We will discuss in this chapter various notions of locality and quantum entanglement. Bell’s approach to the problem of quantum nonlocality does not include the spatial dependence of entangled states which is crucial for this problem. We will present a new approach, suggested by Volovich, to the problem of quantum nonlocality which is based on the consideration of the spatially depending entangled states and which restores locality.


Entangle State Quantum Correlation Local Realism Quantum Nonlocality Entanglement Witness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 3.
    Accardi, L.: Noncommutative Markov chain. In: International School of Mathematical Physics, Camerino, pp. 268–295 (1974) Google Scholar
  2. 19.
    Accardi, L., Ohya, M.: Compound channels, transition expectations, and liftings. Appl. Math. Optim. 39, 33–59 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 38.
    Accardi, L., Fidaleo, F.: Entangled Markov chains. Ann. Mat. Pura Appl. (2004) Google Scholar
  4. 39.
    Accardi, L., Matsuoka, T., Ohya, M.: Entangled Markov chains are indeed entangled. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9(3), 379–390 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 40.
    Accardi, L., Matsuoka, T., Ohya, M.: Entangled quantum Markov chains satisfying the PPT condition. TUS preprint Google Scholar
  6. 48.
    Afriat, A., Selleri, F.: The Einstein, Podolsky, and Rosen Paradox in Atomic, Nuclear, and Particle Physics. Plenum, New York (1999) zbMATHGoogle Scholar
  7. 61.
    Araki, H., Lieb, E.: Entropy inequalities. Commun. Math. Phys. 18, 160170 (1970) CrossRefMathSciNetGoogle Scholar
  8. 62.
    Araki, H.: Some properties of modular conjugation operator of a von Neumann algebra and non-commutative Radon Nikodym theorem with a chain rule. Pac. J. Math. 50, 309 (1974) zbMATHMathSciNetGoogle Scholar
  9. 65.
    Araki, H.: Mathematical Theory of Quantum Fields. Oxford University Press, London (1999) zbMATHGoogle Scholar
  10. 80.
    Banaszek, K., Wodkiewicz, K.: Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation. Phys. Rev. A 58, 4345 (1998) CrossRefADSGoogle Scholar
  11. 82.
    Barett, J., Collins, D., Hardy, L., Kent, A., Popescu, S.: Quantum nonlocality, Bell inequalities and the memory loophole. Phys. Rev. A 66, 042111 (2002) CrossRefADSGoogle Scholar
  12. 93.
    Belavkin, V.P., Ohya, M.: Quantum entropy and information in discrete entangled states. Infin. Dimens. Anal., Quantum Probab. Relat. Top. 4(2), 137–160 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 94.
    Belavkin, V.P., Ohya, M.: Entanglement, quantum entropy and mutual information. Proc. R. Soc. Lond. A 458, 209–231 (2002) zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. 95.
    Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964) Google Scholar
  15. 96.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Mechanics. Cambridge University Press, Cambridge (1989) Google Scholar
  16. 108.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996) CrossRefMathSciNetADSGoogle Scholar
  17. 122.
    Bogoliubov, N.N., Schirkov, D.V.: Introduction to Theory of Quantized Fields. Nauka, Moscow (1985) Google Scholar
  18. 123.
    Bogoliubov, N.N., Logunov, A.A., Oksak, A.I., Todorov, I.T.: General Principles of Quantum Field Theory. Nauka, Moscow (1987) Google Scholar
  19. 124.
    Bohm, D.: Quantum Theory. Prentice-Hall, New York (1951) Google Scholar
  20. 130.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. I. Springer, New York (1979) Google Scholar
  21. 164.
    Chruscinski, D., Hirota, Y., Matsuoka, T., Ohya, M.: Remarks on the degree of entanglement. In: Quantum Bio-Informatics, vol. IV. World Scientific, Singapore (2011, to appear) Google Scholar
  22. 169.
    Clauser, J.F., Shimony, A.: Bell’s theorem: experimental tests and implications. Rep. Prog. Phys. 41, 1881–1927 (1978) CrossRefADSGoogle Scholar
  23. 174.
    Connes, A.: Characterization des espaces vectoriels ordonn és sous-jacents aux algébres de von Neumann. Ann. Inst. Fourier 24, 121 (1974) zbMATHMathSciNetGoogle Scholar
  24. 183.
    Chruściński, D., Kossakowski, A.: Circulant states with positive partial transpose. Phys. Rev. A 76(3), 032308 (2007), 14 pp. CrossRefMathSciNetADSGoogle Scholar
  25. 186.
    Cuculescu, I.: Some remarks on tensor products of standard forms of von Neumann algebras. Boll. Unione Mat. Ital. 7(b), 907 (1993) zbMATHMathSciNetGoogle Scholar
  26. 218.
    Eistein, A., Podolsky, B. Rosen N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935) CrossRefADSGoogle Scholar
  27. 219.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991) zbMATHCrossRefMathSciNetADSGoogle Scholar
  28. 231.
