Flow Solvers and Validation

Part of the Scientific Computation book series (SCIENTCOMP)


Up to this point, we have reviewed numerical algorithms for computing viscous incompressible flows, primarily using primitive variables along with finite difference and finite volume frameworks. The solution methods for incompressible flows are based on the assumption that the flow can be approximated by incompressible Navier–Stokes equations. Once a solution algorithm is developed, flow solvers and software procedures need to be developed to compute fluid dynamic problems. This process includes setting up the problem, solving the flow with the proper initial and boundary conditions, and then post-processing the computed results. These solutions include several levels of approximations including algorithmic, geometry-related and physical-modeling related approximations.


Grid Resolution Suction Side Wake Vortex Grid Topology Juncture Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baker, C. J.: The laminar horseshoe vortex. Part II. J. Fluid Mech., 95, 346–367 (1979)CrossRefGoogle Scholar
  2. Collins, W. M., Dennis, S. C. R.: Flow past an impulsively started circular cylinder. J. Fluid Mech., 60, 105–127 (1973)zbMATHCrossRefGoogle Scholar
  3. Coutanceau, M., Bouard, R.: Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation – Part II. Unsteady flow. J. Fluid Mech., 79, 257–272 (1977)Google Scholar
  4. Humphrey, J. A. C., Taylor, A. M. K., Whitelaw, J. H.: Laminar flow in a square duct of strong curvature, Part III. J. Fluid Mech., 83, 509–527 (1977)zbMATHCrossRefGoogle Scholar
  5. Kiris, C., Rogers, S. E., Kwak, D., Lee, Y.-T.: Time-accurate incompressible Navier-Stokes computations with overlapped moving grids. ASME Fluids Engineering Division Summer Meeting, Lake Tahoe, NV, June 19–23 (1994a)Google Scholar
  6. Kwak, D., Chang, J. L. C., Shanks, S. P., Chakravarthy, S.: A three-dimensional incompressible Navier-Stokes flow solver using primitive variables. AIAA J., 24, No. 3, 390–396 (1986) (Original version: AIAA Paper 84-0253, AIAA 22nd Aerospace Sciences Meeting, Reno, Nevada, Jan. 9–12 (1984)zbMATHCrossRefGoogle Scholar
  7. Morkovin, M. V.: Flow around circular cylinder – a kaleidoscope of challenging fluid phenomena. In Symposium on Fully Separated Flows, ed. by Hansen, A. G., ASME, New York, pp. 102–118 (1964)Google Scholar
  8. Patankar, S. V., Ivanovic, M., Sparrow, E. M.: Analysis of turbulent flow and heat transfer in internally finned tubes and annuli. Int. J. Heat Mass Transf., 101, 9929–9937 (1979)Google Scholar
  9. Pedley, T. J., Stephanoff, K. D.: Flow along a channel with a time-dependent indentation in one wall: the generation of vorticity waves. J. Fluid Mech., 160, 337–367 (1985)CrossRefGoogle Scholar
  10. Rogers, S. E., Kwak, D.: An upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations. AIAA J., 28, No. 2, 253–262 (1990) (Also, AIAA Paper 88-2583, 1988)zbMATHCrossRefGoogle Scholar
  11. Rosenfeld, M., Kwak, D., Vinokur, M.: A fractional-step method for unsteady incompressible Navier-Stokes equations in generalized coordinate systems. J. Comput. Phys., 94, No. 1, 102–137 (1991b) (Also, AIAA Paper 88-0718, 1988)zbMATHCrossRefGoogle Scholar
  12. Stephanoff, K. D., Pedley, T. J., Lawrence, C. J., Secomb, T. W.: Fluid flow along a channel with an asymmetric oscillating constriction. Nature, 305, 692–695 (1983)CrossRefGoogle Scholar
  13. Taneda, S., Honji, H.: Unsteady flow past a flat plate normal to the direction of motion. J. Phys. Soc. Japan, 30, 262–273 (1971)CrossRefGoogle Scholar
  14. Taylor, A. M. K. P., Whitelaw, J. H., Yianneskis, M.: Curved ducts with strong secondary motion: velocity measurements of developing of laminar and turbulent flow. J. Fluid Eng., 104, 350–359 (1982)CrossRefGoogle Scholar
  15. Thom, A.: The flow past circular cylinder at low speeds. Proc. R. Soc. Lond. B. Biol. Sci., Series A, 141, 651–666 (1933)CrossRefGoogle Scholar
  16. Van Dyke, M.: An Album of Fluid Motion, The Parabolic Press, Stanford, CA (1982)Google Scholar
  17. White, F. M.: Viscous Fluid Flow, McGraw-Hill, New York, p. 123 (1974)zbMATHGoogle Scholar
