Skip to main content

Genomic and non-genomic events involved in the brassinosteroid-promoted plant cell growth

  • Chapter
  • First Online:
Brassinosteroids: A Class of Plant Hormone

Abstract

In all multicellular organisms growth and morphogenesis must be coordinated. In plants, coordinate control of growth is regulated by both external stimuli and internal mechanisms. In most multicellular organisms, steroids act as internal mediators for physiological and developmental regulation. Brassinosteroids (BRs) are steroids known to induce a broad spectrum of responses in plants; however, promotion of cell growth is a major biological effect of BRs. In this chapter, an insight into the genomic and non-genomic events involved in thebrassinosteroids-promoted plant cell growth is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Asami, T., Min, Y.K., Nagata, N., Yamagishi, K., Takatsuto, S., Fujioka, S., Murofushi, N., Yamaguchi, I., and Yoshida, S. 2000. Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol., 123: 93–100.

    CAS  PubMed  Google Scholar 

  • Asami, T., Mizutani, M., Fujioka, S., Goda, H., Min, Y.K., Shimada, Y., Nakano, T., Takatsuto, S., Matsuyama, T., Nagata, N., Sakata, K., and Yoshida, S. 2001. Selective interaction of triazole derivatives with dwf4, a cytochrome p450 monooxygenase of the brassinosteroid biosynthetic pathway, correlates with brassinosteroid deficiency in planta. J. Biol. Chem., 276: 25687–25691.

    CAS  Google Scholar 

  • Asami, T., Nakano, T., Nakashita, H., Sekimata, K., Shimada, Y. and Yoshida, S. 2003. The influence of chemical genetics on plant science: shedding light on functions and mechanism of action of brassinosteroids using biosynthesis inhibitors. J. Plant Growth Reg., 22: 336–349.

    CAS  Google Scholar 

  • Aspinall, G.O. 1980. Chemistry of cell wall polysaccharides. In J Preiss J (Ed.), Carbohydrates: Structure and Function. The Biochemistry of Plants. vol. 3. Academic Press, NewYork, USA: pp. 473–500.

    Google Scholar 

  • Azpiroz, R., Wu, Y., LoCascio, J.C., and Feldmann, K.A., 1998. An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell, 10: 219–230.

    CAS  PubMed  Google Scholar 

  • Bajguz, A. 2000. Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiol. Biochem., 38: 209–215.

    CAS  Google Scholar 

  • Bajguz, A., and Asami, T. 2004. Effects of brassinazole an inhibitor of brassinosteroid biosynthesis on light- and dark-grown Chlorella vulgaris. Planta, 218: 869–877.

    CAS  PubMed  Google Scholar 

  • Bajguz, A., and Asami, T. 2005. Suppression of Wolffia arrhiza growth by brassinazole, an inhibitor of brassinosteroid biosynthesis and its restoration by endogenous 24-epibrassinolide. Phytochem., 66: 1787–1796.

    CAS  Google Scholar 

  • Beguin, P., and Aubert, J.P. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev., 13: 25–28.

    CAS  PubMed  Google Scholar 

  • Belkhadir, Y., and Chory, J. 2006. Brassinosteroid Signaling: A paradigm for steroid hormone signaling from the cell surface. Science, 314: 1410–1411.

    CAS  PubMed  Google Scholar 

  • Bishop, G.J., and Yokota, T. 2001. Plants steroid hormones, brassinosteroids: Current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant, Cell Physiol., 42: 114–120.

    CAS  Google Scholar 

  • Buckeridge, M.S., Rayon, C., Urbanowics, B., Tine, A.M.A.S. and Carpita, N.C. 2004. Mixed linkage (1¨3), (1¨4) β-D-glucans of grasses. Cereal Chem., 18: 115–127.

    Google Scholar 

  • Campbell, P., and Braam, J. 1999. Xyloglucan endotransglycosylases: Diversity of genes, enzymes and potential wall-modifying functions. Trends Plant Sci., 4: 361–366.

    CAS  PubMed  Google Scholar 

  • Carpita, N.C., and Gibeaut, D.M. 1993. Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. Plant J., 3:1–30.

    CAS  PubMed  Google Scholar 

  • Carpita, N., and McCann, M. 2000. The cell wall. In BB Buchanan, W Gruissem, RL Jones (Ed.s), Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, USA: pp. 52–108.

    Google Scholar 

  • Catala, C., Rose, J.K.C., and Bennett, A. 1997. Auxin-regulation and spatial localization of an endo-1,4-β-D-glucanase and a xyloglucan endotransglycosylase in expanding tomato hypocotyls. Plant J., 12: 417–426.

