Summary and Comparison of Properties of the Actinide and Transactinide Elements

  • Norman M. Edelstein
  • Jean Fuger
  • Joseph J. Katz
  • Lester R. Morss

Abstract

This chapter is intended to provide a unified view of selected aspects of the physical, chemical, and biological properties of the actinide elements, their typical compounds, and their ions in aqueous solutions. The f–block elements have many unique features, and a comparison of similar species of the lanthanide and actinide transition series provides valuable insights into the properties of both. Comparative data are presented on the electronic configurations, oxidation states, oxidation–reduction (redox) potentials, thermochemical data, crystal structures, and ionic radii of the actinide elements, together with important topics related to their environmental properties and toxicology. Many of the topics in this chapter, and some that are not discussed here, are the subjects of subsequent chapters of this work, which should be consulted for more comprehensive treatments. This chapter provides an opportunity to discuss the biological and environmental aspects of the actinide elements, subjects that were barely mentioned in the first edition of this work and discussed only briefly in the second edition, but have assumed great importance in recent years. This chapter also provides a summary of the chemical properties of the transactinide elements that have been characterized.

Keywords

Spend Fuel Transition Series Transuranium Element Actinide Element Transplutonium Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, R. C. (2001) Nature, 410, 759–61.CrossRefGoogle Scholar
  2. Albright, D., Berkhout, F., and Walker, W. (1996) Plutonium and Highly Enriched Uranium, 1996: World Inventories, Capabilities and Policies, Oxford University Press, Oxford.Google Scholar
  3. Alexander, C. (2005) Oak Ridge National Laboratory, personal communication to L. Morss.Google Scholar
  4. Allard, B., Olofsson, V., and Torstenfelt, B. (1984) Inorg. Chim. Acta, 94, 205–21.CrossRefGoogle Scholar
  5. Anderson, J. S. (1970) in Modern Aspects of Solid State Chemistry (ed. C. N. R. Rao), Plenum Press, New York, pp. 29–105.Google Scholar
  6. Baes, C. F., and Mesmer, R. E. (1976) The Hydrolysis of Cations, John Wiley, New York.Google Scholar
  7. Banaszak, J. E., Rittmann, B. E., and Reed, D. T. (1999) J. Radioanal. Nucl. Chem, 241, 385–435.CrossRefGoogle Scholar
  8. Barton, P. G. (1968) J. Biol. Chem, 243, 3884–90.Google Scholar
  9. Baumgartner, F., Fischer, E. O., and Laubereau, P. (1965) Naturwissenschaften, 52, 560.CrossRefGoogle Scholar
  10. Benedict, U. (1984) J. Less Common Metals, 100, 153–70.CrossRefGoogle Scholar
  11. Benes, P., and Majer, V. (1980) Tracer Chemistry of Aqueous Solutions, Elsevier, Amsterdam.Google Scholar
  12. Bidoglio, G., De Plano, A., Avogadro, A., and Murray, C. N. (1984) Inorg. Chim. Acta, 95, 1–3.CrossRefGoogle Scholar
