Skip to main content

Regulatory mechanisms of brassinosteroid signaling in plants

  • Chapter
  • First Online:
Brassinosteroids: A Class of Plant Hormone

Abstract

Brassinosteroids (BRs) are steroidal hormones essential for plant growth and development. Over the past decade, genetic, molecular, and proteomic studies have established the complete BR signaling pathway and revealed important regulatory mechanisms. In Arabidopsis thaliana, BRs are perceived by receptor kinases that transduce the signal from the cell surface to the nucleus by an intracellular cascade of protein-protein interactions, involving kinases, phosphatases, 14-3-3 proteins, and nuclear transcription factors. In addition, the BR signaling is regulated by the plant endocytic machinery because the increased endosomal localization of the BR receptor enhances the signaling. As several counterparts of the BR signaling proteins of Arabidopsis are found in rice (Oryza sativa), the BR signaling is apparently conserved between monocotyledonous and dicotyledonous plants. In this chapter, we discuss the currently available data on BR signaling pathway and the latest findings on BR signaling regulatory mechanisms in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albrecht, C., Russinova, E., Hecht, V., Baaijens, E., and de Vries, S., 2005. The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis. Plant Cell, 17: 3337–3349.

    CAS  PubMed  Google Scholar 

  • Albrecht, C., Russinova, E., Kemmerling, B., Kwaaitaal, M., and de Vries, S.C., 2008. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE proteins serve brassinosteroid-dependent and –independent signaling pathways. Plant Physiol., 148: 611–619.

    CAS  PubMed  Google Scholar 

  • Asami, T., Min, Y.K., Nagata, N., Yamagishi, K., Takatsuto, S., Fujioka, S., Murofushi, N., Yamaguchi, I., and Yoshida, S., 2000. Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol., 123: 93–99.

    CAS  PubMed  Google Scholar 

  • Asami, T., Nakano, T., and Fujioka, S., 2005. Plant brassinosteroid hormones. Vitam. Horm., 72: 479–504.

    CAS  PubMed  Google Scholar 

  • Bai, M.-Y., Zhang, L.-Y., Gampala, S.S., Zhu, S.-W., Song, W.-Y., Chong, K., and Wang, Z.-Y., 2007. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc. Natl. Acad. Sci. USA, 104: 13839–13844.

    CAS  PubMed  Google Scholar 

  • Belkhadir, Y., Wang, X., and Chory, J., 2006. Arabidopsis brassinosteroid signaling pathway. Science STKE, 2006: cm5 (doi:10.1126/stke.3642006cm5).

    Google Scholar 

  • Caño-Delgado, A., Yin, Y., Yu, C., Vafeados, D., Mora-García, S., Cheng, J.-C., Nam, K.H., Li, J., and Chory, J., 2004. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131: 5341–5351.

    PubMed  Google Scholar 

  • Chevalier, D., Morris, E., and Walker, J.C., 2009. 14-3-3 and FHA domains mediate phosphoprotein interactions. Annu. Rev. Plant Biol., 60: 67–91.

    CAS  PubMed  Google Scholar 

  • Chinchilla, D., Shan, L., He, P., de Vries, S., and Kemmerling, B., 2009. One for all: the receptor-associated kinase BAK1. Trends Plant Sci., 14: 535–541.

    CAS  PubMed  Google Scholar 

  • Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nürnberger, T., Jones, J.D.G., Felix, G., and Boller, T., 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 448: 497–500.

    CAS  PubMed  Google Scholar 

  • Choe, S., Schmitz, R.J., Fujioka, S., Takatsuto, S., Lee, M.-O., Yoshida, S., Feldmann, K.A., and Tax, F.E., 2002. Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3β-like kinase. Plant Physiol., 130: 1506–1515.

    CAS  PubMed  Google Scholar 

  • Chono, M., Honda, I., Zeniya, H., Yoneyama, K., Saisho, D., Takeda, K., Takatsuto, S., Hoshino, T., and Watanabe, Y., 2003. A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol., 133: 1209–1219.

    CAS  PubMed  Google Scholar 

  • Chory, J., Nagpal, P., and Peto, C.A., 1991. Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell, 3: 445–459.

    CAS  PubMed  Google Scholar 

  • Clouse, S.D., and Sasse, J.M., 1998. Brassinosteroids: Essential regulators of plant growth and development. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49: 427–451.

    CAS  PubMed  Google Scholar 

  • Clouse, S.D., Langford, M., and McMorris, T.C., 1996. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol., 111: 671–678.

    CAS  PubMed  Google Scholar 

  • Colcombet, J., Boisson-Dernier, A., Ros-Palau, R., Vera, C.E., and Schroeder, J.I., 2005. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. Plant Cell, 17: 3350–3361.

    CAS  PubMed  Google Scholar 

  • Daniel, X., Lacomme, C., Morel, J.-B., and Roby, D., 1999. A novel myb oncogene homologue in Arabidopsis thaliana related to the hypersensitive cell death. Plant J., 20: 57–66.

    CAS  PubMed  Google Scholar 

  • De Rybel, B., Audenaert, D., Vert, G., Rozhon, W., Mayerhofer, J., Peelman, F., Coutuer, S., Denayer, T., Jansen, L., Nguyen, L., Vanhoutte, I., Beemster, G.T.S., Vleminckx, K., Jonak, C., Chory, J., Inzé, D., Russinova, E., and Beeckman, T., 2009. Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chem. Biol., 16: 594–604.

    CAS  PubMed  Google Scholar 

  • De Smet, I., Voβ, U., Jürgens, G., and Beeckman, T., 2009. Receptor-like kinases shape the plant. Nat. Cell Biol., 11: 1166–1173.

    CAS  PubMed  Google Scholar 

  • Dettmer, J., Hong-Hermesdorf, A., Stierhof, Y.-D., and Schumacher, K., 2006. Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell, 18: 715–730.

    CAS  Google Scholar 

  • Ehsan, H., Ray, W.K., Phinney, B., Wang, X., Huber, S.C., and Clouse, S.D., 2005. Interaction of Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase with a homolog of mammalian TGF-β receptor interacting protein. Plant J., 43: 251–261.

    CAS  PubMed  Google Scholar 

  • Failor, K.L., Desyatnikov, Y., Finger, L.A., and Firestone, G.L., 2007. Glucocorticoid-induced degradation of glycogen synthase kinase-3 protein is triggered by serum- and glucocorticoid-induced protein kinase and Akt signaling and controls β-catenin dynamics and tight junction formation in mammary epithelial tumor cells. Mol. Endocrinol., 21: 2403–2415.

    CAS  PubMed  Google Scholar 

  • Feng, X.-H., and Derynck, R., 1997. A kinase subdomain of transforming growth factor-β (TGF-β) type I receptor determines the TGF-β intracellular signaling specificity. EMBO J., 16: 3912–3923.

    CAS  PubMed  Google Scholar 

  • Forde, J.E., and Dale, T.C., 2007. Glycogen synthase kinase 3: a key regulator of cellular fate. Cell. Mol. Life Sci., 64: 1930–1944.

    CAS  PubMed  Google Scholar 

  • Friedrichsen, D.M., Joazeiro, C.A.P., Li, J., Hunter, T., and Chory, J., 2000. Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiol., 123: 1247–1255.

    CAS  PubMed  Google Scholar 

  • Friedrichsen, D.M., Nemhauser, J., Muramitsu, T., Maloof, J.N., Alonso, J., Ecker, J.R., Furuya, M., and Chory, J., 2002. Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics, 162: 1445–1456.

    CAS  PubMed  Google Scholar 

  • Fujioka, S., and Yokota, T., 2003. Biosynthesis and metabolism of brassinosteroids. Annu. Rev. Plant Biol., 54: 137–164.

    CAS  PubMed  Google Scholar 

  • Gampala, S.S., Kim, T.-W., He, J.-X., Tang, W., Deng, Z., Bai, M.-Y., Guan, S., Lalonde, S., Sun, Y., Gendron, J.M., Chen, H., Shibagaki, N., Ferl, R.J., Ehrhardt, D., Chong, K., Burlingame, A.L., and Wang, Z.-Y., 2007. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Dev. Cell, 13: 177–189.

    CAS  PubMed  Google Scholar 

  • Geldner, N., Friml, J., Stierhof, Y.-D., Jürgens, G., and Palme, K., 2001. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature, 413: 425–428.

    CAS  PubMed  Google Scholar 

  • Geldner, N., Hyman, D.L., Wang, X., Schumacher, K., and Chory, J., 2007. Endosomal signaling of plant steroid receptor kinase BRI1. Genes Dev., 21: 1598–1602.