    CAS  PubMed  Google Scholar 

  • Catterou, M., Dubois, F., Schaller, H., Aubanelle, L., Vilcot, B., Sangwan-Norreel, B.S., and Sangwan, R.S. 2001. Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. II. Effects of brassinosteroids on microtubules and cell elongation in the bul1 mutant. Planta, 212: 673–83.

    CAS  PubMed  Google Scholar 

  • Cavalier, D.M., Lerouxel, O., Neumetzler, L., Yamauchi, K., Reinecke, A., Freshour, G., Zabotina, O.A., Hahn, M.G., Burgert, I., Pauly, M., Raikhel, N.V., and Keegstra, K. 2008. Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell, 20: 1519–1537.

    CAS  PubMed  Google Scholar 

  • Choe, S., Dilkes, B.P., Fujioka, S., Takatsuto, S., Sakurai, A., and Feldmann, K.A. 1998. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell, 10: 231–243.

    CAS  PubMed  Google Scholar 

  • Choe, S., Dilkes, B.P., Gregory, B.D., Ross, A.S., Yuan, H., Noguchi, T., Fujioka, S., Takatsuto, S., Tanaka, A., Yoshida, S., Tax, F.E., and Feldmann, K.A. 1999. The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiol., 119: 897–907.

    CAS  PubMed  Google Scholar 

  • Choe, S., Schmitz, R.J., Fujioka, S., Takatsuto, S., Lee, M.O., and Yoshida, S. 2002. Arabidopsis brassinosteroid insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3β-like kinase. Plant Physiol., 130: 1506–1515.

    CAS  PubMed  Google Scholar 

  • Chory, J. 2001. Light, brassinosteroids, and Arabidopsis development. Proceedings of the Symposium: Plant Physiology 2000 and Beyond: Breaking the Mold, Plant Biology 2001-ASPP, Providence, Rhode Island, USA: Abstract 30005.

    Google Scholar 

  • Clouse, S.D. 1997. Molecular genetic analysis of brassinosteroid action. Physiol. Plant., 100: 702–709.

    CAS  Google Scholar 

  • Clouse, S.D. 2002. Brassinosteroids: plant counterparts to animal steroid hormones? Vitam Horm, 65: 195–223.

    CAS  PubMed  Google Scholar 

  • Clouse, S.D. 2002. Brassinosteroid Signal Transduction: Clarifying the pathway from ligand perception to gene expression. Mol. Cell, 10: 973–982.

    CAS  PubMed  Google Scholar 

  • Clouse, S.D., Langford, M., and McMorris, T.C. 1996. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol., 111: 671–678.

    CAS  PubMed  Google Scholar 

  • Clouse, S.D., and Sasse, J.M. 1998. Brassinosteroids: essential regulators of plant growth and development. Ann. Rev. Plant Phys. Plant Mol. Biol., 49: 427–451.

    CAS  Google Scholar 

  • Clouse, S.D, and Zurek, D. 1991. Molecular analysis of brassinolide action in plant growth and development. In HG Cutler, T Yokota, G Adam (Eds), Brassinosteroids: Chemistry, Bioactivity and Applications. American Chemical Society, Washington, D.C., USA: pp. 122–140.

    Google Scholar 

  • Cosgrove, D.J. 2000. Loosening of plant cell walls by expansins. Nature, 407: 321–326.

    CAS  PubMed  Google Scholar 

  • Cosgrove, D. 1997. Relaxation in a high-stress environment: the molecular basis of extensible cell walls and enlargement. Plant Cell, 9: 1031–1041.

    CAS  PubMed  Google Scholar 

  • Cyr, R.J., and Palevitz, B.A. 1995. Organization of cortical microtubules in plant cells. Curr. Opin. Cell Biol., 7: 65–71.

    CAS  PubMed  Google Scholar 

  • Deng, Z., Zhang, X., Tang, W., Oses-Prieto, J.A., Suzuki, N., Gendron, J.M., Chen, H., Guan, S., Chalkley, R.J., Peterman, T.K., Burlingame, A.L., and Wang, Z.-Y. 2007. A proteomic study of brassinosteroid response in Arabidopsis. Mol. Cell. Proteomics, 6: 2058–2071.

    CAS  PubMed  Google Scholar 

  • Desai, A., and Mitchison, T.J. 1997. Microtubule polymerization dynamics. Ann. Rev. Cell Dev. Biol., 13: 83–117.

    CAS  Google Scholar 

  • Dewitte, W., Riou-Khamlichi, C., Scofield, S., Healy, J.M.S., Jacqmard, A., Kilby, N.J., and Murray, J.A.H. 2003. Altered cell cycle distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the D-type cyclin CYCD3. Plant Cell, 15: 79–92.