  13. Blake, P. C., Edelstein, N. M., Hitchcock, P. B., Kot, W. K., Lappert, M. F., Shalimoff, G. V., and Tian, S. (2001) J. Organomet. Chem. 636, 124–9.CrossRefGoogle Scholar
  14. Boocock, G., and Popplewell, D. S. (1965) Nature, 208, 282–3.CrossRefGoogle Scholar
  15. Boocock, G., Danpure, C. J., Popplewell, D. S., and Taylor, D. M. (1976) Radiat. Res, 42, 381–96.CrossRefGoogle Scholar
  16. Brandi, G., Brunelli, M., Lugli, G., and Mazzei, A. (1973) Inorg. Chim. Acta, 7, 319–22.CrossRefGoogle Scholar
  17. Brown, D (1968) Halides of the Lanthanides and Actinides, Wiley-Interscience, London.Google Scholar
  18. Bruenger, F. W., Taylor, D. M., Taylor, G. N., and Lloyd, R. D. (1991) Int. J. Radiat. Biol, 60, 803–18.CrossRefGoogle Scholar
  19. Buck, E. C., Finn, P. A., and Bates, J. K. (2004) Micron, 35, 235–43.CrossRefGoogle Scholar
  20. Bulman, R. A. (1978) Struct. Bond, 34, 39–77.CrossRefGoogle Scholar
  21. Bulman, R. A. (1980) Coord. Chem. Rev, 31, 221–50.CrossRefGoogle Scholar
  22. Bulman, R. A., and Griffin, R. G. (1980) Metab. Bone Dis. Relat. Res, 2, 281–3.CrossRefGoogle Scholar
  23. Burgess, J. (1978) Metal Ions in Solution, John Wiley, New York.Google Scholar
  24. Casas, I., de Pablo, J., Perez, I, Gimenez, J., Duro, L., and Bruno, J. (2004) Environ. Sci. Technol, 38, 3310–15.CrossRefGoogle Scholar
  25. Catalano, J. G., Heald, S. M., Zachara, J. M., and Brown, G. E., Jr (2004) Environ. Sci. Technol, 38, 2822–8.CrossRefGoogle Scholar
  26. C&E News (1945) Chem. Eng. News, 23, 21903. (Speech given by G. T. Seaborg at Chicago Section of American Chemical Society, Nov. 16, 1945.)Google Scholar
  27. CEA (2002) Radioactive Waste Management Research, Clefs CEA No. 46, http://www.cea.fr/gb/publications/Clefs46/pagesg/clefs46_43.html
  28. Choppin, G. R., Liljenzin, J.-O., and Rydberg, J. (2002) Radiochemistry and Nuclear Chemistry, 3rd edn, Butterworth-Heinemann, Woburn, MA.Google Scholar
  29. Choppin, G. R. (2003) Radiochim. Acta, 91, 645ȓ9.CrossRefGoogle Scholar
  30. Clarke, R. H., Dunster, J., Nenot, J.-C., Smith, H., and Voelz, G. (1996) J. Radiol. Prot, 16, 91–105.CrossRefGoogle Scholar
  31. Conradson, S. D., Begg, B. D., Clark, D. L., et al. (2004) J. Am. Chem. Soc, 126, 13443–58.CrossRefGoogle Scholar
  32. David, F. (1984) in Handbook on the Physics and Chemistry of the Actinides, vol. 4 (eds. A. J. Freeman and C. Keller), North-Holland, Amsterdam, pp. 97–128.Google Scholar
  33. Degueldre, C., and Yamashita, T. (2003) J. Nucl. Mater, 319, 1–5.CrossRefGoogle Scholar
  34. Diamond, G. L. (1989) Rad. Prot. Dosim, 26, 33–6.Google Scholar
  35. Durbin, P. W. (1973) Handb. Exp. Pharmacol, 36, 739–896.Google Scholar
  36. Durbin, P. W. (1975) Health Phys, 29, 495–510.CrossRefGoogle Scholar
  37. Durbin, P. W., Kullgren, B., Xu, J., and Raymond, K. N. (1998) Radiat. Prot. Dosim, 79, 433–43.Google Scholar