    CAS  PubMed  Google Scholar 

  • Grove, M.D., Spencer, G.F., Rohwedder, W.K., Mandava, N., Worley, J.F., Warthen, J.D. Jr, Steffens, G.L., Flippen-Anderson, J.L., and Cook, J.C. Jr, 1979. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature, 281: 216–217.

    CAS  Google Scholar 

  • He, J.-X., Gendron, J.M., Sun, Y., Gampala, S.S., Gendron, N., Sun, C.Q., and Wang, Z.-Y., 2005. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 307: 1634–1638 [Err. 308: 1743].

    CAS  PubMed  Google Scholar 

  • He, J.-X., Gendron, J.M., Yang, Y., Li, J., and Wang, Z.-Y., 2002. The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA, 99: 10185–10190.

    CAS  PubMed  Google Scholar 

  • He, K., Gou, X., Yuan, T., Lin, H., Asami, T., Yoshida, S., Russell, S.D., and Li, J., 2007. BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Curr. Biol., 17: 1109–1115.

    CAS  PubMed  Google Scholar 

  • He, Z.., Wang, Z.-Y., Li, J., Zhu, Q., Lamb, C., Ronald, P., and Chory, J., 2000. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science, 288: 2360–2363.

    CAS  PubMed  Google Scholar 

  • Hecht, V., Vielle-Calzada, J.-P., Hartog, M.V., Schmidt, E.D.L., Boutilier, K., Grossniklaus, U., and de Vries, S.C., 2001. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol., 127: 803–816.

    CAS  PubMed  Google Scholar 

  • Heese, A., Hann, D.R., Gimenez-Ibanez, S., Jones, A.M.E., He, K., Li, J., Schroeder, J.I., Peck, S.C., and Rathjen, J.P., 2007. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl. Acad. Sci. USA, 104: 12217–12222.

    CAS  PubMed  Google Scholar 

  • Hicks, G.R., and Raikhel, N.V., 2009. Opportunities and challenges in plant chemical biology. Nat. Chem. Biol., 5: 268–272.

    CAS  PubMed  Google Scholar 

  • Hink, M.A., Shah, K., Russinova, E., de Vries, S.C., and Visser, A.J.W.G., 2008. Fluorescence fluctuation analysis of Arabidopsis thaliana somatic embryogenesis receptor-like kinase and brassinosteroid insensitive 1 receptor oligomerization. Biophys. J., 94: 1052–1062.

    CAS  PubMed  Google Scholar 

  • Hirabayashi, S., Matsushita, Y., Sato, M., OhI, R., Kasahara, M., Abe, H., and Nyunoya, H., 2004. Two proton pump interactors identified from a direct phosphorylation screening of a rice cDNA library by using a recombinant BRI1 receptor kinase. Plant Biotechnol., 21: 35–45.

    Google Scholar 

  • Holton, N., Caño-Delgado, A., Harrison, K., Montoya, T., Chory, J., and Bishop, G.J., 2007. Tomato BRASSINOSTEROID INSENSITIVE1 is required for systemin-induced root elongation in Solanum pimpinellifolium but is not essential for wound signaling. Plant Cell, 19: 1709–1717.

    CAS  PubMed  Google Scholar 

  • Hong, Z., Jin, H., Fitchette, A.-C., Xia, Y., Monk, A.M., Faye, L., and Li, J., 2009. Mutations of an α1,6 mannosyltransferase inhibit endoplasmic reticulum–associated degradation of defective brassinosteroid receptors in Arabidopsis. Plant Cell, 21: 3792–3802.

    CAS  PubMed  Google Scholar 

  • Hong, Z., Jin, H., Tzfira, T., and Li, J., 2008. Multiple mechanism-mediated retention of a defective brassinosteroid receptor in the endoplasmic reticulum of Arabidopsis. Plant Cell, 20: 3418–3429.

    CAS  PubMed  Google Scholar 

  • Hyun, Y., and Lee, I., 2006. KIDARI, encoding a non-DNA binding bHLH protein, represses light signal transduction in Arabidopsis thaliana. Plant Mol. Biol., 61: 283–296.

    CAS  PubMed  Google Scholar 

  • Irani, N.G., and Russinova, E., 2009. Receptor endocytosis and signaling in plants. Curr. Opin. Plant Biol., 12: 653–659.

    CAS  PubMed  Google Scholar 

  • Jaillais, Y., Fobis-Loisy, I., Miège, C., and Gaude, T., 2008. Evidence for a sorting endosome in Arabidopsis root cells. Plant J., 53: 237–247.

