Quantization and Coherent States on the 2-Torus

  • Monique Combescure
  • Didier Robert
Part of the Theoretical and Mathematical Physics book series (TMP)

Abstract

The two dimensional torus \(\mathbb {T}^{2}\) is a very simple symplectic space. Nevertheless it gives non trivial examples of chaotic dynamical systems. These systems can be quantized in a natural way. We shall study some dynamical and spectral properties of them.

Keywords

Coherent State Unbiased Basis Weyl Quantization Unique Invariant Measure Generalize Coherent State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 10.
    Balazs, N., Voros, A.: The quantized baker’s transformation. Ann. Phys. 190, 1–31 (1989) MathSciNetADSMATHCrossRefGoogle Scholar
  2. 27.
    Bonechi, F., De Bièvre, S.: Controlling strong scarring for quantized ergodic toral automorphisms. Duke Math. J. 117, 571–587 (2003) MathSciNetMATHCrossRefGoogle Scholar
  3. 28.
    Bouclet, J.M., De Bièvre, S.: Long time propagation and control on scarring for perturbed quantized hyperbolic toral automorphism. Ann. Henri Poincaré 6, 885–913 (2005) ADSMATHCrossRefGoogle Scholar
  4. 29.
    Bouzouina, A.: Comportement semi-classique de symplectomorphismes du tore quantifiés. Ph.D. thesis, Université de Paris-Dauphine (1997) Google Scholar
  5. 30.
    Bouzouina, A., De Bièvre, S.: Equipartition of the eigenfunctions of quantized ergodic maps on the torus. Commun. Math. Phys. 178, 83–105 (1996) ADSMATHCrossRefGoogle Scholar
  6. 45.
    Colin de Verdière, Y.: Equipartition of the eigenfunctions of quantized ergodic maps on the torus. Commun. Math. Phys. 102, 497–502 (1985) MATHCrossRefGoogle Scholar
  7. 50.
    Combescure, M.: Circulant matrices, Gauss sums and mutually unbiased bases, I. The prime number case. CUBO 11, 73–86 (2009) MathSciNetMATHGoogle Scholar
  8. 55.
    Cornfeld, I.P., Fomin, S.V., Sinai, Y.G.: Ergodic Theory. Springer, Berlin (1982) MATHGoogle Scholar
  9. 57.
    Davis, P.: Circulant Matrices. Wiley, New York (1979) MATHGoogle Scholar
  10. 58.
    De Bièvre, S., Faure, F., Nonnenmacher, S.: Scarred eigenstates for quantum cat maps of minimal periods. Commun. Math. Phys. 239, 449–492 (2003) ADSMATHCrossRefGoogle Scholar
  11. 59.
    De Bièvre, S., Degli Esposti, M., Giachetti, R.: Quantization of a class of piecewise affine transformations of the torus. Commun. Math. Phys. 176, 73–94 (1995) CrossRefGoogle Scholar
  12. 63.
    Degli Esposti, M.: Quantization of the orientation preserving automorphism of the torus. Ann. Inst. Henri Poincaré. Phys. Théor. 58, 323–341 (1993) MathSciNetMATHGoogle Scholar
  13. 64.
    Degli Esposti, M., Graffi, S., Isola, S.: Stochastic properties of the quantum Arnold’s cat in the classical limit. Commun. Math. Phys. 176, 73–94 (1995) MathSciNetADSGoogle Scholar
  14. 83.
    Gérard, P., Leichtnam, E.: Ergodic properties of the eigenfunctions for the Dirichlet problem. Commun. Math. Phys. 71, 559–607 (1993) MATHGoogle Scholar
  15. 104.
    Hannay, J., Berry, M.: Ergodic properties of the eigenfunctions for the Dirichlet problem. Physica D 1, 267–291 (1993) MathSciNetADSCrossRefGoogle Scholar
  16. 106.
    Helffer, B., Martinez, A., Robert, D.: Ergodicité et limite semi-classique. Commun. Math. Phys. 109, 313–326 (1987) MathSciNetADSMATHCrossRefGoogle Scholar
  17. 123.
    Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995) MATHGoogle Scholar
  18. 131.
    Leboeuf, P., Voros, A.: Chaos-revealing multiplicative representation of quantum eigenstates. J. Phys. A 23, 1165–1174 (1990) MathSciNetGoogle Scholar
  19. 139.
    Maas, H.: Siegel’s Modular Forms and Dirichlet Series. Lecture Notes in Mathematics, vol. 216. Springer, Berlin (1971) Google Scholar
  20. 140.
    Manè, R.: Ergodic Theory and Differentiable Dynamics. Springer, Berlin (1987) MATHGoogle Scholar
  21. 162.
    Reed, M., Simon, B.: Fourier-Analysis. Self-Adjointness. Academic Press, New York (1979) Google Scholar
  22. 174.
    Schnirelman, A.: Ergodic properties of eigenfunctions. Usp. Mat. Nauk 29, 181–182 (1974) Google Scholar
  23. 175.
    Schrödinger, E.: Der stetige übergang von der Mikro- zur Makromechanik. Naturwissenschaften 14, 664–666 (1926) ADSCrossRefGoogle Scholar
  24. 206.
    Zelditch, S.: Uniform distribution of the eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55, 919–941 (1987) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Monique Combescure
    • 1
  • Didier Robert
    • 2
  1. 1.Batiment Paul DiracIPNLVilleurbanneFrance
  2. 2.Laboratoire Jean-Leray Departement de MathematiquesNantes UniversityNantes Cedex 03France

Personalised recommendations