  38. Eick, H. A. (1994) in Handbook on the Physics and Chemistry of the Rare Earths, vol. 18 (eds. K. A. Gschneidner, L. Eyring, G. R. Choppin, and G. L. Lander), Elsevier, New York, pp. 365–411.Google Scholar
  39. Fournier, J.-M. (1976) J. Phys. Chem. Solids, 37, 235–44.CrossRefGoogle Scholar
  40. Francis, C. W. (1973) J. Environ. Qual, 2, 67–70.CrossRefGoogle Scholar
  41. Gebala, A. E., and Tsutsui, M. (1973) J. Am. Chem. Soc, 95, 91–3.CrossRefGoogle Scholar
  42. Ghiorso, A. (1982) in Actinides in Perspective (ed. N. M. Edelstein), Pergamon Press, Oxford, pp. 23–56.Google Scholar
  43. Gilbert, E. S., Koshurnikova, N. A., Sokolnikov, M., Khokhryakov, V. F., Miller, S., Preston, D. L. S., Romanov, A., Shilnikova, N. S., Suslova, K. G., and Vostrotin, V. V. (2000) Radiat. Res, 154, 246–52.CrossRefGoogle Scholar
  44. Gmelin Handbuch der Anorganischen Chemie, Suppl. Ser., Transurane, Verlag Chemie, Weinheim, Springer-Verlag, Berlin, Heidelberg & New York, parts Dl and D2, Chemistry in Solution (1974, 1975).Google Scholar
  45. Gmelin Handbuch der Anorganischen Chemie, Suppl. Ser., Transurane, Springer Verlag, Berlin, part C, The Compounds (1972).Google Scholar
  46. Gmelin, Handbuch der Anorganischen Chemie, Suppl. Ser., Transurane, Verlag Chemie, Weinheim, part A2, The Elements (1973).Google Scholar
  47. Gorden, A. E. V., Xu, J., Raymond, K. N., and Durbin, P. W. (2003) Chem. Rev, 103, 4207–82.CrossRefGoogle Scholar
  48. Gorden, A. E. V., Shuh, D. K., Tiedemann, B. E. F., Wilson, R. E., Xu, J., and Raymond, K. N. (2005) Chem. Eur. J, 11, 2842–8.CrossRefGoogle Scholar
  49. Gordon, S., Mulac, W., Schmidt, K. H., Sjoblom, R. K., and Sullivan, J. C. (1978) Inorg. Chem, 17, 294–6.CrossRefGoogle Scholar
  50. Grogan, H. A., Sinclair, W. K., and Volleque, P. G. (2001) Health Phys, 80, 447–61.CrossRefGoogle Scholar
  51. Gruen, D. M. (1992) in Transuranium ElementsA Half Century (eds. L. R. Morss and J. Fuger), American Chemical Society, Washington, DC, pp. 63–77.Google Scholar
  52. Guilmette, R. A. (2001) Scientific Basis for Evaluating the Risks to Populations from Space Applications of Plutonium: Recommendations of the National Council on Radiation Protection and Measurements, National Council on Radiation Protection and Measurements (NCRP) Report. No. 131, Bethesda, MD.Google Scholar
  53. Guilmette, R. A., Hakimi, R., Durbin, P. W., Xu, J., and Raymond, K. N. (2003) Rad. Prot. Dosim, 105, 527–34.Google Scholar
  54. Haire, R. G., Heathman, S., Idiri, M., Le Behan, T., Lindbaum, A., and Rebizant, J.(2003) Phys. Rev. B, 67, 134101.CrossRefGoogle Scholar
  55. Haire, R. G., Heathman, S., Le Bihan, T., Lindbaum, A., and Iridi, M. (2004) Mat. Res.Soc. Symp. Proc. Vol. 802, paper DD.1.5.1.Google Scholar
  56. Hanson, W. C. (ed.) (1980) Transuranic Elements in the Environment, DOE/TIC-22800.Google Scholar
  57. Haschke, J. M., Allen, T. H., and Morales, L. A. (2000) Science, 287, 285–7.CrossRefGoogle Scholar