    CAS  PubMed  Google Scholar 

  • Jiang, J., and Clouse, S.D., 2001. Expression of a plant gene with sequence similarity to animal TGF-β receptor interacting protein is regulated by brassinosteroids and required for normal plant development. Plant J., 26: 35–45.

    CAS  PubMed  Google Scholar 

  • Jin, H., Hong, Z., Su, W., and Li, J., 2009. A plant-specific calreticulin is a key retention factor for a defective brassinosteroid receptor in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA, 106: 13612–13617.

    CAS  PubMed  Google Scholar 

  • Jin, Y.H., Kim, H., Oh, M., Ki, H., and Kim, K., 2009. Regulation of Notch1/NICD and Hes1 expressions by GSK-3α/β. Mol. Cells, 27: 15–19.

    CAS  PubMed  Google Scholar 

  • Jin, H., Yan, Z., Nam, K.H., and Li, J., 2007. Allele-specific suppression of a defective brassinosteroid receptor reveals a physiological role of UGGT in ER quality control. Mol. Cell, 26: 821–830.

    CAS  PubMed  Google Scholar 

  • Jonak, C., and Hirt, H., 2002. Glycogen synthase kinase 3/SHAGGY-like kinases in plants: an emerging family with novel functions. Trends Plant Sci., 7: 457–461.

    CAS  PubMed  Google Scholar 

  • Jope, R.S., and Johnson, G.V.W., 2004. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci., 29: 95–102.

    CAS  PubMed  Google Scholar 

  • Karlova, R., Boeren, S., Russinova, E., Aker, J., Vervoort, J., and de Vries, S., 2006. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 protein complex includes BRASSINOSTEROID INSENSITIVE1. Plant Cell, 18: 626–638.

    CAS  PubMed  Google Scholar 

  • Karlova, R., Boeren, S., van Dongen, W., Kwaaitaal, M., Aker, J., Vervoort, J., and de Vries, S., 2009. Identification of in vitro phosphorylation sites in the Arabidopsis thaliana somatic embryogenesis receptor-like kinases. Proteomics, 9: 368–379.

    CAS  PubMed  Google Scholar 

  • Kauschmann, A., Jessop, A., Koncz, C., Szekeres, M., Willmitzer, L., and Altmann, T., 1996. Genetic evidence for an essential role of brassinosteroids in plant development. Plant J., 9: 701–713.

    CAS  Google Scholar 

  • Kemmerling, B., Schwedt, A., Rodriguez, P., Mazzotta, S., Frank, M., Abu Qamar, S., Mengiste, T., Betsuyaku, S., Parker, J.E., Müssig, C., Thomma, B.P.H.J., Albrecht, C., de Vries, S.C., Hirt, H., and Nürnberger, T., 2007. The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. Curr. Biol., 17: 1116–1122.

    CAS  PubMed  Google Scholar 

  • Kim, T.-W., Guan, S., Sun, Y., Deng, Z., Tang, W., Shang, J.-X., Sun, Y., Burlingame, A.L., and Wang, Z.-Y., 2009. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat. Cell Biol., 11: 1254–1260.

    CAS  PubMed  Google Scholar 

  • Kim, W.-Y., Wang, X., Wu, Y., Doble, B.W., Patel, S., Woodgett, J.R., and Snider, W.D., 2009. GSK-3 is a master regulator of neural progenitor homeostasis. Nat. Neurosci., 12: 1386–1393.

    Google Scholar 

  • Kinoshita, T., Caño-Delgado, A., Seto, H., Hiranuma, S., Fujioka, S., Yoshida, S., and Chory, J., 2005. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature, 433: 167–171.

    CAS  PubMed  Google Scholar 

  • Kleine-Vehn, J., Dhonukshe, P., Swarup, R., Bennett, M., and Friml, J., 2006. Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell, 18: 3171–3181.

    CAS  PubMed  Google Scholar 

  • Kleine-Vehn, J., Leitner, J., Zwiewka, M., Sauer, M., Abas, L., Luschnig, C., and Friml, J., 2008. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc. Natl. Acad. Sci. USA, 105: 17812–17817.

    CAS  PubMed  Google Scholar 

  • Kockeritz, L., Doble, B., Patel, S., and Woodgett, J.R., 2006. Glycogen synthase kinase-3-- an overview of an over-achieving protein kinase. Curr. Drug Targets, 7: 1377–1388.

    CAS  PubMed  Google Scholar 

  • Koh, S., Lee, S.-C., Kim, M.-K., Koh, J.H., Lee, S., An, G., Choe, S. and Kim, S.-R., 2007. T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol. Biol., 65: 453–466.

    CAS  PubMed  Google Scholar 

  • Lee, S., Lee, S., Yang, K.-Y., Kim, Y.-M., Park, S.-Y., Kim, S.Y., and Soh, M.-S., 2006. Overexpression of PRE1 and its homologous genes activates gibberellin-dependent responses in Arabidopsis thaliana. Plant Cell Physiol., 47: 591–600.

    CAS  PubMed  Google Scholar 

  • Li, D., Wang, L., Wang, M., Xu, Y.-Y., Luo, W., Liu, Y.-J., Xu, Z.-H., Li, J., and Chong, K., 2009. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnol. J., 7: 791–806.

    CAS  PubMed  Google Scholar 

  • Li, J., and Chory, J., 1997. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 90: 929–938.

    CAS  PubMed  Google Scholar 

  • Li, J., and Nam, K.H., 2002. Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science, 295: 1299–1301.

    CAS  PubMed  Google Scholar 

  • Li, J., Lease, K.A., Tax, F.E., and Walker, J.C., 2001a. BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 98: 5916–5921.

    CAS  PubMed  Google Scholar 

  • Li, J., Nam, K.H., Vafeados, D., and Chory, J., 2001b. BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiol., 127: 14–22.

    CAS  PubMed  Google Scholar 

  • Li, J., Wen, J., Lease, K.A., Doke, J.T., Tax, F.E., and Walker, J.C., 2002a. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell, 110: 213–222.

    CAS  PubMed  Google Scholar 

  • Li, L., Yu, X., Thompson, A., Guo, M., Yoshida, S., Asami, T., Chory, J., and Yin, Y., 2009. Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression. Plant J., 58: 275–286.

    CAS  PubMed  Google Scholar 

  • Lösel, R., and Wehling, M., 2003. Nongenomic actions of steroid hormones. Nat. Rev. Mol. Cell Biol., 4: 46–56.

    PubMed  Google Scholar 

  • Meares, G.P., and Jope, R.S., 2007. Resolution of the nuclear localization mechanism of glycogen synthase kinase-3: functional effects in apoptosis. J. Biol. Chem., 282: 16989–17001.

    CAS  PubMed  Google Scholar 

  • Montoya, T., Nomura, T., Farrar, K., Kaneta, T., Yokota, T., and Bishop, G.J., 2002. Cloning the tomato curl3 gene highlights the putative dual role of the leucine-rich repeat receptor kinase tBRI1/ SR160 in plant steroid hormone and peptide hormone signaling. Plant Cell, 14: 3163–3176.

    CAS  PubMed  Google Scholar 

  • Mora-García, S., Vert, G., Yin, Y., Caño-Delgado, A., Cheong, H., and Chory, J., 2004. Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev., 18: 448–460.

    PubMed  Google Scholar 

  • Morinaka, Y., Sakamoto, T., Inukai, Y., Agetsuma, M., Kitano, H., Ashikari, M., and Matsuoka, M., 2006. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol., 141: 924–931.

    CAS  PubMed  Google Scholar 

  • Nakamura, A., Fujioka, S., Sunohara, H., Kamiya, N., Hong, Z., Inukai, Y., Miura, K., Takatsuto, S., Yoshida, S., Ueguchi-Tanaka, M., Hasegawa, Y., Kitano, H., and Matsuoka, M., 2006. The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiol, 140: 580–590.

    CAS  PubMed  Google Scholar 

  • Nam, K.H., and Li, J., 2002. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell, 110: 203–212.

    CAS  PubMed  Google Scholar 

  • Nam, K.H., and Li, J., 2004. The Arabidopsis transthyretin-like protein is a potential substrate of BRASSINOSTEROID-INSENSITIVE 1. Plant Cell, 16: 2406–2417.

    CAS  PubMed  Google Scholar 

  • Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Yoshida, S., Yuan, H., Feldmann, K.A., and Tax, F.E., 1999. Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol., 121: 743–752.

    CAS  PubMed  Google Scholar 

  • Noh, B., Lee, S.-H., Kim, H.-J., Yi, G., Shin, E.-A., Lee, M., Jung, K.-J., Doyle, M.R., Amasino, R.M., and Noh, Y.-S., 2004. Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. Plant Cell, 16: 2601–2613.

    CAS  PubMed  Google Scholar 

  • Nomura, T., Bishop, G.J., Kaneta, T., Reid, J.B., Chory, J., and Yokota, T., 2003. The LKA gene is a BRASSINOSTEROID INSENSITIVE 1 homolog of pea. Plant J., 36: 291–300.

    CAS  PubMed  Google Scholar 

  • Oh, M.-H., Ray, W.K., Huber, S.C., Asara, J.M., Gage, D.A., and Clouse, S.D., 2000. Recombinant brassinosteroid insensitive 1 receptor-like kinase autophosphorylates on serine and threonine residues and phosphorylates a conserved peptide motif in vitro. Plant Physiol., 124: 751–765.

    CAS  PubMed  Google Scholar 

  • Oh, M.-H., Wang, X., Kota, U., Goshe, M.B., Clouse, S.D., and Huber, S.C., 2009. Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA, 106: 658–663.

    CAS  PubMed  Google Scholar 

  • Oki, K., Inaba, N., Kitano, H., Takahashi, S., Fujisawa, Y., Kato, H., and Iwasaki, Y., 2009. Study of novel d1 alleles, defective mutants of the α subunit of heterotrimeric G-protein in rice. Genes Genet. Syst., 84: 35–42.

    CAS  PubMed  Google Scholar 

  • Patel, S., Doble, B.W., MacAulay, K., Sinclair, E.M., Drucker, D.J., and Woodgett, J.R., 2008. Tissue-specific role of glycogen synthase kinase 3β in glucose homeostasis and insulin action. Mol. Cell. Biol., 28: 6314–6328.

    CAS  PubMed  Google Scholar 

  • Peng, P., Yan, Z., Zhu, Y., and Li, J., 2008. Regulation of the Arabidopsis GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 through proteasome-mediated protein degradation. Mol. Plant, 1: 338–346.

    CAS  PubMed  Google Scholar 

  • Pérez-Pérez, J.M., Ponce, M.R., and Micol, J.L., 2002. The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis. Dev. Biol., 242: 161–173.

    PubMed  Google Scholar 

  • Pillitteri, L.J., and Torii, K.U., 2007. Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development. BioEssays, 29: 861–870.

    CAS  PubMed  Google Scholar 

  • Robert, S., Chary, S.N., Drakakaki, G., Li, S., Yang, Z., Raikhel, N.V., and Hicks, G.R., 2008. Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. Proc. Natl. Acad. Sci. USA, 105: 8464–8469.

    CAS  PubMed  Google Scholar 

  • Russinova, E., Borst, J.W., Kwaaitaal, M., Caño-Delgado, A., Yin, Y., Chory, J., and de Vries, S.C., 2004. Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). Plant Cell, 16: 3216–3229.

    CAS  PubMed  Google Scholar 

  • Ryu, H., Kim, K., Cho, H., Park, J., Choe, S., and Hwang, I., 2007. Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell, 19: 2749–2762.

    CAS  PubMed  Google Scholar 

  • Schlessinger, J., 2000. Cell signaling by receptor tyrosine kinases. Cell, 103: 211–225.

    CAS  PubMed  Google Scholar 

  • Schlessinger, J., 2002. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell, 110: 669–672

    CAS  PubMed  Google Scholar 

  • Shiu, S.-H., Karlowski, W.M., Pan, R., Tzeng, Y.-H., Mayer, K.F.X., and Li, W.-H., 2004. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell, 16: 1220–1234.

    CAS  PubMed  Google Scholar 

  • Sorkin, A., and von Zastrow, M., 2009. Endocytosis and signalling: intertwining molecular networks. Nat. Rev. Mol. Cell Biol., 10: 609–622.

    CAS  PubMed  Google Scholar 

  • Sun, Y., and Allen, R.D., 2005. Functional analysis of the BIN2 genes of cotton. Mol. Genet. Genomics, 274: 51–59.

    CAS  PubMed  Google Scholar 

  • Sun, Y., Fokar, M., Asami, T., Yoshida, S., and Allen, R.D., 2004. Characterization of the Brassinosteroid insensitive 1 genes of cotton. Plant Mol. Biol., 54: 221–232.

    CAS  PubMed  Google Scholar 

  • Szekeres, M., Németh, K., Koncz-Kálmán, Z., Mathur, J., Kauschmann, A., Altmann, T., Rédei, G.P., Nagy, F., Schell, J., and Koncz, C., 1996. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell, 85: 171–182.

