Skip to main content

Simulation of a Liquid-Propellant Rocket Engine Subsystem

  • Chapter
  • First Online:
Computation of Viscous Incompressible Flows

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 1902 Accesses

Abstract

From an engineering point of view, CFD is a tool for preliminary design, design improvement, risk analysis, mission planning and operations. In this chapter, we will present engineering aspects of CFD through a task where CFD has played a significant role in accomplishing the goal of a real mission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Deardorff, J. W.: The use of subgrid scale transport equations in a three-dimensional model of atmospheric turbulence. J. Fluid Eng., 95, 429–438 (1973)

    Article  Google Scholar 

  • Fox, D. G., Lilly, D. K.: Numerical simulation of turbulent flows. Rev. Geophys. Space Phys., 10, No. 1, 51 (1972)

    Article  Google Scholar 

  • Gillis, J. C., Johnston, J. P.: Turbulent boundary-layer flow and structure on a convex wall and its redevelopment on a flat wall. J. Fluid Mech., 135, 123–153 (1983)

    Article  Google Scholar 

  • Reynolds, W. C.: Computation of turbulent flows. Ann. Rev. Fluid Mech., 8, 183–208 (1976)

    Article  Google Scholar 

  • Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Wea. Rev., 93, No. 3, 99 (1963)

    Article  Google Scholar 

  • Van Driest, E. R.: On turbulent flow near a wall. J. Aeronautical Sci., 23, No. 11, 1007–1011, 1036 (1956)

    Google Scholar 

  • Wattendorf, F. L.: A study of the effect of curvature on fully developed turbulent flow. Proc. Roy. Soc., 148, 565–598 (1935)

    Article  Google Scholar 

  • Baldwin, B. S., Lomax, H.: Thin layer approximation and algebraic model for separated turbulent flows. AIAA Paper 78-257 (l978)

    Google Scholar 

  • Belie, G.: Flow visualization in the space shuttle’s main engine. Cover Story, Mechanical Engineering, September 1985 issue (1985)

    Google Scholar 

  • Bradshaw, P.: Effect of curvature on turbulent flow. AGARD-AG-169 (1973)

    Google Scholar 

  • Burke, R. W.: Computation of turbulent incompressible wing-body junction flow. Proceedings of the 27th Aerospace Sciences Meeting, Reno, Nevada, January 9–12, AIAA Paper 89-0279 (1989)

    Google Scholar 

  • Chang, J. L. C., Kwak, D., Dao, S. C., Rosen, R.: A three dimensional incompressible flow simulation method and its application to the Space Shuttle main engine – Part II, Turbulent Flow. AIAA Paper 85-1670 (1985b)

    Google Scholar 

  • Chang, J. L. C., Kwak, D.: Numerical study of turbulent internal shear layer flow in an axi-symmetric U-duct. AIAA Paper 88-0596 (1988a)

    Google Scholar 

  • Chen, Y. S., Sandborn, V. A.: Computational and experimental study of turbulent flows in 180-degree bends. AIAA Paper 86-1516 (1986)

    Google Scholar 

  • Kwak, D., Reynolds, W. C., Ferziger, J. H.: Three-dimensional time dependent computation of turbulent flow. TF-5, Department of Mechanical Engineering, Stanford University (1975)

    Google Scholar 

  • Leonard, A.: On the energy cascade in large-eddy simulation of turbulent fluid flows. TF-1, Department of Mechanical Engineering, Stanford University, or Adv. Geophys., 1, No. 18A, 237 (1973)

    Google Scholar 

  • Lin, S.-J., Yang, R.-J., Chang, J. L. C., Kwak, D.: Numerical simulation of flow path in the oxidizer side hot gas manifold of the Space Shuttle main engine. AIAA Paper 87-1800 (1987)

    Google Scholar 

  • Monson, D. J., Seegmiller, H. L., McConnaughey, P. K.: Comparison of LDV measurements and Navier-Stokes solutions in a two-dimensional 180-degree turn-around duct. AIAA Paper 89-0275 (1989)

    Google Scholar 

  • Monson, D. J., Seegmiller, H. L.: An experimental investigation of subsonic flow in a two-dimensional U-duct. NASA TM 103931, July (1992)

    Google Scholar 

  • Moser, R. D., Moin, P.: Direct numerical simulation of curved turbulent channel flow. NASA TM 85974 (1984)

    Google Scholar 

  • Nikuradse, J.: Laws of turbulent flow in smooth pipes (1932) (English Translation) NASA TT F-10 (1966)

    Google Scholar 

  • Prandtl, L.: Effects of stabilizing forces on turbulence. NACA TM 625 (1931) (original version in 1929)

    Google Scholar 

  • Sandborn, V. A.: Measurement of turbulent flow quantities in a rectangular duct with 180-degree bend. NASA CP 3012, Advanced Earth-to-Orbit Propulsion Technology, II, 292–304, Proceedings of the Conference at NASA Marshall Space Flight Center, May (1988)

    Google Scholar 

  • Sharma, L., Ostermier, B., Nguyen, L., Dang, P., O'Connor, G.: Turbulence measurements in an axisymmetric turnaround duct air flow model. Rocketdyne Division, Rockwell International, Report RSS-8763, ATU-87-5237, October (1987)

    Google Scholar 

  • Spalart, P. R., Jou, W.-H., Strelets, M., Allmaras, S. R.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. First AFOSR International Conference on DNS/LES, August 4–8 (1997)

    Google Scholar 

  • Yang, R.-J., Chang, J. L. C., Kwak, D.: A Navier-Stokes simulation of the Space Shuttle main engine hot gas manifold. AIAA Paper 87-0368 (1987) (Also J. Spacecraft Rockets, 29, No. 2, 253–259, 1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dochan Kwak .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kwak, D., Kiris, C.C. (2011). Simulation of a Liquid-Propellant Rocket Engine Subsystem. In: Computation of Viscous Incompressible Flows. Scientific Computation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0193-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0193-9_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0192-2

  • Online ISBN: 978-94-007-0193-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics