Advertisement

Spin-Coherent States

  • Monique Combescure
  • Didier Robert
Part of the Theoretical and Mathematical Physics book series (TMP)

Abstract

In this chapter we consider that the unit sphere \(\mathbb {S}^{2}\) of the Euclidean space ℝ3 with its canonical symplectic structure is a phase space. Then coherent states are labeled by points on \(\mathbb {S}^{2}\) and allow us to build a quantization of the two sphere \(\mathbb {S}^{2}\). They are defined in each finite-dimensional space of an irreducible unitary representation of the symmetry group SO(3) (or its covering SU(2)) of \(\mathbb {S}^{2}\) and give a semi-classical interpretation for the spin.

As an application we state the Berezin–Lieb inequalities and compute the thermodynamic limit for large spin systems.

Keywords

Irreducible Representation Coherent State Geometric Phase Stereographic Projection South Pole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 2.
    Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1596 (1987) MathSciNetADSCrossRefGoogle Scholar
  2. 4.
    Aravind, P.K.: Spin coherent states as anticipators of the geometric phase. Am. J. Phys. 10(October), 899–904 (1999) MathSciNetADSCrossRefGoogle Scholar
  3. 5.
    Arecchi, F.T., Courtens, E., Gilmore, R., Thomas, H.: Atomic coherent states in quantum optics. Phys. Rev. A 6, 2211–2237 (1972) ADSCrossRefGoogle Scholar
  4. 24.
    Berry, M.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 292, 47–57 (1984) Google Scholar
  5. 32.
    Boya, L.J., Perelomov, A.M., Santander, M.: Berry phase in homogeneous Kähler manifolds with linear Hamiltonians. J. Math. Phys. 42(11), 5130–5142 (2001) MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 75.
    Erikson, F.: On the measure of solid angles. Math. Mag. 63, 184–185 (1999) CrossRefGoogle Scholar
  7. 90.
    Glauber, R.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963) MathSciNetADSCrossRefGoogle Scholar
  8. 121.
    Inönü, E., Wigner, E.: On the contraction of groups and their representations. Proc. Natl. Acad. Sci. USA 39, 510–524 (1953) ADSzbMATHCrossRefGoogle Scholar
  9. 130.
    Kosmann-Schwarzbach, Y.: Groups and Symmetries. Universitext. Springer, New York (2010). From finite groups to Lie groups, Translated from the 2006 French 2nd edition by Stephanie Frank Singer zbMATHCrossRefGoogle Scholar
  10. 136.
    Lieb, E.H.: The classical limit of quantum spin systems. Commun. Math. Phys. 31, 327–340 (1973) MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 146.
    Mukada, N., Aravind, P., Simon, R.: Wigner rotations, Bargmann invariants and geometric phases. J. Phys. A, Math. Gen. 36, 2347–2370 (2003) ADSCrossRefGoogle Scholar
  12. 148.
    Onofri, E.: A note on coherent state representations of Lie groups. J. Math. Phys. 16, 1087–1089 (1975) MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 149.
    Pancharatnam, S.: Generalized theory of interference and its applications. Proc. Indian Acad. Sci., Sect. A, Phys. Sci. 44, 247–262 (1956) MathSciNetGoogle Scholar
  14. 154.
    Pauli, W.: General Principles of Quantum Mechanics. Springer, Berlin (1980). Translated from the German by P. Achuthan and K. Venkatesan, with an introduction by Charles P. Enz CrossRefGoogle Scholar
  15. 155.
    Perelomov, A.M.: Coherent states for arbitrary Lie group. Commun. Math. Phys. 26, 222–236 (1972) MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 170.
    Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1966) zbMATHGoogle Scholar
  17. 177.
    Simon, B.: The classical limit of quantum partition functions. Commun. Math. Phys. 71, 247–276 (1980) ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Monique Combescure
    • 1
  • Didier Robert
    • 2
  1. 1.Batiment Paul DiracIPNLVilleurbanneFrance
  2. 2.Laboratoire Jean-Leray Departement de MathematiquesNantes UniversityNantes Cedex 03France

Personalised recommendations