Advertisement

Introduction

Chapter
  • 1.6k Downloads
Part of the Scientific Computation book series (SCIENTCOMP)

Abstract

The field of fluid dynamics offers a plentiful source of mathematical, experimental, and computational challenges. The computational approach for viscous incompressible flow analysis is a subset of this rich field, and has been the subject of many books and articles for many decades. This introduction gives readers a summary of the purpose and the scope of this monograph.

Keywords

Computational Fluid Dynamic Incompressible Flow Viscous Incompressible Flow Computational Fluid Dynamic Method Fluid Dynamic Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Brown, D. L.: Accuracy of projection methods for the incompressible Navier-Stokes equations. In Numerical Simulations of Incompressible Flows, ed. by Hafez, M., World Scientific, Singapore (2002)Google Scholar
  2. Chorin, A. J.: A numerical method for solving incompressible viscous flow problems. J. Comp. Phys., 2, 12–26 (1967)zbMATHCrossRefGoogle Scholar
  3. Chung, T. J.: Computational Fluid Dynamics, Cambridge University Press, Cambridge (2002)zbMATHCrossRefGoogle Scholar
  4. Drikakis, D., Rider, W.: High-Resolution Methods for Incompressible and Low-Speed Flows, Springer, Berlin (2004)Google Scholar
  5. Ferziger, J. H., Peric, M.: Computational Methods for Fluid Dynamics, 3rd edn., Springer, Berlin (2002)zbMATHGoogle Scholar
  6. Glowinski, R., Juarez, H., Pan, T.-W.: On the numerical simulation of incompressible viscous fluid flow around moving rigid bodies of elliptical shapes. In Numerical Simulations of Incompressible Flows, ed. by Hafez, M., World Scientific, Singapore (2002)Google Scholar
  7. Gresho, M. P., Sani, R. L.: Incompressible Flow and Finite Element Method, Wiley, New York (1998)zbMATHGoogle Scholar
  8. Guerra, J., Gustafsson, B.: A numerical method for incompressible and compressible flow problems with smooth solutions. J. Comp. Phys., 63, 377 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  9. Gunzburger, M. D., Nicolades, R. A. (Eds.).: Incompressible Computational Fluid Dynamics Trends and Advances, Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  10. Gustafsson, B., Lotstedt, P., Goran, A.: A fourth order difference method for the incompressible Navier-Stokes equations. In Numerical Simulations of Incompressible Flows, ed. by Hafez, M., World Scientific, Singapore (2002)Google Scholar
  11. Hafez, M. (Ed.).: Numerical Simulations of Incompressible Flows, World Scientific, Singapore (2002)Google Scholar
  12. Hafez, M., Oshima, K.: Computational Fluid Dynamics Review 1995, Wiley, New York (1995)zbMATHGoogle Scholar
  13. Hafez, M., Oshima, K.: Computational Fluid Dynamics Review 1998, World Scientific, Singapore (1998)Google Scholar
  14. Hafez, M., Soliman, M.: Numerical solution of the incompressible Navier-Stokes equations in primitive variables on unstaggered grids. In Incompressible Computational Fluid Dynamics, ed. by Gunzburger, M. D. and Nicolaides, R. A., Cambridge University Press, Cambridge (1993)Google Scholar
  15. Harlow, F. H., Welch, J. E.: Numerical calculation of time-dependent viscous incompressible flow with free surface. Phys. Fluids, 8, No. 12, 2182–2189 (1965)zbMATHCrossRefGoogle Scholar
  16. Hirsch, C.: Numerical Computation of Internal and External Flows, Wiley, New York (1988)zbMATHGoogle Scholar
  17. Khosla, K., Rubin, S. G.: Direct primitive variable solution techniques for incompressible flows. In Numerical Simulations of Incompressible Flows, ed. by Hafez, M., World Scientific, Singapore (2002)Google Scholar
