Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems pp 167-225 | Cite as
Locality and Entanglement
Chapter
Abstract
We will discuss in this chapter various notions of locality and quantum entanglement. Bell’s approach to the problem of quantum nonlocality does not include the spatial dependence of entangled states which is crucial for this problem. We will present a new approach, suggested by Volovich, to the problem of quantum nonlocality which is based on the consideration of the spatially depending entangled states and which restores locality.
Keywords
Entangle State Quantum Correlation Local Realism Quantum Nonlocality Entanglement Witness
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 3.Accardi, L.: Noncommutative Markov chain. In: International School of Mathematical Physics, Camerino, pp. 268–295 (1974) Google Scholar
- 19.Accardi, L., Ohya, M.: Compound channels, transition expectations, and liftings. Appl. Math. Optim. 39, 33–59 (1999) MATHCrossRefMathSciNetGoogle Scholar
- 38.Accardi, L., Fidaleo, F.: Entangled Markov chains. Ann. Mat. Pura Appl. (2004) Google Scholar
- 39.Accardi, L., Matsuoka, T., Ohya, M.: Entangled Markov chains are indeed entangled. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9(3), 379–390 (2006) MATHCrossRefMathSciNetGoogle Scholar
- 40.Accardi, L., Matsuoka, T., Ohya, M.: Entangled quantum Markov chains satisfying the PPT condition. TUS preprint Google Scholar
- 48.Afriat, A., Selleri, F.: The Einstein, Podolsky, and Rosen Paradox in Atomic, Nuclear, and Particle Physics. Plenum, New York (1999) MATHGoogle Scholar
- 61.Araki, H., Lieb, E.: Entropy inequalities. Commun. Math. Phys. 18, 160170 (1970) CrossRefMathSciNetGoogle Scholar
- 62.Araki, H.: Some properties of modular conjugation operator of a von Neumann algebra and non-commutative Radon Nikodym theorem with a chain rule. Pac. J. Math. 50, 309 (1974) MATHMathSciNetGoogle Scholar
- 65.Araki, H.: Mathematical Theory of Quantum Fields. Oxford University Press, London (1999) MATHGoogle Scholar
- 80.Banaszek, K., Wodkiewicz, K.: Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation. Phys. Rev. A 58, 4345 (1998) CrossRefADSGoogle Scholar
- 82.Barett, J., Collins, D., Hardy, L., Kent, A., Popescu, S.: Quantum nonlocality, Bell inequalities and the memory loophole. Phys. Rev. A 66, 042111 (2002) CrossRefADSGoogle Scholar
- 93.Belavkin, V.P., Ohya, M.: Quantum entropy and information in discrete entangled states. Infin. Dimens. Anal., Quantum Probab. Relat. Top. 4(2), 137–160 (2001) MATHCrossRefMathSciNetGoogle Scholar
- 94.Belavkin, V.P., Ohya, M.: Entanglement, quantum entropy and mutual information. Proc. R. Soc. Lond. A 458, 209–231 (2002) MATHCrossRefMathSciNetADSGoogle Scholar
- 95.Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964) Google Scholar
- 96.Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Mechanics. Cambridge University Press, Cambridge (1989) Google Scholar
- 108.Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996) CrossRefMathSciNetADSGoogle Scholar
- 122.Bogoliubov, N.N., Schirkov, D.V.: Introduction to Theory of Quantized Fields. Nauka, Moscow (1985) Google Scholar
- 123.Bogoliubov, N.N., Logunov, A.A., Oksak, A.I., Todorov, I.T.: General Principles of Quantum Field Theory. Nauka, Moscow (1987) Google Scholar
- 124.Bohm, D.: Quantum Theory. Prentice-Hall, New York (1951) Google Scholar
- 130.Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. I. Springer, New York (1979) Google Scholar
- 164.Chruscinski, D., Hirota, Y., Matsuoka, T., Ohya, M.: Remarks on the degree of entanglement. In: Quantum Bio-Informatics, vol. IV. World Scientific, Singapore (2011, to appear) Google Scholar