  58. Hay, P. J., Martin, R. L., and Schreckenbach, G. (2000) J. Phys. Chem. A 104, 6259–70.CrossRefGoogle Scholar
  59. Heathman, S., and Haire, R. G. (1998) J. Alloys Compd, 271, 342–6.CrossRefGoogle Scholar
  60. Hisamatsu, S., and Takizawa, Y. (2003) Health Phys, 85, 701–8.CrossRefGoogle Scholar
  61. Hobart, D. E. (1990) in Actinides in the Environment, Proc. Robert A Welch Foundation Conference, pp. 379–436.Google Scholar
  62. Hoffman, D. C., Lawrence, F. D., Mcwherter, J. L., and Rourke, F. M. (1971) Nature, 234, 132–4.CrossRefGoogle Scholar
  63. Hyde, E. K., Perlman, I., and Seaborg, G. T. (1964) Nuclear Properties of the Heavy Elements, vol. II, Detailed Radioactivity Properties, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  64. ICRP (1986) ICRP Publication 48, Radiation ProtectionThe Metabolism of Plutonium and Related Elements, Annals of the ICRP, 16(2–3).Google Scholar
  65. ICRP (1990) ICRP Publication 60. Recommendations of the International Commission on Radiological Protection. Annals of the ICRP 21.Google Scholar
  66. James, A. C., and Taylor, D. M. (1971) Health Phys, 21, 31–9.CrossRefGoogle Scholar
  67. Karelin, Y. A., Gordeev, Y. N., Karasev, V. I., Radchenko, V. M., Schimbarev, Y. V., and Kuznetsov., R. A. (1997) Appl. Radiat. Isot, 48, 1563–6.CrossRefGoogle Scholar
  68. Keally, T. J., and Pauson, P. L. (1951) Nature, 168, 1039–40.CrossRefGoogle Scholar
  69. Keller, O. L. Jr, Hoffman, D. C., Penneman, R. A., and Choppin, G. R. (1984) Phys. Today, March, 35–41.Google Scholar
  70. Kim, J. I. (1986) in Handbook on the Physics and Chemistry of the Actinides, vol. 4 (eds. A. J. Freeman and C. Keller), pp. 413–55.Google Scholar
  71. Koshurnikova, N. A., Bolotnikova, M. G., Ilyin, L. A., Keirim-Markus, I. B., Menshikh, Z. S., Okatenko, P. V., Romanov, S. A., Tsvetkov, V. I., and Shiknikova, N. S. (1998) Radiat. Res, 149, 366.CrossRefGoogle Scholar
  72. Lam, D. J., Darby, J. B. Jr, and Nevitt, M. V. (1974) in The Actinides: Electronic Structure and Related Properties (eds. A. J. Freeman and J. B. Darby Jr ), vols I and II, Academic Press, New York, pp. 119–84.Google Scholar
  73. LANL (2000) Los Alamos Science, 26, Los Alamos National Laboratory, New Mexico.Google Scholar
  74. Lataillade, G., Verry, M., Rateau, G., Métivier, H., and Masse, R. (1995) Int. J. Radiat. Biol, 67, 373–80.CrossRefGoogle Scholar
  75. Lindbaum, A., Heathman, S., Le Bihan, T., Haire, R. G., Idiri, M., and Lander, G. H. (2003) J. Phys.:Conden. Matter, 15, S297–303.CrossRefGoogle Scholar
  76. Mahlum, D. D. (1967) Toxicol. Appl. Pharmacol, 11, 264–71.CrossRefGoogle Scholar
  77. Marks, T. J., Seyam, A. M., and Kolb, J. R. (1973) J. Am. Chem. Soc, 95, 5529–39.CrossRefGoogle Scholar
  78. Marks, T. J., and Fischer, R. D. (eds) (1979) Organometallics of the f-Elements, Reidel, Dordrecht.Google Scholar
  79. Martin, R. C., Laxson, R. R., Miller, J. H., Wierzbicki, J. G., Rivard, M. J., and Marsh, D. L. (1997) Appl. Radiat. Isot, 48, 1567–70.CrossRefGoogle Scholar
  80. Martin, R. C., Knauer, J. B., and Balo, P. A. (2000) Appl. Radiat. Isot, 53, 785–92.CrossRefGoogle Scholar
  81. Maurette, M. (1976) Annu. Rev. Nucl. Sci, 26, 319–50.CrossRefGoogle Scholar
  82. McCubbin, D., Leonard, K. S., and Emerson, H. S. (2002) Mar. Chem, 80, 61–77.CrossRefGoogle Scholar
  83. Mikheev, N. B. (1984) Inorg. Chim. Acta, 94, 241–8.CrossRefGoogle Scholar
  84. Morse, J. W., and Choppin, G. R. (1986) Mar. Chem, 20, 73–89.CrossRefGoogle Scholar
  85. Morss, L. R., and Edelstein, N. (1984) J. Less Common Metals, 100, 15–28.CrossRefGoogle Scholar
  86. Müller, W., and Blank, H. (eds) (1975) Heavy Element Properties, Proc. Joint Session Transplutonium Element Symp., and 5th Int. Conf. on Plutonium and Other Actinides, Baden-Baden, North-Holland, Amsterdam and Oxford, Sept. 13, 1975; Elsevier, New York.Google Scholar
  87. Müller, W., and Lindner, R. (eds) (1975) Transplutonium 1975, Proc. 4th Int. Transplutonium Symp, Baden-Baden, Sept. 13–17, 1975, North-Holland, Amsterdam.Google Scholar
  88. Müller, W. (1983) Chem. Z, 106, 105–12.Google Scholar
  89. Müller, W., and Spirlet, J. C. (1985) Struct. Bond, 59/60, 57–73.CrossRefGoogle Scholar
  90. Murayama Y. (1991) Cancer, 68, 1189–97.CrossRefGoogle Scholar
  91. NABIR (2003) Bioremediation of Metals and Radionuclides, 2nd edn, LBNL-42595, Lawrence Berkeley National Laboratory, http://www.lbl.gov/NABIR/generalinfo/03_NABIR_primer.pdf
  92. Nakano, M., and Povinec, P. P. (2003) J. Environ. Radioact, 69, 85–106.CrossRefGoogle Scholar
  93. National Academy of Sciences (1995) Management and Disposition of Excess Weapons Plutonium, 2 vols, National Academy Press, Washington, DC.Google Scholar
  94. National Research Council (1983) Opportunities and Challenges in Research with Trans-plutonium Elements, National Research Council, Washington, DC.Google Scholar
  95. NCRP (2001) Scientific Basis for Evaluating the Risks to Populations from Space Applications of Plutonium, National Council on Radiation Protection Report 131.Google Scholar
  96. NEA (2002) ORIGEN-ARP 2.00, Isotope Generation and Depletion Code System.Google Scholar
  97. Neck, V., and Kim, J. I. (2001) Radiochim. Acta, 89, 1–16.CrossRefGoogle Scholar
  98. Nenot, J. C., and Metivier, H. (1984) Inorg. Chim. Acta, 94, 165–70.CrossRefGoogle Scholar
  99. Neuefeind, J., Soderholm, L., and Skanthakumar, S. (2004) J. Phys. Chem. A, 108, 2733–9.CrossRefGoogle Scholar
  100. Newton, T. W. (1975) The Kinetics of Oxidation-Reduction Reactions of Uranium, Neptunium, Plutonium and Americium in Aqueous Solution, TID-26506.Google Scholar
  101. Olivier, S., Bajo, S., Fifield, L. K., Gaggeler, H. W., Papina, T., Santschi, P. H., Schotterer, U., Schwikowski, M., and Wacker, L. (2004) Environ. Sci. Technol., 38, 6507–12.CrossRefGoogle Scholar
  102. Orlandini, K. A., Penrose, W. R., and Nelson, D. M. (1986) Mar. Chem., 18, 49–57.CrossRefGoogle Scholar
  103. Parsonnet, V. (2005) personal communication to L. R. Morss.Google Scholar
  104. Raymond, K. N. and Smith, W. L. (1981) Struct. Bond., (Berlin), 43, 159–86.Google Scholar
  105. Raymond, K. N., Koppel, M. J., Pecoraro, V. L., Harris, W. R., Carrano, C. J., Weill, F. L., and Durbin, P. W. (1982) in Actinides in Perspective (ed. N. M. Edelstein), Pergamon Press, Oxford, pp. 491–507.Google Scholar
  106. Raymond, K. N., Freeman, G. E., and Kappel, M. J. (1984) Inorg. Chim. Acta, 94, 193–204.CrossRefGoogle Scholar
  107. Reiners, C., Hanscheid, H., Lassmann, M., Tiemann, M., Kreissl, M., Rendl, J., and Bier, D. (1998) Exp. Clin. Endocrinol. Diabetes, 106, S31–3.CrossRefGoogle Scholar
  108. Reynolds, L. T. and Wilkinson, G. (1956) J. Inorg. Nucl. Chem., 2, 246–53.CrossRefGoogle Scholar
  109. Rosenthal, M. W. and Lindenbaum, A. (1967) Radiat. Res., 31, 506–21.CrossRefGoogle Scholar
  110. Ruggiero, C. E., Matonic, J. H., Reilly, S. D., and Neu, M. P. (2002) Inorg. Chem., 41, 3593–5.CrossRefGoogle Scholar
  111. Runde, W. (2000) in Los Alamos Science, 26, pp. 392–411.Google Scholar
  112. Santini, P., Lémanski, R., and Erdös, P. (1999) Adv. Phys., 48, 537–653.CrossRefGoogle Scholar
  113. Sarrao, J. L., Morales, L. A., Thompson, J. D., Scott, B. L., Stewart, G. R., Wastin, F., Rebizant, J., Boulet, P., Colineau, E., and Lander, G. H. (2002) Nature, 420, 297–9.CrossRefGoogle Scholar
  114. Schubert, J. (1955) Annu. Rev. Nucl. Sci., 5, 369–412.CrossRefGoogle Scholar
  115. Scoppa, P. (1984) Inorg. Chim. Acta, 95, 23–7.CrossRefGoogle Scholar
  116. Seaborg, G. T., Katz, J. J., and Manning, W. M. (eds) (1949) The Transuranium Elements: Research Papers, Natl. Nucl. En. Ser., Div. IV, 14B, McGraw-Hill, New York.Google Scholar
  117. Seaborg, G. T. (1963) Man-Made Transuranium Elements, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  118. Seaborg, G. T. (ed.) (1978) Transuranium Elements. Benchmark Papers in Physical Chemistry and Chemical Physics, vol. 1, Dowden, Hutchinson & Ross, Stroudsburg, PA.Google Scholar
  119. Seyferth, D. (2004) Organometallics, 23, 3562–83.CrossRefGoogle Scholar
  120. Shannon, R. D. (1976) Acta Crystallogr. A, 32, 751–67.CrossRefGoogle Scholar
  121. Silva, R. J. and Nitsche, H. (1995) Radiochim. Acta, 70/71, 377–96.Google Scholar
  122. Smith, V. H. (1972) Health Phys., 22, 765–78.CrossRefGoogle Scholar
  123. Smith, J. L. and Kmetko, E. A. (1983) J. Less Common Metals, 90, 83–8.CrossRefGoogle Scholar
  124. Songkasiri, W., Reed, D. T., and Rittmann, B. E. (2002) Radiochim. Acta, 90, 785–9.CrossRefGoogle Scholar
  125. Spirlet, J. C. (1982) in Actinides in Perspective (ed. N. M. Edelstein), Pergamon Press, Oxford, pp. 361–80.Google Scholar
  126. Streitwieser, A. Jr and Muller-Westerhof, U. (1968) J. Am. Chem. Soc., 90, 7364.CrossRefGoogle Scholar
  127. Sullivan, J. C., Gordon, S., Mulac, W. A., Schmidt, K. H., Cohen, D., and Sjoblom, R. (1976a) Inorg. Nucl. Chem. Lett., 12, 599–601.CrossRefGoogle Scholar