  18. Kuwahara, K., Komurasaki, S., Bethancourt, A.: Incompressible flow simulation by using multidirectional finite difference scheme. In Numerical Simulations of Incompressible Flows, ed. by Hafez, M., World Scientific, Singapore (2002)Google Scholar
  19. Leonard, A.: Computing three-dimensional incompressible flows with vortex elements. Ann. Rev. Fluid Mech., 17, 523–559 (1985)CrossRefGoogle Scholar
  20. Lomax, H., Pulliam, T. H., Zingg, D. W.: Fundamentals of Computational Fluid Dynamics, Springer, Berlin (2001)zbMATHGoogle Scholar
  21. Loner, R., Yang, C., Cebral, J., Soto, O., Camelli, F.: On incompressible flow solvers. In Numerical Simulations of Incompressible Flows, ed. by Hafez, M., World Scientific, Singapore (2002)Google Scholar
  22. Morgan, K., Harlan, D., Hassan, O., Sorensen, K., Weatherill, N.: Steady incompressible inviscid and viscous flow simulation using unstructured tetrahedral meshes. In Numerical Simulations of Incompressible Flows, ed. by Hafez, M., World Scientific, Singapore (2002)Google Scholar
  23. Patankar, S. V., Spalding, D. B.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transf., 15, 1787–1806 (1972)zbMATHCrossRefGoogle Scholar
  24. Peyret, R., Taylor, T. D.: Computational Methods for Fluid Flow. Springer Series in Computational Physics, Springer, Berlin (1983)zbMATHGoogle Scholar
  25. Raithby, G. D., Schneider, G. E.: Numerical solution of problems in incompressible fluid flow: treatment of the velocity-pressure coupling. Numerical Heat Transfer, 2, 417–440 (1979)CrossRefGoogle Scholar
  26. Roach, P. J.: Fundamentals of Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, New Mexico (1972) (revised in 1998)Google Scholar
  27. Satofuka, N., Ishikura, M., Ishikawa, Y.: Use of lattice Boltzman method for computing incompressible flows. In Numerical Simulations of Incompressible Flows, ed. by Hafez, M., World Scientific, Singapore (2002)Google Scholar
  28. Tannehill, J. C., Anderson, D. A., Pletcher, R. H.: Computational Fluid Mechanics and Heat Transfer, 2nd edn., Taylor & Francis, Washington, DC (1997)Google Scholar
  29. Tezduyar, T. E.: Stabilized finite element formulations and interface-tracking of interface-capturing techniques for incompressible flows. In Numerical Simulations of Incompressible Flows, ed. by Hafez, M., World Scientific Singapore (2002)Google Scholar
  30. Turek, S.: Efficient Solvers for Incompressible Flow Problems, Springer, Berlin (1999)zbMATHGoogle Scholar
  31. Wendl, M. C., Agarawal, R. K.: Mass conservation and accuracy of non-staggered grid incompressible flow schemes. In Numerical Simulations of Incompressible Flows, ed. by Hafez, M., World Scientific, Singapore (2002)Google Scholar
  32. Wesseling, P., Segal, A., van Kan, J. J. I. M., Costerlee, C. W., Kassels, C. G. M.: Finite volume discretization of the incompressible Navier-Stokes equations in general coordinates on staggered grids. Comp. Fluid Dyn. J., 1, No. 1 27–33 (1992)Google Scholar
  33. Chen, Y. S., Shang, H. M., Chen, C. P.: Unified CFD algorithm with a pressure based method. Proceedings of the 6th International Symposium on CFD, September 4–8, Lake Tahoe, NV (1995)Google Scholar
  34. Ghia, K. N., Hankey, W. L., Hodge, J. K.: Study of incompressible Navier-Stokes equations in primitive variables using implicit numerical technique. AIAA Paper 77-648 (1977)Google Scholar
  35. Hafez, M.: On the incompressible limit of compressible fluid flow. In Computational Fluid Dynamics for the 21st Century, ed. by Hafez, M. M., Morinishi, K., Periaux, J. and Satofuka, N., Springer (2001)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.NASA Advanced Supercomputing DivisionNASA Ames Research CenterMoffet FieldUSA
  2. 2.NASA Ames Research Center, Applied Modeling & Simulations BranchMoffett FieldUSA

Personalised recommendations