Vacuum Energy

Part of the Theoretical and Mathematical Physics book series (TMP)

Abstract

In this Chapter calculations of the vacuum energy in various physical systems are considered. The first example is the celebrated Casimir effect which is an interaction of parallel conducting plates in vacuum. Then, the method of evaluating the vacuum energy through the scattering data of the problem is introduced. With the help of this method, the zero-point energy of the kink soliton in ϕ 4 theory in two dimensions is calculated. The last section treats supersymmetric models. In particular, the mass shift of supersymmetric solitons in 1+1 dimensions is calculated and related to the central charge anomaly. Contrary to naive expectations, this mass shift is non-zero.

Keywords

Quantum Correction Vacuum Energy Mass Shift Quantum Fluctuation Casimir Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 5.
    Alonso Izquierdo, A., et al.: Lectures on the mass of topological solitons. hep-th/0611180 (2007)
  2. 10.
    Ambjorn, J., Wolfram, S.: Properties of the vacuum. 1. Mechanical and thermodynamic. Ann. Phys. 147, 1 (1983) ADSCrossRefGoogle Scholar
  3. 32.
    Belyaev, D.V., van Nieuwenhuizen, P.: Rigid supersymmetry with boundaries. J. High Energy Phys. 04, 008 (2008). 0801.2377 ADSCrossRefGoogle Scholar
  4. 37.
    Birrell, N.D., Davies, P.C.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982) MATHGoogle Scholar
  5. 38.
    Blau, S., Visser, M., Wipf, A.: Zeta functions and the Casimir energy. Nucl. Phys. B 310, 163 (1988) ADSCrossRefMathSciNetGoogle Scholar
  6. 41.
    Bogomolny, E.B.: Stability of classical solutions. Sov. J. Nucl. Phys. 24, 449 (1976) Google Scholar
  7. 42.
    Bordag, M.: Vacuum energy in smooth background fields. J. Phys. A 28, 755–766 (1995) ADSCrossRefMathSciNetGoogle Scholar
  8. 44.
    Bordag, M., Kirsten, K., Vassilevich, D.: On the ground state energy for a penetrable sphere and for a dielectric ball. Phys. Rev. D 59, 085011 (1999). hep-th/9811015 ADSCrossRefMathSciNetGoogle Scholar
  9. 45.
    Bordag, M., Mohideen, U., Mostepanenko, V.M.: New developments in the Casimir effect. Phys. Rep. 353, 1–205 (2001). quant-ph/0106045 ADSMATHCrossRefMathSciNetGoogle Scholar
  10. 47.
    Bordag, M., Goldhaber, A.S., van Nieuwenhuizen, P., Vassilevich, D.: Heat kernels and zeta-function regularization for the mass of the SUSY kink. Phys. Rev. D 66, 125014 (2002). hep-th/0203066 ADSCrossRefMathSciNetGoogle Scholar
  11. 74.
    Dashen, R.F., Hasslacher, B., Neveu, A.: Nonperturbative methods and extended hadron models in field theory. 2. Two-dimensional models and extended hadrons. Phys. Rev. D 10, 4130–4138 (1974) ADSCrossRefGoogle Scholar
  12. 106.
    Faddeev, L.D., Korepin, V.E.: Quantum theory of solitons: preliminary version. Phys. Rep. 42, 1–87 (1978) ADSCrossRefMathSciNetGoogle Scholar
  13. 110.
    Flügge, S.: Practical Quantum Mechanics. Springer, Berlin (1971) Google Scholar
  14. 138.
    Goldstone, J., Jackiw, R.: Quantization of nonlinear waves. Phys. Rev. D 11, 1486–1498 (1975) ADSCrossRefGoogle Scholar
  15. 143.
    Graham, N., Jaffe, R.L.: Energy, central charge, and the BPS bound for 1+1 dimensional supersymmetric solitons. Nucl. Phys. B 544, 432–447 (1999). hep-th/9808140 ADSMATHCrossRefMathSciNetGoogle Scholar
  16. 158.
    Henneaux, M.: Hamiltonian form of the path integral for theories with a gauge freedom. Phys. Rep. 126, 1–66 (1985) ADSCrossRefMathSciNetGoogle Scholar
  17. 170.
    Kirsten, K., Loya, P.: Computation of determinants using contour integrals. Am. J. Phys. 76, 60–64 (2008). 0707.3755 ADSCrossRefGoogle Scholar
  18. 187.
    Milton, K.A.: The Casimir Effect: Physical Manifestations of Zero-Point Energy. World Scientific, River Edge (2001) MATHCrossRefGoogle Scholar
  19. 188.
    Milton, K.A.: The Casimir effect: Recent controversies and progress. J. Phys. A 37, R209 (2004). hep-th/0406024 ADSMATHCrossRefMathSciNetGoogle Scholar
  20. 197.
    Nastase, H., Stephanov, M.A., van Nieuwenhuizen, P., Rebhan, A.: Topological boundary conditions, the BPS bound, and elimination of ambiguities in the quantum mass of solitons. Nucl. Phys. B 542, 471–514 (1999). hep-th/9802074 ADSMATHCrossRefGoogle Scholar
  21. 204.
    Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559–606 (2003). astro-ph/0207347 ADSMATHCrossRefMathSciNetGoogle Scholar
  22. 210.
    Prasad, M.K., Sommerfield, C.M.: An exact classical solution for the ’t Hooft monopole and the Julia-Zee dyon. Phys. Rev. Lett. 35, 760–762 (1975) ADSCrossRefGoogle Scholar
  23. 211.
    Rajaraman, R.: Solitons and Instantons. Elsevier, Amsterdam (1996) Google Scholar
  24. 214.
    Rebhan, A., van Nieuwenhuizen, P.: No saturation of the quantum Bogomolnyi bound by two-dimensional N=1 supersymmetric solitons. Nucl. Phys. B 508, 449–467 (1997). hep-th/9707163 ADSMATHCrossRefGoogle Scholar
  25. 215.
    Rebhan, A., van Nieuwenhuizen, P., Wimmer, R.: New developments in the quantization of supersymmetric solitons (kinks, vortices and monopoles). Braz. J. Phys. 34, 1273–1287 (2004). hep-th/0404223 CrossRefGoogle Scholar
  26. 231.
    Shifman, M., Yung, A.: Supersymmetric solitons and how they help us understand non-abelian gauge theories. Rev. Mod. Phys. 79, 1139 (2007). hep-th/0703267 ADSMATHCrossRefMathSciNetGoogle Scholar
  27. 232.
    Shifman, M.A., Vainshtein, A.I., Voloshin, M.B.: Anomaly and quantum corrections to solitons in two-dimensional theories with minimal supersymmetry. Phys. Rev. D 59, 045016 (1999). hep-th/9810068 ADSCrossRefGoogle Scholar
  28. 254.
    Wess, J., Bagger, J.: Supersymmetry and Supergravity. Princeton University Press, Princeton (1992) Google Scholar
  29. 256.
    West, P.C.: Introduction to Supersymmetry and Supergravity. World Scientific, Singapore (1990) MATHGoogle Scholar
  30. 259.
    Witten, E., Olive, D.I.: Supersymmetry algebras that include topological charges. Phys. Lett. B 78, 97 (1978) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Dubna International UniversityDubnaRussia
  2. 2.CMCCUniversidade Federal do ABCSanto AndreBrazil

Personalised recommendations