  128. Sullivan, J. C., Gordon, S., Cohen, D., Mulac, W, and Schmidt, K. H. (1976b) J. Phys. Chem., 80, 1684–6.CrossRefGoogle Scholar
  129. Sullivan, J. C., Morss, L. R., Schmidt, K. H., Mulac, W. A., and Gordon, S. (1982) Inorg. Chem., 22, 2338–9.CrossRefGoogle Scholar
  130. Taylor, D. M. (1972) Health Phys., 22, 575–81.CrossRefGoogle Scholar
  131. Taylor, G. N. (1978) Health Phys., 35, 201–10.CrossRefGoogle Scholar
  132. Teale, P. and Brown, J. (2003) Modelling Approach for the Transfer of Actinides to Fruit Species of Importance in the UK, NRPB-W46, National Radiological Protection Board, Chilton, Didcot, Oxon OX11 0RQ, UK, http://www.nrpb.org/publications/w_series_reports/2003/nrpb_w46.pdf.Google Scholar
  133. Thomas, R. A. P. and McCaskie, L. E. (1996) Environ. Sci. Technol., 30, 2371–5.CrossRefGoogle Scholar
  134. Thompson, R. C. (1982) Radiat. Res., 90, 1–32.CrossRefGoogle Scholar
  135. Tokarskaya, Z. B., Okladnikova, N. D., Belyaeva, Z. D., and Drozhko, E. G. (1997) Health Phys., 73, 899–905.CrossRefGoogle Scholar
  136. Topp, S. V. (ed.) (1982) Scientific Basis for Nuclear Waste Management, vol. 6, Materials Research Society Symp. Proc., Elsevier, Amsterdam.Google Scholar
  137. UNSCEAR (2000) United nations scientific committee on the effects of atomic radiation exposures to the public from man-made sources of radiation, in Sources and Effects of Ionizing Radiation, United Nations, New York.Google Scholar
  138. U.S. Geological, Survey (2002) Mineral Resources Program http://minerals.usgs.gov/index.html
  139. Van Tuyle, G. J., Bennett, D. R., Herczeg, J. W., Arthur, E. D., Hill, D. J., and Finch, P. J. (2002) Prog. Nucl. Energy, 40, 357–64.CrossRefGoogle Scholar
  140. Vaughn, J., Bleany, B., and Taylor, D. M. (1973) Handb. Exp. Pharmacol., 36, 349–502.Google Scholar
  141. Voelz, G. L., Lawrence, J. N.P., and Johnson, E. R. (1997) Health Phys., 73, 611–19.CrossRefGoogle Scholar
  142. Voelz, G. L. (2000) in Los Alamos Science, 26, pp. 75–89.Google Scholar
  143. Vyas, B. N. and Mistry, K. B. (1983) Plant Soil, 73, 345–53.CrossRefGoogle Scholar
  144. Walters, R. L., Hakonson, T. E., and Lane, L. J. (1983) Radiochim. Acta, 32, 89–103.Google Scholar
  145. Whitehouse, C. A. and Tawn, E. J. (2001) Radiat. Res., 156, 467–75.CrossRefGoogle Scholar
  146. Williams, C. W., Blaudeau, J.-P., Sullivan, J. C., Antonio, M. R., Bursten, B. E., and Soderholm, L. (2001) J. Am. Chem. Soc., 123, 4346–7.CrossRefGoogle Scholar
  147. World Energy Council (1988) Survey of Energy Resources.Google Scholar
  148. Zachariasen, W. H. (1973) J. Inorg. Nucl. Chem., 35, 3487–97.CrossRefGoogle Scholar
  149. Zhang, Z. and Pitzer, R. M. (1999) J. Phys. Chem. A, 103, 6880–6.CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Norman M. Edelstein
  • Jean Fuger
  • Joseph J. Katz
  • Lester R. Morss

There are no affiliations available

Personalised recommendations