Advertisement

Artificial Compressibility Method

Chapter
Part of the Scientific Computation book series (SCIENTCOMP)

Abstract

The artificial compressibility method is quite different from the pressure projection approach in both the nature of the formulation and the subsequent numerical algorithm. In an artificial compressibility method, a fictitious time derivative of pressure is added to the continuity equation so that the set of equations modified from the incompressible Navier-Stokes equations can be solved implicitly by marching in pseudo time. When a steady-state solution is reached, the original equations are recovered. To obtain time accuracy, an iterative technique can be employed at each time level, which is equivalent to solving the governing equations for steady state at each time level. Using a large, artificial compressibility parameter to spread artificial waves quickly throughout the computational domain, and allowing some residual level of the mass conservation equation, the computing time requirement for time accurate solutions may be controlled within approximately one order-of-magnitude higher than the steady-state computations. In the artificial compressibility approach, the mass conservation does not have to be strictly enforced at each time step, and this gives robustness during iteration.

Keywords

Compressible Flow Jacobian Matrice Numerical Dissipation Convective Flux Viscous Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Armaly, B. F., Durst, F., Pereira, J. C. F., Schonung, B.: Experimental and theoretical investigation of backward facing step flow. J. Fluid Mech., 127, 473–496 (1983)CrossRefGoogle Scholar
  2. Beam, R. M., Warming, R. F.: An implicit factored scheme for the compressible Navier-Stokes equations. AIAA J., 16, 393–402 (1978)zbMATHCrossRefGoogle Scholar
  3. Briley, W. R., McDonald, H.: Solution of the multidimensional compressible Navier-Stokes equations by a generalized implicit method. J. Comp. Phys., 24, No. 4, 372–397 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  4. Harten, A., Lax, P. D., Van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev., 25, No. 1, 35 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  5. Housman, J., Kiris, C., Hafez, M. Preconditioned methods for simulations of low speed compressible flows. Comp. Fluids, 38, 7, 1411–1423 (2009)CrossRefGoogle Scholar
  6. Jameson, A., Yoon, S.: Multigrid solution of the Euler equations using implicit schemes. AIAA J., 24, 1737–1743 (1986)CrossRefGoogle Scholar
  7. Kreiss, H. O.: On difference approximations of the dissipative type for hyperbolic differential equation. Comm. Pure Appl. Math., 17, 335–353 (1964)zbMATHCrossRefMathSciNetGoogle Scholar
  8. Merkle, C. L.: Preconditioning methods for viscous flow calculations. In Computational Fluid Dynamics Review 1995, ed. by Hafez, M. and Oshima, K., Wiley, New York (1995)Google Scholar
  9. Pulliam, T. H.: Artificial dissipation models for the Euler equations. AIAA J., 24, 1931–1940 (1986)zbMATHCrossRefGoogle Scholar
  10. Pulliam, T. H., Chaussee, D. S.: A diagonal form of an implicit approximate-factorization algorithm. J. Comput. Phys., 39, 347–363 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  11. Roe, P. L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 43, 357 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  12. Rogers, S. E., Chang, J. L. C., Kwak, D.: A diagonal algorithm for the method of pseudocompressibility. J. Comput. Phys., 73, No. 2, 364–379 (1987)zbMATHCrossRefGoogle Scholar
  13. Rogers, S. E., Kwak, D.: An upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations. AIAA J., 28, No. 2, 253–262 (1990) (Also, AIAA Paper 88-2583, 1988)zbMATHCrossRefGoogle Scholar
