A Two-Way Link Transceiver Design

  • Emanuele Lopelli
  • Johan van der Tang
  • Arthur van Roermund
Part of the Analog Circuits and Signal Processing book series (ACSP)


In this chapter the two-way link scenario is covered. In the first part of this chapter, the general guidelines for a two-way link transmitter design are given and a set of specification is derived. Starting from the fact that the frequency synthesizer is the real bottleneck in the design of an ultra-low power frequency-hopping radio for WSNs, the synthesizer specifications are derived. A new fast frequency-hopping synthesizer is proposed that achieves the targeted specifications with a power consumption smaller than 0.5 mW. The synthesizer building blocks are described focusing on the trade-offs required by the silicon implementation of the proposed architecture. In the second part of the chapter, the receiver design is discussed. A link budget analysis is performed and general guidelines in the design of the receiver are given. The chapter ends with the simulation and experimental. These results show that it is possible to implement a fast frequency-hopping scheme not only in complex and less power constrained radios (like Bluetooth radios), but also in severely power constrained radios meant for WSNs.


Power Consumption Frequency Divider Flicker Noise Receiver Chain Walsh Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 14.
    B.P. Otis et al., An ultra-low power MEMS-based two-channel transceiver for wireless sensor networks, in Symposium on VLSI Circuits (2004), pp. 20–23 Google Scholar
  2. 35.
    A. Rofougaran et al., A single-chip 900-MHz spread-spectrum wireless transceiver in 1-μm CMOS—part II: receiver design. IEEE J. Solid-State Circuits 33, 535–547 (1998) CrossRefGoogle Scholar
  3. 43.
    C.C. Enz, N. Scolari, U. Yodprasit, Ultra low-power radio design for wireless sensor networks, in International Workshop on Radio-Frequency Integration Technology, Nov. 2005, pp. 1–17 Google Scholar
  4. 55.
    A. Bellaouar et al., Low-power direct digital frequency synthesis for wireless communications. IEEE J. Solid-State Circuits 35, 385–390 (2000) CrossRefGoogle Scholar
  5. 57.
    J.M.P. Langlois, D. Al-Khalili, Low power direct digital frequency synthesizers in 0.18 μm CMOS, in IEEE Custom Integrated Circuits Conf. (CICC), Sept. 2003, pp. 283–286 Google Scholar
  6. 107.
  7. 108.
  8. 109.
    ADF7020 Datasheet,
  9. 110.
    SX1223 Datasheet,
  10. 111.
    H. Tanaka, T. Ieki, Y. Hirano, Y. Ishikawa, SAW oscillator multi-chip module for 300 MHz low power radio, in IEEE International Frequency Control Symposium, May 1997, pp. 836–840 Google Scholar
  11. 112.
    B. Otis, J.M. Rabaey, A 300 μW 1.9 GHz CMOS oscillator utilizing micromachined resonators. IEEE J. Solid-State Circuits 38, 1271–1274 (2003) CrossRefGoogle Scholar
  12. 113.
    Y.H. Chee, A.M. Niknejad, J. Rabaey, A sub-100 μW 1.9-GHz CMOS oscillator using FBAR resonator, in IEEE Radio Frequency Integrated Circuits Symposium (RFIC) (2005), pp. 123–126 Google Scholar
  13. 114.
    E. Lopelli et al., A 0.75 V 325 μW 40 dB-SFDR frequency-hopping synthesizer for wireless sensor networks in 90 nm CMOS, in IEEE International Solid-State Circuits Conf. (ISSCC), Feb. 2009, pp. 228–229 Google Scholar
  14. 115.
    J.A. Weldon et al., A 1.75-GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers. IEEE J. Solid-State Circuits 36, 2003–2015 (2001) CrossRefGoogle Scholar
  15. 116.
    A. SenGupta, F.L. Walls, Effect of aliasing on spurs and PM noise in frequency dividers, in Frequency Control Symposium and Exhibition, July 2000, pp. 541–548 Google Scholar