    CAS  PubMed  Google Scholar 

  • Fanutti, C., Gidley, M.J., and Reid, J.S.G. 1993. Action of a pure xyloglucan endo-transglycosylase (formerly called xyloglucan-specific endo-(1¨4)-β-D-glucanase) from the cotyledons of germinated nasturtium seeds. Plant J., 3: 691–700.

    CAS  PubMed  Google Scholar 

  • Fatkhutdinova, R.A., Shakirova, F.M., Chemeris, A.V., Sabirzhanov, B.E., and Vakhitov, V.A. 2002. NOR activity in wheat species with different ploidy levels treated with phytohormones. Russ. J. Genet., 38: 1335–1338.

    CAS  Google Scholar 

  • Friedrichsen, D.M., Joazeiro, C.A.P., Li, J., Hunter, T., and Chory, J. 2000. Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiol., 123: 1247–1256.

    CAS  PubMed  Google Scholar 

  • Fry, S.C. 1989a. The structure and functions of xyloglucan. J. Exp. Bot., 40: 1–11.

    CAS  Google Scholar 

  • Fry, S.C. 1989b. Cellulases, hemicelluloses and auxin-stimulated growth: a possible relationship. Physiol. Plant., 75: 532–536.

    CAS  Google Scholar 

  • Fry, S.C., Smith, R.C., Renwick, K.F., Martin, D.J., Hodge, S.K., and Matthews, K.J. 1992. Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem. J., 282: 821–828.

    CAS  PubMed  Google Scholar 

  • Fu, F.Q., Mao, W.H., Shi, K., Zhou, Y.H., Asami, T., and Yu, J.Q. 2008. A role of brassinosteroids in early fruit development in cucumber. J. Exp. Bot., 59: 2299–2308.

    CAS  PubMed  Google Scholar 

  • Fu, Y., Li, H., and Yang, Z. 2002. The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell, 14: 777–794.

    CAS  PubMed  Google Scholar 

  • Fuerst, R.A.U.A., Soni, R., Murray, J.A.H. and Lindsey, K., 1996. Modulation of cyclin transcript levels in cultured cells of Arabidopsis thaliana. Plant Physiol., 112: 1023–1033.

    CAS  PubMed  Google Scholar 

  • Fujioka, S. 1999. Natural occurrence of brassinosteroids in the plant kingdom. In A. Sakurai, T. Yokota, S.D. Clouse (Ed.s). Brassinosteroids: Steroidal Plant Hormones. Springer Verlag, Tokyo: pp. 21–45.

    Google Scholar 

  • Fujioka, S., and Sakurai, A. 1997. Biosynthesis and metabolism of brassinosteroids. Physiol. Plant., 100: 710–715.

    CAS  Google Scholar 

  • Gaudinova, A., Sussenbekova, H., Vojtechova, M., Kaminek, M., Eder, J., and Kohout, L. 1995. Different effects of 2 brassinosteroids on growth, auxin and cytokinin content in tobacco callus-tissue. Plant Growth Reg., 17: 121–126.

    CAS  Google Scholar 

  • Geldner, N., Hyman, D.L., Wang, X., Schumacher, K., and Chory, J. 2007. Endosomal signaling of plant steroid receptor kinase BRI1. Genes & Develop., 21: 1598–1602.

    CAS  Google Scholar 

  • Gendrona, J.M., Haque, A., Gendron, N., Chang, T., Asami, T., and Wang, Z.-Y. 2008. Chemical genetic dissection of brassinosteroid–ethylene interaction. Mol. Plant, 1: 368–379.

    Google Scholar 

  • Goda, H., Sawa, S., Asami, T., Fujioka, S., Shimada, Y., and Yoshida, S. 2004. Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol., 134: 1555–1573.

    CAS  PubMed  Google Scholar 

  • Goda, H., Shimada, Y., Asami, T., Fujioka, S., and Yoshida, S. 2002. Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol., 130: 1319–1334.

    CAS  PubMed  Google Scholar 

  • Goddard, R.H., Wick, S.M., Silflow, C.D., and Snustad, D.P. 1994. Microtubule components of the plant cell cytoskeleton. Plant Physiol., 104: 1–6.

    CAS  PubMed  Google Scholar 

  • Gogarten, J.P., Fichmann, J., Braun, Y., Morgan, L., Styles, P., Taiz, S.L., 1992. The use of antisense mRNA to inhibit the tonoplast H+ ATPase in carrot. Plant Cell., 4: 851–864.

    CAS  PubMed  Google Scholar 

  • Gutierrez, C., Ramirez-Parra, E., Castellano, M.M., and del Pozo, J.C. 2002. G(1) to S transition: more than a cell cycle engine switch. Curr. Opin. Plant Biol., 5: 480–486.

    CAS  PubMed  Google Scholar 

  • He, J.-X., Fujioka, S., Li, T.-C., Kang, S.G., Seto, H., Takatsuto, S., Yoshida, S. and Jang, J.-C. 2003. Sterols regulate development and gene expression in Arabidopsis. Plant Physiol., 131:1258–1269.

    CAS  PubMed  Google Scholar 

  • Healy, J.M.S., Menges, M., Doonan, J.H., and Murray, J.A.H. 2001. The Arabidopsis D-type cyclins CycD2 and CycD3 both interact in vivo with the PSTAIRE cyclin-dependent Kinase Cdc2a but are differentially controlled. J. Biol. Chem., 276: 7041–7047.

    CAS  PubMed  Google Scholar 

  • Howell, W.M., Keller, G.E. III, Kirkpatrick, J.D., Jenkins, R.L., Hunsinger, R.N., and McLaughlin, E.W. 2007. Effects of the plant steroidal hormone, 24-epibrassinolide, on the mitotic index and growth of onion (Allium cepa) root tips. Genet. Mol. Res., 6: 50–58.

    CAS  PubMed  Google Scholar 

  • Hu, Y., Bao, F., and Li, J., 2000. Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant J., 24: 693–701.

    CAS  PubMed  Google Scholar 

  • Inzé, D., and De Veylder, L. 2006. Cell cycle regulation in plant development. Ann. Rev. Genet., 40: 77–105.

    PubMed  Google Scholar 

  • Iwasaki, T., and Shibaoka, H. 1991. Brassinosteroids act as regulators of tracheary-element differentiation in isolated Zinnia mesophyll cells. Plant Cell Physiol., 32: 1007–1014.

    CAS  Google Scholar 

  • Jauneau, A., Roy, S., Reis, D. and Vian, B. 1998. Probes and microscopical methods for the localization of pectins in plant cells. Int. J. Plant Sci., 159: 1–13.

    CAS  Google Scholar 

  • Johansson, P., Brumer, III H., Baumann, M.J., Kallas, A.M., Henriksson, H., Denman, S.E., Teeri, T.T. and Jonesa, T.A. 2004. Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding. Plant Cell., 16: 874–886.

    CAS  PubMed  Google Scholar 

  • Kartal, G., Temel, A., Arican, E., and Gozukirmizi, N. 2009. Effects of brassinosteroids on barley root growth, antioxidant system and cell division. Plant Growth Regul., 58: 261–267.

    CAS  Google Scholar 

  • Katsumi, M. 1991. Physiological modes of brassinolide action in cucumber hypocotyls growth. In HG Cutler, T Yokota, G Adam (Eds.). Brassinosteroids: Chemistry, Bioactivity, and Application. ACS Symp Ser 474. American Chemical Society, Washington, DC, USA: pp. 246–254.

    Google Scholar 

  • Kauschmann, A., Jessop, A., Knocz, C., Szekeres, M., Willmitzer, L., and Altmann, T. 1996. Genetic evidence for an essential role of brassinosteroids in plant development. Plant J., 9: 701–713.

    CAS  Google Scholar 

  • Kim, H.B., Kwon, M., Ryu, H., Fujioka, S., Takatsuto, S., Yoshida, S., An, C.S., Lee, I., Hwang, I., and Choe, S. 2006. The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol., 140: 548–557.

    CAS  PubMed  Google Scholar 

  • Klahre, U., Noguchi, T., Fujioka, S., Takatsuto, S., Yokota, T., Nomura, T., Yoshida, S., and Chua N.-H. 1998. The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. Plant Cell, 10: 1677–1690.

    CAS  PubMed  Google Scholar 

  • Knox, J.P. 2008. Revealing the structural and functional diversity of plant cell walls. Curr. Opin. Plant Biol., 11: 308–313.

    CAS  PubMed  Google Scholar 

  • Koka, C.V., Cerny, R.E., Gardner, R.G., Noguchi, T., Fujioka, S., Takatsuto, S., Yoshida, S., and Clouse, S.D. 2000. A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiol., 122: 85–98.

    CAS  PubMed  Google Scholar 

  • Ladyzhenskaya, E.P., and Korableva, N.P. 2001. Effects of growth regulators on H+ translocation across the membranes of plasma membrane vesicles from potato tuber cells. Appl. Biochem. Microbiol., 37: 521–523.

    CAS  Google Scholar 

  • Lee, Y., Choi, D., and Kende, H. 2001. Expansins: Ever-expanding numbers and functions. Curr. Opin. Plant Biol., 4: 527–532.

    CAS  PubMed  Google Scholar 

  • Li, J., and Chory, J. 1997. A putative leucine-rich receptor kinase involved in brassinosteroid signal transduction. Cell, 90: 929–938.

    CAS  PubMed  Google Scholar 

  • Li, J., and Chory, J. 1999. Brassinosteroid actions in plants. J. Exp. Bot., 50: 275–282.

    CAS  Google Scholar 

  • Li, J., Lease, K.A., Tax, F.E., and Walker, J.C. 2001. BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 98: 5916–5921.

    CAS  PubMed  Google Scholar 

  • Li, J., and Nam, K.H. 2002. Regulation of brassinosteroid singling by a GSK3/SHAGGY-like kinase. Science, 295: 1299–1301.

    CAS  PubMed  Google Scholar 

  • Li, J., Nam, K.H., Vafeados, D., and Chory, J. 2001. BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiol., 127: 14–22.

    CAS  PubMed  Google Scholar 

  • Li, J., Wen, J., Lease, K.A., Doke, J.T., Tax, F.E., and Walker, J.C. 2002. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell, 110: 213–222.

    CAS  PubMed  Google Scholar 

  • Li, L., Xu, J., Xu, Z.-H., and Xue, H.-W. 2005. Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in brassica and Arabidopsis. Plant Cell, 17: 2738–2753.

    CAS  PubMed  Google Scholar 

  • Lisso, J., Steinhauser, D., Altmann, T., Kopka, J. and Mussig, C. 2005. Identification of brassinosteroid-related genes by means of transcript co-response analyses. Nucleic Acids Res., 33: 2685–2696

    CAS  PubMed  Google Scholar 

  • Malberg, L.M., Tamblyn Lee J.M., and Forsberg, C.W. 1992. Degradation of cellulose and hemicelluloses by rumen microorganisms. In G Winkelmann (Ed.). Microbial Degradation of Natural Products. Weinheim, VCH Verlagsgesellschaft mbH: pp. 1127–1159.

    Google Scholar 

  • Mayumi, K., and Shibaoka, H. 1995. A possible double role for brassinolide in the reorientation of cortical microtubules in the epidermal cells of Azuki bean epicotyls. Plant Cell Physiol., 36: 173–181.

    CAS  Google Scholar 

  • Mora-García, S., Vert, G., Yin, Y., Caño-Delgado, A., Cheong, H., and Chory, J. 2004. Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes & Develop., 18: 448–460.

    Google Scholar 

  • Morillon, R., Catterou, M., Sangwan, R.S., Sangwan, B.S., and Lassalles, J.P. 2001. Brassinolide may control aquaporin activities in Arabidopsis thaliana. Planta, 212: 199–204.

    CAS  PubMed  Google Scholar 

  • Muday, G.K., Hu, S., and Brady, R. 2000. The actin cytoskeleton may control the polar distribution of an auxin transport protein. Gravit. Space Biol. Bull., 13: 75–83.

    CAS  PubMed  Google Scholar 

  • Munoz, F.J., Labrador, E. and Dopico, B. 1998. Brassinolides promote the expression of a new Cicer arietinum tubulin gene involved in the epicotyl elongation. Plant Mol. Biol., 37: 807–817.

    CAS  PubMed  Google Scholar 

  • Mussig, C., and Altmann, T. 1999. Physiology and molecular mode of action of brassinosteroids. Plant Physiol. Biochem., 37: 363–372.

    CAS  Google Scholar 

  • Mussig, C. and Altmann, T. 2003. Genomic brassinosteroid effects. J. Plant Growth Regul., 22: 313–324.

    PubMed  Google Scholar 

  • Mussig, C., Fischer, S., and Altmann, T. 2002. Brassinosteroid-regulated gene expression. Plant Physiol., 129: 1241–1251.

    CAS  PubMed  Google Scholar 

  • Nakajima, N., Shida, A., and Toyama S. 1996. Effects of brassinosteroid on cell division and colony formation of Chinese cabbage mesophyll protoplasts. Japan J. Crop Sci., 65: 114–118.

    CAS  Google Scholar 

  • Nemhauser, J.L., Mockler, T.C., and Chory, J. 2004. Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol. 2, p. e258.

    Google Scholar 

  • Nick, P. 1998. Signaling to the microtubular cytoskelton in plants. Int. Rev. Cytol., 184: 33–80.

    CAS  Google Scholar 

  • Nicol, F., His, I., Jauneau, A., Vernhettes, S., Canut, H., and Hofte, H. 1998. A plasma membrane-bound putative endo-1,4-β-Dglucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J., 17: 5563–5576.

    CAS  PubMed  Google Scholar 

  • Nishitani, K. 1997. The role of endoxyloglucan transferase in the organization of plant cells. Intern. Rev. Cytol., 173: 157–205.

    CAS  Google Scholar 

  • Nishitani, K., and Tominaga, R. 1991. A In vitro molecular weight increase in xyloglucan by an apoplastic enzyme preparation from epicotyls of Vigna angularis. Physiol. Plant., 82: 490–497.