  14. Steger, J. L., Kutler, P.: Implicit finite-difference procedures for the computation of vortex wakes. AIAA J., 15, No. 4, 581–590 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  15. Turkel, E.: Symmetrization of the fluid dynamic matrices with applications. Math. Comput., 27, 729–736 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  16. Venkataswaran, S., Merkle, C. L.: Evolution of artificial compressibility methods in CFD. In Numerical Simulations of Incompressible Flows, ed. by Hafez, M., World Scientific, Singapore (2002)Google Scholar
  17. Warming, R. F., Beam, R. M., Hyett, B. J.: Diagonalization and simultaneous symmetrization of the gas-dynamic matrices. Math. Comput., 29, 1037–1045 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  18. Yee, H. C.: Linearized form of implicit TVD schemes for the multidimensional Euler and Navier-Stokes equations. Comp. Math. Appl., 12A, Nos. 4/5, 413–432 (1986)CrossRefMathSciNetGoogle Scholar
  19. Rudy, D. H., Strikwerda, J. C.: A nonreflecting outflow boundary condition for subsonic Navier-Stokes calculations. J. Comp. Phys, 36, 55–70 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  20. Steger, J. L., Warming, R. F.: Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods. J. Comp. Phys., 40, No. 2, 263–293 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  21. Barth, T. J.: Analysis of implicit local linearization techniques for upwind and TVD algorithms. AIAA Paper 87-0595 (1987)Google Scholar
  22. Chakravarthy, S. R., Anderson, D. A., Salas, M. D.: The split-coefficient matrix method for hyperbolic systems of gas dynamics. AIAA Paper 80-0268 (1980)Google Scholar
  23. Chakravarthy, S. R., Osher, S.: A new class of high accuracy TVD schemes for hyperbolic conservation laws. AIAA Paper 85-0363 (1985)Google Scholar
  24. Chang, J. L. C., Kwak, D.: On the method of pseudo compressibility for numerically solving incompressible flows. AIAA Paper 84-0252 (1984)Google Scholar
  25. Flores, J.: Convergence acceleration for a three-dimensional Euler/Navier-Stokes zonal approach. AIAA Paper 85-1495 (1985)Google Scholar
  26. Hafez, M.: On the incompressible limit of compressible fluid flow. In Computational Fluid Dynamics for the 21st Century, ed. by Hafez, M. M., Morinishi, K., Periaux, J. and Satofuka, N., Springer (2001)Google Scholar
  27. Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using runge-kutta stepping scheme. AIAA Paper 81-1259 (1981)Google Scholar
  28. MacCormack, R. W.: Current status of numerical solutions of the Navier-Stokes equations. AIAA Paper 85-0032 (1985)Google Scholar
  29. Merkle, C. L., Tsai, P. Y. L.: Application of Runge-Kutta schemes to incompressible flows. AIAA Paper 86-0553 (1986)Google Scholar
  30. Rai, M. M.: Navier-Stokes simulations of blade-vortex interaction using high-order accurate upwind schemes. AIAA Paper 87-0543 (1987)Google Scholar
  31. Rapposelli, E., Cervone, A., Bramanti, C., d’Agostino, L.: Thermal cavitation experiments on a NACA 0015 hydrofoil. Proceeding of the FEDSM’03 4th ASME/JSME Joint Fluids Engineering Conference, Honolulu, Hawaii, July (2003)Google Scholar
  32. Rogers, S. E., Kwak, D.: Numerical solution of the incompressible Navier-Stokes equations for steady and time-dependent problems. AIAA Paper 89-0463 (1989)Google Scholar
  33. Salvetti, M.-V., Beux, F.: Liquid flow around non-cavitating and cavitating NACA 0015 hydrofoil. Mathematical and Numerical Aspects of Low Mach Number Flows, Porquerolles, France, Workshop Problem (2004)Google Scholar
  34. Yoon, S., Kwak, D.: Artificial dissipation models for hypersonic external flow. AIAA Paper 88-3708 (1988)Google Scholar
  35. Yoon, S., Kwak, D.: LU-SGS implicit algorithm for three-dimensional incompressible Navier-Stokes equations with source term. AIAA Paper 89-1964 (1989)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.NASA Advanced Supercomputing DivisionNASA Ames Research CenterMoffet FieldUSA
  2. 2.NASA Ames Research Center, Applied Modeling & Simulations BranchMoffett FieldUSA

Personalised recommendations