  16. 117.
    V. Geffroy, G. De Astis, E. Bergeault, RF mixers using standard digital CMOS 0.35 μm process, in International Microwave Symposium IEEE MMT-S, vol. 1, May 2001, pp. 83–86 Google Scholar
  17. 118.
    F. Behbahani, Y. Kishigami, J. Leete, A.A. Abidi, CMOS mixers and polyphase filters for large image rejection. IEEE J. Solid-State Circuits 36, 873–887 (2001) CrossRefGoogle Scholar
  18. 119.
    J.L. Walsh, A closed set of normal orthogonal functions. Am. J. Math. 45, 5–24 (1923) zbMATHCrossRefGoogle Scholar
  19. 120.
    R. Kitai, Synthesis of periodic sinusoids from Walsh waves. IEEE Trans. Instrum. Meas. 24, 313–317 (1975) CrossRefGoogle Scholar
  20. 121.
    A. Bateman, Transmitter and receiver architectures,
  21. 122.
    A.H. Aly, D.W. Beishline, B. El-Sharawy, Filter integration using on-chip transformers, in Microwave Symposium Digest IEEE MTT-S Digest, vol. 3, June 2004, pp. 1975–1978 Google Scholar
  22. 123.
    Y.-C. Wu, M.F. Chang, On-chip spiral inductors and bandpass filters using active magnetic energy recovery, in IEEE Custom Integrated Circuits Conf. (CICC), May 2002, pp. 275–278 Google Scholar
  23. 124.
    D. Shim et al., Ultra-miniature mionolithic FBAR filters for wireless application, in Microwave Symposium Digest IEEE MTT-S Digest, June 2005, pp. 213–216 Google Scholar
  24. 125.
    B. Murmann, ADC performance survey 1997–2009, (2009)
  25. 126.
    T. Song et al., A 2.4-GHz sub-mW CMOS receiver front-end for wireless sensors network. IEEE Microw. Wirel. Compon. Lett. 16, 206–208 (2006) CrossRefGoogle Scholar
  26. 127.
    H.A. Alzaher, H.O. Elwan, M. Ismail, A CMOS highly linear channel-select filter for 3G multistandard integrated wireless receivers. IEEE J. Solid-State Circuits 37, 27–37 (2002) CrossRefGoogle Scholar
  27. 128.
    Which ADC architecture is right for your application?,, June 2005, Analog Dialogue
  28. 129.
    N. Verma, A.P. Chandrakasan, A 25 μW 100 kS/s ADC for wireless microsensor application, in IEEE International Solid-State Circuits Conf. (ISSCC), Feb. 2006, pp. 222–223 Google Scholar
  29. 130.
    A. McEwan, S. Shah, S. Collins, A direct digital frequency synthesis system for low power communications, in European Solid-State Circuits Conf. (ESSCIRC), Sept. 2003, pp. 393–396 Google Scholar
  30. 131.
    J. Jiang, E.K.F. Lee, A ROM-less direct digital frequency synthesizer using segmented nonlinear digital-to-analog converter, in IEEE Custom Integrated Circuits Conf. (CICC), May 2001, pp. 165–168 Google Scholar
  31. 132.
    X. Li et al., A direct digital frequency synthesizer based on two segment fourth-order parabolic approximation. IEEE Trans. Consum. Electron. 55, 322–326 (2009) CrossRefGoogle Scholar
  32. 133.
    A.N. Mohieldin, A. Emira, E. Sanchez-Sinencio, A 100 MHz, 8 mW ROM-less quadrature direct digital frequency synthesizer. IEEE J. Solid-State Circuits 37, 1235–1243 (2002) CrossRefGoogle Scholar
  33. 134.
    J. Vankka et al., A direct digital synthesizer with an on-chip D/A-converter, in European Solid-State Circuits Conf. (ESSCIRC), Sept. 1997, pp. 216–219 Google Scholar
  34. 135.
    A. Torosyan, D. Fu, A.N. Willson Jr., A 300-MHz quadrature direct digital synthesizer/mixer in 0.25-μm CMOS. IEEE J. Solid-State Circuits 38, 875–887 (2003) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Emanuele Lopelli
    • 1
  • Johan van der Tang
    • 2
  • Arthur van Roermund
    • 3
  1. 1.Broadcom CorporationBunnikThe Netherlands
  2. 2.Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations