Advertisement

Hemodynamics

Chapter
  • 1.7k Downloads
Part of the Scientific Computation book series (SCIENTCOMP)

Abstract

Since our primary interest has been in human space flight, biomedical performance of humans during space flight and post-flight recovery, especially for long-duration missions, has been an important aspect of space exploration.

Keywords

Internal Carotid Artery Wall Shear Stress Distribution Natural Heart Magnetic Resonance Angiogram Altered Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alpers, B. J., Berry, R. G., Paddison, R. M.: Anatomical studies of the circle of Willis in normal brain. Arch. Neurol. Psychiatry, 81, 409–418 (1959)Google Scholar
  2. Baldwin, J. T., Tarbell, J. M., Deutsch, S., Geselowitz, D. B.: Mean flow velocity patterns within a ventricular assist device (VAD). Trans. Am. Soc. Artif. Intern. Organs, 35, 425–433 (1989)Google Scholar
  3. Berger, S. A., Jou, L.-D.: Flow in stenotic vessels. Ann. Rev. Fluid Mech., 32, 347–382 (2000)CrossRefMathSciNetGoogle Scholar
  4. Bird, R. B., Armstrong, R. C., Hassagar, O.: Dynamics of Polymer Liquids, Vol. I, 2nd edn., Wiley, New York (1987)Google Scholar
  5. Caro, C. G., Pedley, T. J., Schroter, R. C., Seed, W. A.: The Mechanics of the Circulation, Oxford University Press, Oxford, pp. 243–349 (1978)Google Scholar
  6. Chien, S.: Biophysical behavior of red blood cells in suspensions. In The Red Blood Cell, Vol. II, ed. by Surgenor, D. M., Academic Press, New York pp. 1031–1133 (1975)Google Scholar
  7. Ferrandez, A., David, T.: Computational models of blood flow in the circle of Willis. Comp. Methods Biomech. Biomed. Eng., 4, No. 1, 1–26 (2000)CrossRefGoogle Scholar
  8. Ferrandez, A., David, T., Brown, M. D.: Numerical models of auto-regulation and blood flow in the cerebral circulation. Comp. Methods Biomech. Biomed. Eng., 5, No. 1, 7–20 (2002)CrossRefGoogle Scholar
  9. Figriola, R. S., Mueller, T. J.: On the hemolytic and thrombogenic potential occluder prosthetic heart valves from in-vitro measurements. ASME J. Biomech. Eng., 103, 83–90 (1981)CrossRefGoogle Scholar
  10. Formaggia, L., Gerbeau, J. F., Nobile, F., Quarteroni, A.: Numerical treatment of defective boundary conditions for the Navier-Stokes equations. SIAM J. Numer. Anal., 40, No. 1, 376–401 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  11. Gijsen, F. J. H., Allanic, E., van de Vosse, F. N., Janssen, J. D.: The influence of non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90-degree curved tube. J. Biomech., 32, 705–713 (1999b)CrossRefGoogle Scholar
  12. Gijsen, F. J. H., van de Vosse, F. N., Janssen, J. D.: The influence of non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J. Biomech., 32, 601–608 (1999a)CrossRefGoogle Scholar
  13. Giller, C. A., Bowman, G., Dyer, H., Mootz, L., Krippner, W.: Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery, 32, No. 5, 737–741 (1993)CrossRefGoogle Scholar
  14. Hunter, P. J., Smaill, B. H., Nielsen, P. M. F., Le Grice, I. J.: A mathematical model of cardiac anatomy. In Computational Biology of the Heart, ed. by Panfilov, A. V. and Holden, A. V., Wiley, New York (1997)Google Scholar
  15. Idelsohn, S. R., Costa, L. E., Ponso, R.: A comparative computational study of blood flow through prosthetic heart valves using the finite element method. J. Fluid Dyn., 18, No. 2, 97–115 (1985)Google Scholar
  16. Kim, C. S., Kiris, C., Kwak, D., David, T.: Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity. J. Biomech. Eng. Trans. ASME, 128, 194–202 (2006)CrossRefGoogle Scholar