    CAS  Google Scholar 

  • Nogales, E. 2000. Structural insights into microtubule function. Ann. Rev. Biochem., 69: 277–302.

    CAS  PubMed  Google Scholar 

  • Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Tax, F.E., Yoshida, S., and Feldmann, K.A. 2000. Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiol., 124: 201–209.

    CAS  PubMed  Google Scholar 

  • Nomura, T., Nakayama, M., Reid, J.B., Takeuchi, Y., and Yokota, T. 1997. Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiol., 113: 31–37.

    CAS  PubMed  Google Scholar 

  • Nomura, T., Kitasaka, Y., Takatsuto, S., Reid, J.B., Fukami, M., and Yokota, T. 1999. Brassinosteroid/sterol synthesis and plant growth as affected by lka and lkb mutations of pea. Plant Physiol., 119: 1517–1526.

    CAS  PubMed  Google Scholar 

  • Oakenfull, E.A., Riou-Khamlichi, C., Murray, J.A.H. 2002. Plant D-type cyclins and the control of G1 progression. Philos. Transac. Royal Soc. Biol. Series, 357: 749–760.

    CAS  Google Scholar 

  • Oh, M.H., and Clouse, S.D. 1998. Brassinolide affects the rate of cell division in isolated leaf protoplasts of Petunia hybrida. Plant Cell Rep., 17: 921–924.

    CAS  Google Scholar 

  • Oh, M.H., Romanow, W., Smith, R., Zamski, E., Sasse, J., and Clouse, S. 1998. Soybean BRU1 encodes a functional xyloglucan endo-transglycosylase that is highly expressed in inner epicotyl tissues during brassinosteroid-promoted elongation. Plant Cell Physiol., 39: 124–130.

    CAS  Google Scholar 

  • Peng, P., and Li, J. 2003. Brassinosteroid signal transduction: A mix of conservation and novelty. J. Plant Growth Regul., 22: 298-312.

    Google Scholar 

  • Pérez-Pérez, J.M., Ponce, M. and Micol, J.L. 2002. The UCU1Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis. Develop Biol., 242: 161–173.

    PubMed  Google Scholar 

  • Qu, Y., Feng, H., Wang, Y., Zhang, M., Cheng, J., Wang, X. and An, L. 2006. Nitric oxide functions as a signal in ultraviolet-B induced inhibition of pea stems elongation. Plant Sci., 170: 994–1000.

    CAS  Google Scholar 

  • Rea, P.A., and Poole, R.J. 1993. Vacuolar H+-translocating pyrophosphatase. Ann. Rev. Plant Physiol. Plant Mol. Biol., 44: 157–180.

    CAS  Google Scholar 

  • Rikiishi, K., Saisho, D., and Takeda, K. 2008. Uzu, a barley semi-dwarf gene, suppresses plant regeneration in calli derived from immature embryos breeding. Science, 58: 149–155.

    Google Scholar 

  • Roberts, K. 1994. The plant extracellular matrix: in a new expansive mood. Curr. Opin. Cell Biol., 6: 688–694.

    CAS  PubMed  Google Scholar 

  • Rose, J.K., Braam, J., Fry, S.C. and Nishitani, K. 2002. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature. Plant Cell Physiol., 43: 1421–1435.

    CAS  PubMed  Google Scholar 

  • Roth, P.S., Bach, T.J. and Thompson, M.J. 1989. Brassinosteroids: potent inhibitors of transformed tobacco callus cultures. Plant Sci., 59: 63–70.

    CAS  Google Scholar 

  • Sala, C., and Sala, F. 1985. Effect of brassinosteroid on cell division and enlargement in cultured carrot (Daucus carota L.) cells. Plant Cell Rep., 4: 144–147.

    CAS  Google Scholar 

  • Sasaki, S. 2008. Introduction for special issue for aquaporin expanding the world of aquaporins: new members and new functions. Pflugers Arch.- Euro. J. Physiol., 456: 647–649.

    CAS  Google Scholar 

  • Sasuga, Y., Tanaka, S., and Takenaga, H. 2000. Possible mechanism of the cell elongation induced by brassinolide in rice seedlings. Plant Cell Physiol., 41(supplement): s200.

    Google Scholar 

  • Schumacher, K., Vafeados, D., McCarthy, M., Sze, H., Wilkins, T., and Chory, J. 1999. The Arabidopsis det3 mutant reveals a central role for the vacuolar H+-ATPase in plant growth and development. Genes & Develop., 13: 3259–3270.

    CAS  Google Scholar 

  • Shen, W.H. 2002. The plant E2F-Rb pathway and epigenetic control. Trends Plant Sci., 7: 505–511.

    CAS  PubMed  Google Scholar 

  • Steffens, G.L. 1991. U.S. Department of Agriculture Brassins Project: 1970-1980. In HG Cutler, T Yokota, G Adam (Ed.s). Brassinosteroids: Chemistry, Bioactivity, & Applications. American Chemical Society, Washington, D.C., USA: pp. 2–17.

    Google Scholar 

  • Suga, S., Komatsu, S. and Maeshima, M. 2002. Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings. Plant Cell Physiol., 43: 1229–1237.

    CAS  PubMed  Google Scholar 

  • Sunohara, H., Kawai, T., Shimizu-Sato, S., Sato, Y., Sato, K., and Kitano, H. 2009. A dominant mutation of TWISTED DWARF 1 encoding an α-tubulin protein causes severe dwarfism and right helical growth in rice. Genes Genet. Syst., 84: 209–218.

    CAS  PubMed  Google Scholar 

  • Szekeres, M., Nemeth, K., Koncz-Kalman, Z., Mathur, J., Kauschmann, A., Altmann, T., Redei, G.P., Nagy, F., Schell, J., and Koncz, C. 1996. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell, 85: 171–182.

    CAS  PubMed  Google Scholar 

  • Takahashi, T., Gasch, A., Nishizawa, N. and Chua, N.H. 1995. The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes & Develop., 9: 97–107.

    CAS  Google Scholar 

  • Takeda, T., Furuta, Y., Awano, T., Mizuno, K., Mitsuishi, Y., and Hayashi, T. 2002. Suppression and acceleration of cell elongation by integration of xyloglucans in pea stem segments. Proc. Nat. Acad. Sci. USA, 99: 9055–9060.

    CAS  PubMed  Google Scholar 

  • Takeda, T., Miller, J.G., and Fry, S.C. 2008. Anionic derivatives of xyloglucan function as acceptor but not donor substrates for xyloglucan endotransglucosylase activity. Planta, 227: 893–905.

    CAS  PubMed  Google Scholar 

  • Tang, W., Deng, Z., Oses-Prieto, J.A., Suzuki, N., Zhu, S., Zhang, X., Burlingame, A.L., and Wang, Z.-Y. 2008. Proteomics studies of brassinosteroid signal transduction using prefractionation and two-dimensional DIGE. Mol. Cell. Proteomics, 7: 728–738.

    CAS  PubMed  Google Scholar 

  • Tominaga, R., and Sakurai, N. 1996. Brassinolide induces vacuolar H+-ATPase activation and stem elongation. Plant Cell Physiol., (Suppl.) 37: S152.

    Google Scholar 

  • Tominaga, R., Sakurai, N., and Kuraishi, S. 1994. Brassinolide-induced elongation of inner tissues of segments of squash (Cucurbita maxima Duch.) hypocotyls. Plant Cell Physiol., 35: 1103–1106.

    CAS  Google Scholar 

  • Trimarchi, J.M., and Lees, J.A., 2002. Sibling rivalry in the E2F family. Nature. Rev. Mol. Cell Biol., 3: 11–20.

    CAS  Google Scholar 

  • Umeda, M., Umeda-Hara, C., and Uchimiya, H. 2000. A cyclin-dependent kinaseactivating kinase regulates differentiation of root initial cells in Arabidopsis. Proc. Nat. Acad. Sci. USA, 97: 13396–13400.

    CAS  PubMed  Google Scholar 

  • Uozo, S., Tanaka-Ueguchi, M., Kitano, H., Hattori, K., and Matsuoka, M. 2000. Characterization of XET-related genes of rice. Plant Physiol., 122: 853–860.

    Google Scholar 

  • Van Sandt, V.S.T., Suslov, D., Verbelen, J.-P. and Vissenberg, K. 2007. Xyloglucan endotransglucosylase activity loosens a plant cell wall. Ann. Bot., 100: 1467–1473.

    CAS  PubMed  Google Scholar 

  • Vissenberg, K., Fry, S.C., Pauly, M., Hofte, H. and Verbelen, J.P. 2005. XTH acts at the microfibril-matrix interface during cell elongation. J. Exp. Bot., 56: 673-683.

    Google Scholar 

  • Vissenberg, K., Martinez-Vilchez, I.M., Verbelen, J.P., Miller, J.G., and Fry, S.C. 2000. In vivo colocalization of xyloglucan endotransglycosylase activity and its donor substrate in the elongation zone of Arabidopsis roots. Plant Cell, 12: 1229–1237.

    CAS  PubMed  Google Scholar 

  • Xu, W., Campbell, P., Vargheese, A.K., and Braam, J. 1996. The Arabidopsis XET-related gene family: environmental and hormonal regulation of expression. Plant J., 9: 879–889.

    CAS  PubMed  Google Scholar 

  • Xu, W., Prugganan, M.M., Polisensky, D.H., Antosiewicz, D.M., Fry, S.C., and Braam, J. 1995. Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell, 7: 1555–1567.

    CAS  PubMed  Google Scholar 

  • Wadaa, Y. and Katsumi, M. 2005. Brassinolide as a modulator of the activities of cell wall loosening proteins. Plant Biotech., 22: 33–38.

    Google Scholar 

  • Wang, T.-W., Cosgrove, D.J., and Arteca, R.N. 1993. Brassinosteroid stimulation of hypocotyl elongation and wall relaxation in pakchoi (Brassica chinensis cv Lei-choi). Plant Physiol., 101: 965–968.

    CAS  PubMed  Google Scholar 

  • Wang, Z.Y., Nakano, T., Gendron, J., He, J.X., Chen, M., Vafeados, D., Yang, Y.L., Fujioka, S., Yoshida, S., Asami, T., and Chory, J. 2002. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Develop. Cell, 2: 505–513.

    CAS  Google Scholar 

  • Wang, Z.Y., Seto, H., Fujioka, S., Yoshida, S., and Chory, J. 2001. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature, 410: 380–383.

    CAS  PubMed  Google Scholar 

  • Wasteneys, G.O., and Yang, Z. 2004. New views on the plant cytoskeleton. Plant Physiol. 136: 3884–3891.

    CAS  PubMed  Google Scholar 

  • Williamson, R.E. 1991. Orientation of cortical microtubules in interphase plant cells. Int. Rev. Cytol., 129: 135–206.

    Google Scholar 

  • Wu, S.C., Blumer, J.M., Darvill, A.G., and Albersheim, P. 1996. Characterization of an endo-β-1,4-glucanase gene induced by auxin in elongating pea epicotyls. Plant Physiol., 110: 163–170.

    CAS  PubMed  Google Scholar 

  • Yamaguchi, M., Kato, H., Yoshida, S., Yamamura, S., Uchimiya, H., and Umeda, M. 2003. Control of in vitro organogenesis by cyclin-dependent kinase activities in plants. Proc. Nat. Acad. Sci. USA, 100: 8019–8023.

    CAS  PubMed  Google Scholar 

  • Yamamoto, R., Demura, T., and Fukuda, H. 1997. Brassinosteroids induce entry into the final stage of tracheary element differentiation in cultured Zinnia cells. Plant Cell Physiol., 38: 980–983.

    CAS  PubMed  Google Scholar 

  • Yamamoto, R., Fujioka, S., Demura, T., Takatsuto, S., Yoshida, S., and Fukuda, H. 2001. Brassinosteroid levels increase drastically prior to morphogenesis of tracheary elements. Plant Physiol., 125: 556–563.

    CAS  PubMed  Google Scholar 

  • Yamamuro, C., Ihara, Y., Wu, X., Noguchi, T., Fujioka, S., Takatsuto, S., Ashikari, M., Kitano, H., and Matsuoka, M. 2000. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 12: 1591–1606.

    CAS  PubMed  Google Scholar 

  • Yang, G., Jan, A., and Komatsu, S. 2009. Characterization of β-tubulin 4 regulated by gibberellins in rice leaf sheath. Biol. Plant., 53: 422–428.

    CAS  Google Scholar 

  • Yin, Y., Wang, Z.Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T., and Chory, J. 2002. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell, 109: 181–191.

    CAS  PubMed  Google Scholar 

  • Yokota, T. 1997. The structure, biosynthesis and function of brassinosteroids. Trends Plant Sci., 2: 137–143.

    Google Scholar 

  • Yokoyama, R., Rose, J.K., and Nishitani, K. 2004. A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis. Plant Physiol., 134: 1088–1099.

    CAS  PubMed  Google Scholar 

  • Yoshizumi, T., Nagata, N., Shimada, H. and Matsui, M. 1999. An Arabidopsis cell cycle-dependent kinase-related gene CDC2b, plays a role in regulating seedling growth in darkness. Plant Cell, 11: 1883–1896.

    CAS  PubMed  Google Scholar 

  • Zurek, D.M., and Clouse, S.D. 1994. Molecular cloning and characterization of a brassinosteroid-regulated gene from elongating soybean (Glycine max L.) epicotyls. Plant Physiol., 104: 161–170.

    CAS  PubMed  Google Scholar 

  • Zurek, D.M., Rayle, D.L., McMorris, T.C., and Clouse, S.D. 1994. Investigation of gene expression, growth kinetics, and wall extensibility during brassinosteroid-regulated stem elongation. Plant Physiol., 104: 505–513.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pereira-Netto, A.B. (2011). Genomic and non-genomic events involved in the brassinosteroid-promoted plant cell growth. In: Hayat, S., Ahmad, A. (eds) Brassinosteroids: A Class of Plant Hormone. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0189-2_8

Download citation

Publish with us

Policies and ethics