    CAS  PubMed  Google Scholar 

  • Tanaka, A., Nakagawa, H., Tomita, C., Shimatani, Z., Ohtake, M., Nomura, T., Jiang, C.-J., Dubouzet, J.G., Kikuchi, S., Sekimoto, H., Yokota, T., Asami, T., Kamakura, T., and Mori, M., 2009. BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol., 151: 669–680.

    CAS  PubMed  Google Scholar 

  • Tang, W., Deng, Z., and Wang, Z.-Y., 2010. Proteomics shed light on the brassinosteroid signaling mechanisms. Curr. Opin. Plant Biol., 13: 27–33.

    CAS  PubMed  Google Scholar 

  • Tang, W., Kim, T.-W., Oses-Prieto, J.A., Sun, Y., Deng, Z., Zhu, S., Wang, R., Burlingame, A.L., and Wang, Z.-Y., 2008. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science, 321: 557–560.

    CAS  PubMed  Google Scholar 

  • Thummel, C.S., and Chory, J., 2002. Steroid signaling in plants and insects---common themes, different pathways. Genes Dev., 16: 3113–3129.

    CAS  PubMed  Google Scholar 

  • Toledo-Ortiz, G., Huq, E., and Quail, P.H., 2003. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell, 15: 1749–1770.

    CAS  PubMed  Google Scholar 

  • Tong, H., Jin, Y., Liu, W., Li, F., Fang, J., Yin, Y., Qian, Q., Zhu, L., and Chu, C., 2009. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J., 58: 803–816.

    CAS  PubMed  Google Scholar 

  • Vailleau, F., Daniel, X., Tronchet, M., Montillet, J.-L., Triantaphylidès, C., and Roby, D., 2002. A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proc. Natl. Acad. Sci. USA, 99: 10179–10184.

    CAS  PubMed  Google Scholar 

  • Vembar, S.S., and Brodsky, J.L., 2008. One step at a time: endoplasmic reticulum-associated degradation. Nat. Rev. Mol. Cell Biol., 9: 944–957.

    CAS  PubMed  Google Scholar 

  • Vert, G., Walcher, C.L., Chory, J., and Nemhauser, J.L., 2008. Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc. Natl. Acad. Sci. USA, 105: 9829–9834.

    CAS  PubMed  Google Scholar 

  • Vert, G., and Chory, J., 2006. Downstream nuclear events in brassinosteroid signalling. Nature, 441: 96–100.

    CAS  PubMed  Google Scholar 

  • Vert, G., Nemhauser, J.L., Geldner, N., Hong, F., and Chory, J., 2005. Molecular mechanisms of steroid hormone signaling in plants. Annu. Rev. Cell Dev. Biol., 21: 177–201.

    CAS  PubMed  Google Scholar 

  • Wang, L., Wang, Z., Xu, Y., Joo, S.-H., Kim, S.-K., Xue, Z., Xu, Z., Wang, Z., and Chong, K., 2009. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J., 57: 498–510.

    CAS  PubMed  Google Scholar 

  • Wang, L., Xu, Y.-y., Li, J., Powell, R.A., Xu, Z.-h. and Chong, K., 2007. Transgenic rice plants ectopically expressing AtBAK1 are semi-dwarfed and hypersensitive to 24-epibrassinolide. J. Plant Physiol., 164: 655–664.

    CAS  PubMed  Google Scholar 

  • Wang, L., Xu, Y.-Y., Ma, Q.-B., Li, D., Xu, Z.-H., and Chong, K., 2006. Heterotrimeric G protein α subunit is involved in rice brassinosteroid response. Cell Res., 16: 916–922.

    PubMed  Google Scholar 

  • Wang, X., and Chory, J., 2006. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science, 313: 1118–1122.

    CAS  PubMed  Google Scholar 

  • Wang, X., Li, X., Meisenhelder, J., Hunter, T., Yoshida, S., Asami, T., and Chory, J., 2005a. Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Dev. Cell, 8: 855–865.

    CAS  PubMed  Google Scholar 

  • Wang, X., Goshe, M.B., Soderblom, E.J., Phinney, B.S., Kuchar, J.A., Li, J., Asami, T., Yoshida, S., Huber, S.C., and Clouse, S.D., 2005b. Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase. Plant Cell, 17: 1685–1703.

    CAS  PubMed  Google Scholar 

  • Wang, X., Kota, U., He, K., Blackburn, K., Li, J., Goshe, M.B., Huber, S.C., and Clouse, S.D., 2008. Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev. Cell, 15: 220–235.

    CAS  PubMed  Google Scholar 

  • Wang, Z.-Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., Yang, Y., Fujioka, S., Yoshida, S., Asami, T., and Chory, J., 2002. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev. Cell, 2: 505–513.

    CAS  PubMed  Google Scholar 

  • Wang, Z.-Y., Seto, H., Fujioka, S., Yoshida, S., and Chory, J., 2001. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature, 410: 380–383.

    CAS  PubMed  Google Scholar 

  • Yamaguchi, I., and Yoshida, S., 2000. Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol., 123: 93–99

    PubMed  Google Scholar 

  • Yamamuro, C., Ihara, Y., Wu, X., Noguchi, T., Fujioka, S., Takatsuto, S., Ashikari, M., Kitano, H., and Matsuoka, M., 2000. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 12: 1591–1605.

    CAS  PubMed  Google Scholar 

  • Yan, Z., Zhao, J., Peng, P., Chihara, R.K., and Li, J., 2009. BIN2 functions redundantly with other Arabidopsis GSK3-like kinases to regulate brassinosteroid signaling. Plant Physiol., 150: 710–721.

    CAS  PubMed  Google Scholar 

  • Yang, X., Song, L., and Xue, H.-W., 2008. Membrane steroid binding protein 1 (MSBP1) stimulates tropism by regulating vesicle trafficking and auxin redistribution. Mol. Plant, 1: 1077–1087.

    CAS  PubMed  Google Scholar 

  • Yang, X.-H., Xu, Z.-H., and Xue, H.-W., 2005. Arabidopsis membrane steroid binding protein 1 is involved in inhibition of cell elongation. Plant Cell, 17: 116–131.

    CAS  PubMed  Google Scholar 

  • Yin, Y., Vafeados, D., Tao, Y., Yoshida, S., Asami, T., and Chory, J., 2005. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell, 120: 249–259.

    CAS  PubMed  Google Scholar 

  • Yin, Y., Wang, Z.-Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T., and Chory, J., 2002. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell, 109: 181–191.

    CAS  PubMed  Google Scholar 

  • Yoo, M.-J., Albert, V.A., Soltis, P.S., and Soltis, D.E., 2006. Phylogenetic diversification of glycogen synthase kinase 3/SHAGGY-like kinase genes in plants. BMC Plant Biol., 6: 3.

    PubMed  Google Scholar 

  • Yu, X., Li, L., Li, L., Guo, M., Chory, J., and Yin, Y., 2008. Modulation of brassinosteroid-regulated gene expression by jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc. Natl. Acad. Sci. USA, 105: 7618–7623.

    CAS  PubMed  Google Scholar 

  • Yun, H.S., Bae, Y.H., Lee, Y.J., Chang, S.C., Kim, S.-K., Li, J., and Nam, K.H., 2009. Analysis of phosphorylation of the BRI1/BAK1 complex in Arabidopsis reveals amino acid residues critical for receptor formation and activation of BR signaling. Mol. Cells, 27: 183–190.

    CAS  PubMed  Google Scholar 

  • Zhang, L.-Y., Bai, M.-Y., Wu, J., Zhu, J.-Y., Wang, H., Zhang, Z., Wang, W., Sun, Y., Zhao, J., Sun, X., Yang, H., Xu, Y., Kim, S.-H., Fujioka, S., Lin, W.-H., Chong, K., Lu, T., and Wang, Z.-Y., 2009. Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell, 21: 3767–3780.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., Feng, S., Chen, F., Chen, H., Wang, J., McCall, C., Xiong, Y., and Deng, X.W., 2008. Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes. Plant Cell, 20: 1437–1455.

    CAS  PubMed  Google Scholar 

  • Zhao, J., Peng, P., Schmitz, R.J., Decker, A.D., Tax, F.E., and Li, J., 2002. Two putative BIN2 substrates are nuclear components of brassinosteroid signaling. Plant Physiol., 130: 1221–1229.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Codreanu, MC., Russinova, E. (2011). Regulatory mechanisms of brassinosteroid signaling in plants. In: Hayat, S., Ahmad, A. (eds) Brassinosteroids: A Class of Plant Hormone. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0189-2_2

Download citation

Publish with us

Policies and ethics