  18. Yoshida, Y., Nomura, T.: A transient solution method for the finite element incompressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids, 5, 873–890 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  19. Arndt, R., Maines, B.: Viscous effects in tip vortex cavitation and nucleation. Proceedings of the 20th Symposium on Naval Hydrodynamics, Santa Barbara, CA (1994)Google Scholar
  20. Baldwin, B. S., Barth, T. J.: A one-equation turbulence transport model for high Reynolds number wall-bounded flows. AIAA Paper 91-0610 (1991)Google Scholar
  21. Baldwin, B. S., Lomax, H.: Thin layer approximation and algebraic model for separated turbulent flows. AIAA Paper 78-257 (l978)Google Scholar
  22. Burke, R. W.: Computation of turbulent incompressible wing-body junction flow. Proceedings of the 27th Aerospace Sciences Meeting, Reno, Nevada, January 9–12, AIAA Paper 89-0279 (1989)Google Scholar
  23. Chow, J. S., Zilliac, G., Bradshaw, P.: Initial roll-up of a wingtip vortex. Proceedings of the Aircraft Wake Vortex Conference, Vol. II, Washington, DC, October 29–131 (1991)Google Scholar
  24. Dacles-Mariani, J. S., Rogers, S., Kwak, D., Zilliac, G., Chow, J.: A computational study of a wingtip vortex flowfield. Proceedings of the 24th Conference in Fluid Dynamics, AIAA Paper 93-3010 (1993)Google Scholar
  25. Dacles-Mariani, J., Kwak, D., Zilliac, G.: Incompressible Navier-Stokes simulation procedure for a wingtip vortex flow analysis. Proceedings of the 6th International Symposium on Computational Fluid Dynamics, Lake Tahoe, NV, Sept. 4–8 (1995b)Google Scholar
  26. Dacles-Mariani, J., Kwak, D., Zilliac, G.: Accuracy assessment of a wingtip vortex flowfield in the near-field region. Proceedings of the AIAA 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 15–18 (1995c)Google Scholar
  27. Dickinson, S. C.: An experimental investigation of appendage-flat plate junction flow, Vol. I and II, DTNSRDC Reports 86/051, 86/052, David Taylor Research Center, Bethesda, MD (Dec. 1986)Google Scholar
  28. Eckerle, W. A., Langston, L. S.: Horseshoe vortex around a cylinder. Proceedings of the ASME International Gas Turbine Conference, Dusseldorf, West Germany, June 8–12 (1986)Google Scholar
  29. Kaul, U., Kwak, D., Wagner, C.: A computational study of saddle point separation and horseshoe vortex system. AIAA Paper 85-182 (1985)Google Scholar
  30. Kiehm, P., Mitra, N. K., Fiebig, M.: Numerical investigation of two- and three-dimensional confined wakes behind a circular cylinder in a channel. AIAA Paper 86-0035 (1986)Google Scholar
  31. Kiris, C., Kwak, D.: Numerical solution of incompressible Navier-Stokes equations using a fractional-step approach. Comp. Fluids, 30, 829–851 (2001) (Original version in AIAA Paper 96-2089)Google Scholar
  32. Kwak, D.: Computation of viscous incompressible flows. von Karman Institute for Fluid Dynamics, Lecture Series 1989–04 (1989) (Also NASA TM 101090, March 1989)Google Scholar
  33. McConnaughey, P., Cornelison, J., Barker, L.: The prediction of secondary flow in curved ducts of square cross-section. AIAA Paper 89-0276 (1989)Google Scholar
  34. Park, D. K.: The biofluidmechanics of arterial stenoses. M.Sc. Thesis, Lehigh University, Bethlehem, PA (1989)Google Scholar
  35. Peake, D. J., Tobak, M.: Three-dimensional interactions and vortical flows with emphasis on high speeds. NASA TM 81169, March (1980)Google Scholar
  36. Rogers, S. E., Kwak, D., Kaul, U.: On the accuracy of the pseudocompressibility method in solving the incompressible Navier-Stokes equations. AIAA Paper 85-1689 (1985)Google Scholar
  37. Spalart, P. R., Allmaras, S. R.: A one-equation turbulence model for aerodynamic flows. AIAA Paper 92-0439 (1992)Google Scholar
  38. Taylor, A. M. K. P., Whitelaw, J. H., Yianneskis, M.: Measurements of laminar and turbulent flow in a curved duct with thin inlet boundary layers. NASA CR 3367, January (1981)Google Scholar
  39. Thomas, A.: Laminar juncture flow-A visualization study. Phys. Fluids Lett., February (1987)Google Scholar
  40. Zilliac, G. G., Chow, J. S., Dacles-Mariani, J., Bradshaw, P.: Turbulent structure of a wingtip vortex in the near field. AIAA Paper 93-3011 (1993)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.NASA Advanced Supercomputing DivisionNASA Ames Research CenterMoffet FieldUSA
  2. 2.NASA Ames Research Center, Applied Modeling & Simulations BranchMoffett FieldUSA

Personalised recommendations