- 169.Clauser, J.F., Shimony, A.: Bell’s theorem: experimental tests and implications. Rep. Prog. Phys. 41, 1881–1927 (1978) CrossRefADSGoogle Scholar
- 174.Connes, A.: Characterization des espaces vectoriels ordonn és sous-jacents aux algébres de von Neumann. Ann. Inst. Fourier 24, 121 (1974) MATHMathSciNetGoogle Scholar
- 183.Chruściński, D., Kossakowski, A.: Circulant states with positive partial transpose. Phys. Rev. A 76(3), 032308 (2007), 14 pp. CrossRefMathSciNetADSGoogle Scholar
- 186.Cuculescu, I.: Some remarks on tensor products of standard forms of von Neumann algebras. Boll. Unione Mat. Ital. 7(b), 907 (1993) MATHMathSciNetGoogle Scholar
- 218.Eistein, A., Podolsky, B. Rosen N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935) CrossRefADSGoogle Scholar
- 219.Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991) MATHCrossRefMathSciNetADSGoogle Scholar
- 231.Fannes, M., Nachtergaele, B., Werner, R.F.: Fintiely correlated pure states. J. Funct. Anal. 120, 511–534 (1994) MATHCrossRefMathSciNetGoogle Scholar
- 248.Fichtner, K.-H., Ohya, M.: Quantum teleportation and beam splitting. Commun. Math. Phys. 225, 67–89 (2002) MATHCrossRefMathSciNetADSGoogle Scholar
- 310.Haag, R.: Local Quantum Physics. Fields, Particles, Algebras. Springer, Berlin (1996) MATHGoogle Scholar
- 324.Henderson, L., Vedral, V: Information, relative entropy of entanglement, and irreversibility. Phys. Rev. Lett. 84, 2014 (2000) CrossRefADSGoogle Scholar
- 343.Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. Nauka, Moscow (1980) Google Scholar
- 349.Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996) MATHCrossRefMathSciNetADSGoogle Scholar
- 350.Horodecki, M., Horodecki, P., Horodecki, R.: Limits for entanglement measures. Phys. Rev. Lett. 84, 2014 (2000) CrossRefMathSciNetADSGoogle Scholar
- 351.Horodecki, M., Horodecki, P., Horodecki, R.: Mixed state entanglement and quantum condition. In: Quantum Information. Springer Tracts in Modern Physics, vol. 173, pp. 151–195 (2001) CrossRefGoogle Scholar
- 379.Jamiołkowski, A.: Linear transformation which preserve trace and positive semidefiteness of operators. Rep. Math. Phys. 3, 275 (1972) MATHCrossRefADSGoogle Scholar
- 383.Jamiołkowski, J., Matsuoka, T., Ohya, M.: Entangling operator and PPT condition. TUS preprint Google Scholar
- 389.Jurkowski, J., Chruściński, D., Rutkowski, A.: A class of bound entangled states of two qutits. Open Syst. Inf. Dyn. 16, 235–242 (2009) MATHCrossRefMathSciNetGoogle Scholar
- 390.Johansen, L.M.: EPR correlations and EPW distributions revisited. Phys. Lett. A 236, 173 (1997) MATHCrossRefMathSciNetADSGoogle Scholar
- 397.Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, vol. IV. Birkhäuser, Boston (1986) MATHGoogle Scholar
- 406.Khrennikov, A.: Superanalysis. Kluwer Academic, Dordrecht (1999) MATHGoogle Scholar
- 413.Khrennikov, A., Volovich, I.V.: Einstein, Podolsky and Rosen versus Bohm and Bell. quant-ph/0211078 (2002)
- 414.Khrennikov, A., Volovich, I.V.: Quantum nonlocality, EPR model, and Bell’s theorem. In: Proceedings of the 3nd Sakharov Conference on Physics, vol. 2, pp. 269–276. World Scientific, Singapore (2003) Google Scholar
- 460.Labuschagne, L.E., Majewski, W.A., Marciniak, M.: On k-decomposable positive maps. Exp. Math. 24, 103 (2006) MATHMathSciNetGoogle Scholar
- 472.Larsson, J.-A.: Modeling the singlet state with local variables. Phys. Lett. A 256, 245 (1999) CrossRefADSGoogle Scholar
- 487.Lloyd, S.: Universe as quantum computer, how decoherence leads to complexity. Complexity 3(1), 32–35 (1997) CrossRefMathSciNetGoogle Scholar
- 501.Majewski, W.A.: On a characterization of PPT states. e-print arXiv:0708.3980
- 502.Majewski, W.A.: Separable and entangled state of composite quantum systems-rigorous description. Open Syst. Inf. Dyn. 6, 79 (1999) MATHCrossRefMathSciNetGoogle Scholar
- 503.Majewski, W.A.: Measures of entanglement—a Hilbert space approach. In: Quantum Prob. and White Noise Analysis, vol. 24, p. 127 (2009) Google Scholar
- 504.Majewski, W.A., Matsuoka, T., Ohya, M.: Characterization of partial positive transposition states and measures of entanglement. J. Math. Phys. 50, 113509 (2009) CrossRefMathSciNetADSGoogle Scholar
- 513.Matsuoka, T., Ohya, M.: Quantum entangled state and its characterization. In: Foundations of Probability and Physics-3. AIP, vol. 750, pp. 298–306 (2005) Google Scholar
- 537.Murao, M., Plenio, M.B., Vedral, V.: Quantum information distribution via entanglement. Phys. Rev. A 60, 032311 (2000) CrossRefADSGoogle Scholar
- 578.Ohya, M., Petz, D.: Quantum Entropy and Its Use. Springer, Berlin (1993) MATHGoogle Scholar
- 645.Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996) MATHCrossRefMathSciNetADSGoogle Scholar
- 673.Santos, E.: Unreliability of performed tests of Bell’s inequality using parametric down-converted photons. Phys. Lett. A 212, 10 (1996) MATHCrossRefMathSciNetADSGoogle Scholar
- 692.Schrödinger, E.: Foundations of quantum mechanics. Naturwissenschaften 48, 52 (1935) Google Scholar
- 693.Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807–812 (1935), 823–828, 844–849 CrossRefADSGoogle Scholar
- 698.Schweber, S.S.: An Introduction to Relativistic Quantum Field Theory. Dover, New York (2005) Google Scholar
- 736.Streater, R.F., Wightman, A.S.: PCT, Spin, Statistics and All That. Benjamin, New York (1964) Google Scholar
- 737.Stormer, E.: Contemp. Math. 62, 345–356 (1987) MathSciNetGoogle Scholar
- 745.Terhal, B.M.: Detecting quantum entanglement. J. Theor. Comput. Sci. 287(1), 313–335 (2002) MATHCrossRefMathSciNetGoogle Scholar
- 776.Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997) MATHCrossRefMathSciNetADSGoogle Scholar
- 789.Volovich, I.V., Volovich, Y.I.: Bell’s theorem and random variables. quant-ph/0009058 (2000)
- 790.Volovich, I.V.: Bell’s theorem and locality in space. quant-ph/0012010 (2000)
- 791.Volovich, I.V.: An attack to quantum cryptography from space. quant-ph/0012054 (2000)
- 792.Volovich, I.V., Volovich, Y.I.: On classical and quantum cryptography. In: Lectures at the Volterra–CIRM International School, Quantum Computer and Quantum Information, Trento, Italy, 25–31 July 2001. quant-ph/0108133
- 793.Volovich, I.V.: Quantum cryptography in space and Bell’s theorem. In: Khrennikov, A. (ed.) Foundations of Probability and Physics: Proceedings of the Conference, Vaxjo, Smoland, Sweden, 25 November–1 December 2000. QP-PQ: Quantum Probability and White Noise Analysis, vol. 13, pp. 364–373. World Scientific, Singapore (2002) Google Scholar
- 794.Volovich, I.V.: Quantum information in space and time. quant-ph/0108073 (2001)
- 797.Volovich, I.V.: Towards quantum information theory in space and time. In: Khrennikov, A. (ed.) Proceedings of the Conference, Quantum Theory: Reconsideration of Foundations, Vaxjo, Smaland, Sweden, 17–21 June 2001, pp. 423–441. Vaxjo University Press, Vaxjo (2002) Google Scholar
- 811.Weinberg, S.: The Quantum Theory of Fields. Cambridge University Press, Cambridge (1995) Google Scholar
- 813.Werner, R.F.: All teleportation and dense coding schemes. quant-ph/0003070 (2000)
- 818.Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983) CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media B.V. 2011