Skip to main content

Noncommutative Geometry and Field Theory

  • Chapter
Book cover Operators, Geometry and Quanta

Part of the book series: Theoretical and Mathematical Physics ((TMP))

  • 1829 Accesses

Abstract

After a short motivation for noncommutativity, a noncommutative (NC) Moyal product is introduced and its’ basic properties are established. Then, the heat kernel expansion for Laplace type operators on the Moyal spaces is constructed. This expansion, together with the results of Chap. 6, is then used to analyse one-loop divergences in NC ϕ 4 theory on the kink background. A short introduction into NC geometry of Connes is presented, and the spectral action for electromagnetic field on the Moyal plane is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, S.L.: Einstein gravity as a symmetry breaking effect in quantum field theory. Rev. Mod. Phys. 54, 729 (1982)

    Article  ADS  Google Scholar 

  2. Aref’eva, I.Y., Belov, D.M., Koshelev, A.S.: Two-loop diagrams in noncommutative \(\phi^{4}_{4}\) theory. Phys. Lett. B 476, 431–436 (2000). hep-th/9912075

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Bertozzini, P., Conti, R., Lewkeeratiyutkul, W.: Non-commutative geometry, categories and quantum physics (2008). 0801.2826

  4. Chamseddine, A.H.: Noncommutative geometry as the key to unlock the secrets of space-time (2009). 0901.0577

  5. Chamseddine, A.H., Connes, A.: The spectral action principle. Commun. Math. Phys. 186, 731–750 (1997). hep-th/9606001

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Chamseddine, A.H., Connes, A.: Quantum gravity boundary terms from spectral action. Phys. Rev. Lett. 99, 071302 (2007). 0705.1786

    Article  ADS  MathSciNet  Google Scholar 

  7. Chamseddine, A.H., Connes, A., Marcolli, M.: Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys. 11, 991–1089 (2007). hep-th/0610241

    MATH  MathSciNet  Google Scholar 

  8. Chepelev, I., Roiban, R.: Renormalization of quantum field theories on noncommutative R d. I: scalars. J. High Energy Phys. 05, 037 (2000). hep-th/9911098

    Article  ADS  MathSciNet  Google Scholar 

  9. Connes, A.: Noncommutative Geometry. Academic Press, London (1994)

    MATH  Google Scholar 

  10. Connes, A.: Noncommutative geometry and the standard model with neutrino mixing. J. High Energy Phys. 11, 081 (2006). hep-th/0608226

    Article  ADS  MathSciNet  Google Scholar 

  11. Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives. Am. Math. Soc. and Hindustan Book Agency, Providence and Gurgaon (2007)

    Google Scholar 

  12. Doplicher, S., Fredenhagen, K., Roberts, J.E.: Space-time quantization induced by classical gravity. Phys. Lett. B 331, 39–44 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  13. Doplicher, S., Fredenhagen, K., Roberts, J.E.: The quantum structure of space-time at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187–220 (1995). hep-th/0303037

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Douglas, M.R., Nekrasov, N.A.: Noncommutative field theory. Rev. Mod. Phys. 73, 977–1029 (2001). hep-th/0106048

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Frolov, V.P., Fursaev, D.V.: Thermal fields, entropy, and black holes. Class. Quantum Gravity 15, 2041–2074 (1998). hep-th/9802010

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Gayral, V., Iochum, B.: The spectral action for Moyal planes. J. Math. Phys. 46, 043503 (2005). hep-th/0402147

    Article  ADS  MathSciNet  Google Scholar 

  17. Gayral, V., Gracia-Bondia, J.M., Iochum, B., Schucker, T., Varilly, J.C.: Moyal planes are spectral triples. Commun. Math. Phys. 246, 569–623 (2004). hep-th/0307241

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Gayral, V., Iochum, B., Vassilevich, D.V.: Heat kernel and number theory on NC-torus. Commun. Math. Phys. 273, 415–443 (2007). hep-th/0607078

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Gracia-Bondia, J.M., Varilly, J.C.: Algebras of distributions suitable for phase space quantum mechanics. 1. J. Math. Phys. 29, 869–879 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Gracia-Bondia, J.M., Varilly, J.C., Figueroa, H.: Elements of Noncommutative Geometry. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

  21. Grosse, H., Wulkenhaar, R.: Renormalisation of φ 4 theory on noncommutative R 4 in the matrix base. Commun. Math. Phys. 256, 305–374 (2005). hep-th/0401128

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Gurau, R., Magnen, J., Rivasseau, V., Tanasa, A.: A translation-invariant renormalizable non-commutative scalar model. Commun. Math. Phys. 287, 275–290 (2009). 0802.0791

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Higson, N.: The Residue Index Theorem of Connes and Moscovici. In: Roe, J., Higson, N. (eds.) Surveys in Noncommutative Geometry. Clay Mathematics Proceedings, pp. 71–126. Am. Math. Soc., Providence (2006)

    Google Scholar 

  24. Konoplya, R.A., Vassilevich, D.V.: Quantum corrections to noncommutative kink. J. High Energy Phys. 01, 068 (2008). 0712.0360

    Article  ADS  MathSciNet  Google Scholar 

  25. Minwalla, S., Van Raamsdonk, M., Seiberg, N.: Noncommutative perturbative dynamics. J. High Energy Phys. 02, 020 (2000). hep-th/9912072

    Article  ADS  Google Scholar 

  26. Novozhilov, Y.V., Vassilevich, D.V.: Induced classical gravity. Lett. Math. Phys. 21, 253–271 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Piacitelli, G.: Quantum spacetime: a disambiguation. SIGMA 6, 073 (2010). 1004.5261

    MathSciNet  Google Scholar 

  28. Sakharov, A.D.: Spectral density of eigenvalues of the wave equation and the vacuum polarization. Theor. Math. Phys. 23, 435–444 (1976)

    Article  Google Scholar 

  29. Szabo, R.J.: Quantum field theory on noncommutative spaces. Phys. Rep. 378, 207–299 (2003). hep-th/0109162

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Vassilevich, D.V.: Non-commutative heat kernel. Lett. Math. Phys. 67, 185–194 (2004). hep-th/0310144

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Vassilevich, D.V.: Heat kernel, effective action and anomalies in noncommutative theories. J. High Energy Phys. 08, 085 (2005). hep-th/0507123

    Article  ADS  MathSciNet  Google Scholar 

  32. Vassilevich, D.V.: Heat trace asymptotics on noncommutative spaces. SIGMA 3, 093 (2007). 0708.4209

    MathSciNet  Google Scholar 

  33. Vassilevich, D.V., Yurov, A.: Space-time non-commutativity tends to create bound states. Phys. Rev. D 69, 105006 (2004). hep-th/0311214

    Article  ADS  MathSciNet  Google Scholar 

  34. Zeldovich, Y.B.: Cosmological constant and elementary particles. JETP Lett. 6, 316 (1967)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Vassilevich .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fursaev, D., Vassilevich, D. (2011). Noncommutative Geometry and Field Theory. In: Operators, Geometry and Quanta. Theoretical and Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0205-9_11

Download citation

Publish with us

Policies and ethics