  17. Kiris, C., Rogers, S. E., Kwak, D., Chang, I. D.: Computation of incompressible viscous flows through artificial heart devices with moving boundaries. In Fluid Dynamics in Biology, Proceeding of the AMS-IMS-SIAM Joint Research Conference, ed. by Cheer, A. Y. and van Dam, C. P., American Mathematical Society, Providence, RI, pp. 237–247 (1991)Google Scholar
  18. Kiris, C., Kwak, D., Benkowski, R.: Incompressible Navier-Stokes calculations for the development of a ventricular assist device. Comp. Fluids, 27, Nos. 5–6, 709–719 (1998)zbMATHCrossRefGoogle Scholar
  19. Kiris, C., Kwak, D., Rogers, S.: Incompressible Navier-Stokes solvers in primitive variables and their applications to steady and unsteady flow simulations. In Numerical Simulations of Incompressible Flows, ed. by Hafez, M., World Scientific, Singapore (2002)Google Scholar
  20. Kiris, C., Kwak, D., Rogers, S., Chang, I-D.: Computational approach for probing the flow through artificial heart devices. ASME J. Biomech. Eng., 119, 452–460 (1997)CrossRefGoogle Scholar
  21. Kwak, D., Chang, J. L. C., Shanks, S. P., Chakravarthy, S.: A three-dimensional incompressible Navier-Stokes flow solver using primitive variables. AIAA J., 24, No. 3, 390–396 (1986) (Original version: AIAA Paper 84-0253, AIAA 22nd Aerospace Sciences Meeting, Reno, Nevada, Jan. 9–12 (1984)zbMATHCrossRefGoogle Scholar
  22. Kwak, D., Chang, J. L. C., Chang, Rogers, S. E., Rosenfeld, M.: Potential applications of computational fluid dynamics to biofluid analysis. International Symposium on Biofluid Mechanics, Palm Springs, CA, April 27–29 (1988)Google Scholar
  23. McCracken, M. F., Peskin, C. S.: A vortex method for blood flow through heart valve. J. Comp. Phys., 35, 183–205 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  24. Merrill, E. W.: Rheology of blood. Physiol. Rev., 49, 863–888 (1969)Google Scholar
  25. Milnor, W. R.: Hemodynamics, 2nd edn., The Williams & Wilkins Co., Baltimore (1989)Google Scholar
  26. Nichols, W. W., O’Rourke, M. F.: McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, 4th edn., Arnold, London (1998)Google Scholar
  27. Olufsen, M. S., Peskin, C. S., Kim, W. Y., Pedersen, E. M.: Numerical simulation and experimental validation of blood flow in arteries with structure-tree outflow conditions. Ann. Biomed. Eng., 28, 1281–1299 (2000)CrossRefGoogle Scholar
  28. Perktold, K., Resch, M., Florian, H.: Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. ASME J. Biomech. Eng., 113, 463–475 (1991)CrossRefGoogle Scholar
  29. Perktold, K., Rappitsch, G.: Computer simulation of local flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech., 28, No. 7, 845–856 (1995)CrossRefGoogle Scholar
  30. Peskin, C. S.: The fluid dynamics of heart valves: experimental, theoretical and computational methods. Annu. Rev. Fluid Mech., 14, 235–259 (1982)CrossRefMathSciNetGoogle Scholar
  31. Peskin, C. S., McQueen, D. M.: Modeling prosthetic heart valves for numerical analysis of blood flow in heart. J. Comp. Phys., 37, 113–132 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  32. Peskin, C. S., McQueen, D. M.: A three-dimensional computational method for the blood flow in heart. J Comput. Phys., 81, 372–405 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  33. Quarteroni, A., Tuveri, M., Veneziani, A.: Computational vascular fluid dynamics: problems, models and methods. Comput. Vis. Sci., 2, No. 4, 163–197 (2000)zbMATHCrossRefGoogle Scholar
  34. Reneman, R. S., Merode, T., van Hick, K., Muijtjens, A. M. M., Hoeks, A. P. G.: Age-related changes in carotid artery wall properties in man. Ultrasound Med. Biol., 12, 465–471 (1986)CrossRefGoogle Scholar
  35. Smith, N. P., Pullan, A. J., Hunter, P. J.: An anatomically based model of transient coronary blood flow, in the heart. SIAM J. Appl. Math., 62, No. 3, 990–1018 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  36. Steinman, D. A., Ethier, C. R.: Effect of wall distensibility on flow in a two-dimensional end-to-side anastomosis. ASME J. Biomech. Eng., 116, 294–301 (1994)CrossRefGoogle Scholar
  37. Steinman, D. A., Thomas, J. B., Ladak, H. M., Milnor, J. S., Rutt, B. K., Spence, J. D.: Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. MAGMA., 47, No. 1, 149–159 (2002)Google Scholar
  38. Stevensen, D. M., Yoganathan, A. P., Williams, F. P.: Numerical simulation of steady turbulent flow through trileaflet aortic heart valves-II. Results on five models. J. Biomech., 16, No. 12, 909–926 (1985)CrossRefGoogle Scholar
  39. Tarbell, J. M., Gunshinan, J. P., Geselowitz, D. B., Rosenburg, G., Shung, K. K., Pierce, W. S.: Pulse ultrasonic doppler velocity measurements inside a left ventricular assist device. J. Biomech. Eng. Trans. ASME, 108, 232–238 (1986)CrossRefGoogle Scholar
  40. Taylor, C. A., Draney, M. T., Ku, J. P., Parker, D., Steele, B. N., Wang, K., Zarins, C. K.: Predictive medicine: computational techniques in therapeutic decision-making. Comput. Aided Surg., 4, No. 5, 231–247 (1999)CrossRefGoogle Scholar
  41. Thurston, G. B.: Rheological parameters for the viscosity, viscoelasticity and thixotropy of blood. Biorheology, 16, 149–162 (1979)Google Scholar
  42. Zhao, S. Z., Ariff, B., Long, Q., Hughes, A. D., Thom, S. A., Stanton, A. V., Xu, X. Y.: Inter-individual variations in wall shear stress and mechanical stress distributions at the carotid artery bifurcation of healthy humans. J. Biomech., 35, 1367–1377 (2002)CrossRefGoogle Scholar
  43. Aber, G. S., Akkerman, J. W., Bozeman, R. J., Saucier, D. R.: Development of the NASA/Baylor VAD. (1993) (available in NASA Technology 2003: The Fourth National Technology Transfer Conference, 1, 151–157)Google Scholar
  44. Gray, H.: Anatomy of the Human Body, 20th edn., ed. by Lewis, W. H., Lea & Febiger, Philadelphia (1918); Bartleby.com, New York (2000)Google Scholar
  45. Kim, C. S., Kiris, C., Kwak, D., David, T.: Numerical models of human circulatory system under altered gravity: brain circulation. AIAA paper 2004-1092 (2004)Google Scholar
  46. Kiris, C., Chang, I., Kwak, D., Rogers, S. E.: Numerical simulation of the incompressible internal flow through a tilting disk valve. AIAA Paper 90-0682 (1990)Google Scholar
  47. Quarteroni, A.: Modeling the cardiovascular system-a mathematical venture: Part I. SIAM News, 34, No. 5, June 10 (2001)Google Scholar
  48. Rogers, S. E., Kwak, D., Kaul, U.: On the accuracy of the pseudocompressibility method in solving the incompressible Navier-Stokes equations. AIAA Paper 85-1689 (1985)Google Scholar
  49. Benek, J. A., Buning, P. G., Steger, J. L.: A 3-D chimera grid embedding technique. AIAA Paper 85-1523 (1985)Google Scholar
  50. Cebral, J. R., Lohner, R., Burgess, J.: Computer simulation of cerebral artery clipping: relevance to aneurysm neuro-surgery planning. Proceeding of the ECCOMAS, September 11–14, Barcelona, Spain (2000)Google Scholar
  51. Chang, J. L. C., Kwak, D.: Numerical study of turbulent internal shear layer flow in an axi-symmetric U-duct. AIAA Paper 88-0596 (1988a)Google Scholar
  52. Pulliam, T. H., Chaussee, D. S.: A diagonal form of an implicit approximate-factorization algorithm. J. Comput. Phys., 39, 347–363 (1981)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.NASA Advanced Supercomputing DivisionNASA Ames Research CenterMoffet FieldUSA
  2. 2.NASA Ames Research Center, Applied Modeling & Simulations BranchMoffett FieldUSA

Personalised recommendations