, W. T., Hindman, J. C., Childs, W. J., and Goodman, L. S. (1976) J. Chem. Phys., 65, 3486–92.CrossRefGoogle Scholar
  217. Larionov, A. L. and Malkin, B. Z. (1975) Opt. Spektrosk., 39, 1109–13.Google Scholar
  218. Leung, A. F. (1977) J. Phys. Chem. Solids, 38, 529–32.CrossRefGoogle Scholar
  219. Leung, A. F. and Poon, Y. M. (1977) Can. J. Phys., 55, 937–42.Google Scholar
  220. Levin, L. I. and Cherpanov, V. I. (1983) Sov. Phys.: Solid State, 25, 394–9.Google Scholar
  221. Lewis, W. B., Mann, J. B., Liberman, D. A., and Cromer, D. T. (1970) J. Chem. Phys.,53, 809–20.CrossRefGoogle Scholar
  222. Liu, G. K. and Beitz, J. V. (1990a) Phys. Rev. B, 41, 6201–12.CrossRefGoogle Scholar
  223. Liu, G. K. and Beitz, J. V. (1990b) J. Lumin., 45, 254–6.CrossRefGoogle Scholar
  224. Liu, G. K., Beitz, J. V., and Carnall, W. T. (1992) in Transuranium Elements: A Half Century (eds. L. R. Morss and J. Fuger), American Chemical Society, Washington, DC, pp. 181–6.Google Scholar
  225. Liu, G. K., Beitz, J. V., and Huang, J. (1993) J. Chem. Phys., 99, 3304–11.CrossRefGoogle Scholar
  226. Liu, G. K., Carnall, W. T., Jones, R. P., Cone, R. L., and Huang, J. (1994a) J. Alloys Compds, 207–208, 69–73.CrossRefGoogle Scholar
  227. Liu, G. K., Carnall, W. T., Jursich, G., and Williams, C. W. (1994b) J. Chem. Phys., 101, 8277–89.CrossRefGoogle Scholar
  228. Liu, G. K., Cao, R., Beitz, J. V., and Huang, J. (1996) Phys. Rev. B, 54, 483–7.CrossRefGoogle Scholar
  229. Liu, G. K., Beitz, J. V., Huang, J., Abraham, M. M., and Boatner, L. A. (1997a) J. Alloys Compds, 250, 347–51.CrossRefGoogle Scholar
  230. Liu, G. K., Huang, J., and Abraham, M. M. (1997b) Phys. Rev. B, 55, 8967–72.CrossRefGoogle Scholar
  231. Liu, G. K., Li, S. T., Zhorin, V. V., Loong, C.-K., Abraham, M. M., and Boatner, L. A. (1998) J. Chem. Phys., 109, 6800–8.CrossRefGoogle Scholar
  232. Liu, G. K. (2000) in Crystal Field Handbook (eds. D. J. Newman and B. K. C. Ng), Cambridge University Press, Cambridge, pp. 65–82.CrossRefGoogle Scholar
  233. Liu, G. K., Chen, X. Y., and Huang, J. (2002) Mol. Phys., 101, 1029–36.CrossRefGoogle Scholar
  234. Loh, E. (1966) Phys. Rev., 147, 332.CrossRefGoogle Scholar
  235. Mackey, D. J., Runciman, W. A., and Vance, E. R. (1975) Phys. Rev. B,11, 211–18.CrossRefGoogle Scholar
  236. Malek, C. K. and Krupa, J. C. (1986) J. Chem. Phys., 84, 6584.CrossRefGoogle Scholar
  237. Malkin, B. Z., Ivanenko, Z. I., and Aizenberg, I. B. (1970) Fiz. Tverd. Tela (USSR), 12, 1873–80.Google Scholar
  238. Malkin, B. Z. (1987) in Spectroscopy of Solids Containing Rare Earth Ions (eds. A. A. Kaplyanskii and R. M. Macfarlane), North-Holland, Amsterdam, pp. 13–50.Google Scholar
  239. Marvin, H. H. (1947) Phys. Rev., 71, 102–10.CrossRefGoogle Scholar
  240. Matsika, S. and Pitzer, R. M. (2001) J. Chem. Phys., 105, 637–45.Google Scholar
  241. Matsika, S., Zhang, Z., Brozell, S. R., Blaudeau, J.-P., Wang, Q., and Pitzer, R. M. (2001) J. Phys. Chem. A, 105, 3825–8.CrossRefGoogle Scholar
  242. McClure, D. S. and Kiss, Z. (1963) J. Chem. Phys., 39, 3251–7.CrossRefGoogle Scholar
  243. Metcalf, D. H., Dai, S., Del Cul, G. D., and Toth, L. M. (1995) Inorg. Chem., 34, 5573–7.CrossRefGoogle Scholar
  244. Miyakawa, T. and Dexter, D. L. (1970) Phys. Rev. B, 1, 2961–9.CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Guokui Liu
  • James V. Beitz

There are no affiliations available

Personalised recommendations