    Fannes, M., Nachtergaele, B., Werner, R.F.: Fintiely correlated pure states. J. Funct. Anal. 120, 511–534 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  29. 248.
    Fichtner, K.-H., Ohya, M.: Quantum teleportation and beam splitting. Commun. Math. Phys. 225, 67–89 (2002) zbMATHCrossRefMathSciNetADSGoogle Scholar
  30. 310.
    Haag, R.: Local Quantum Physics. Fields, Particles, Algebras. Springer, Berlin (1996) zbMATHGoogle Scholar
  31. 324.
    Henderson, L., Vedral, V: Information, relative entropy of entanglement, and irreversibility. Phys. Rev. Lett. 84, 2014 (2000) CrossRefADSGoogle Scholar
  32. 343.
    Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. Nauka, Moscow (1980) Google Scholar
  33. 349.
    Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996) zbMATHCrossRefMathSciNetADSGoogle Scholar
  34. 350.
    Horodecki, M., Horodecki, P., Horodecki, R.: Limits for entanglement measures. Phys. Rev. Lett. 84, 2014 (2000) CrossRefMathSciNetADSGoogle Scholar
  35. 351.
    Horodecki, M., Horodecki, P., Horodecki, R.: Mixed state entanglement and quantum condition. In: Quantum Information. Springer Tracts in Modern Physics, vol. 173, pp. 151–195 (2001) CrossRefGoogle Scholar
  36. 379.
    Jamiołkowski, A.: Linear transformation which preserve trace and positive semidefiteness of operators. Rep. Math. Phys. 3, 275 (1972) zbMATHCrossRefADSGoogle Scholar
  37. 383.
    Jamiołkowski, J., Matsuoka, T., Ohya, M.: Entangling operator and PPT condition. TUS preprint Google Scholar
  38. 389.
    Jurkowski, J., Chruściński, D., Rutkowski, A.: A class of bound entangled states of two qutits. Open Syst. Inf. Dyn. 16, 235–242 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  39. 390.
    Johansen, L.M.: EPR correlations and EPW distributions revisited. Phys. Lett. A 236, 173 (1997) zbMATHCrossRefMathSciNetADSGoogle Scholar
  40. 397.
    Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, vol. IV. Birkhäuser, Boston (1986) zbMATHGoogle Scholar
  41. 406.
    Khrennikov, A.: Superanalysis. Kluwer Academic, Dordrecht (1999) zbMATHGoogle Scholar
  42. 413.
    Khrennikov, A., Volovich, I.V.: Einstein, Podolsky and Rosen versus Bohm and Bell. quant-ph/0211078 (2002)
  43. 414.
    Khrennikov, A., Volovich, I.V.: Quantum nonlocality, EPR model, and Bell’s theorem. In: Proceedings of the 3nd Sakharov Conference on Physics, vol. 2, pp. 269–276. World Scientific, Singapore (2003) Google Scholar
  44. 460.
    Labuschagne, L.E., Majewski, W.A., Marciniak, M.: On k-decomposable positive maps. Exp. Math. 24, 103 (2006) zbMATHMathSciNetGoogle Scholar
  45. 472.
    Larsson, J.-A.: Modeling the singlet state with local variables. Phys. Lett. A 256, 245 (1999) CrossRefADSGoogle Scholar
  46. 487.
    Lloyd, S.: Universe as quantum computer, how decoherence leads to complexity. Complexity 3(1), 32–35 (1997) CrossRefMathSciNetGoogle Scholar
  47. 501.
    Majewski, W.A.: On a characterization of PPT states. e-print arXiv:0708.3980
  48. 502.
    Majewski, W.A.: Separable and entangled state of composite quantum systems-rigorous description. Open Syst. Inf. Dyn. 6, 79 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  49. 503.
    Majewski, W.A.: Measures of entanglement—a Hilbert space approach. In: Quantum Prob. and White Noise Analysis, vol. 24, p. 127 (2009) Google Scholar
  50. 504.
    Majewski, W.A., Matsuoka, T., Ohya, M.: Characterization of partial positive transposition states and measures of entanglement. J. Math. Phys. 50, 113509 (2009) CrossRefMathSciNetADSGoogle Scholar
  51. 513.
    Matsuoka, T., Ohya, M.: Quantum entangled state and its characterization. In: Foundations of Probability and Physics-3. AIP, vol. 750, pp. 298–306 (2005) Google Scholar
  52. 537.
    Murao, M., Plenio, M.B., Vedral, V.: Quantum information distribution via entanglement. Phys. Rev. A 60, 032311 (2000) CrossRefADSGoogle Scholar
  53. 578.
    Ohya, M., Petz, D.: Quantum Entropy and Its Use. Springer, Berlin (1993) zbMATHGoogle Scholar
  54. 645.
    Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996) zbMATHCrossRefMathSciNetADSGoogle Scholar
  55. 673.
    Santos, E.: Unreliability of performed tests of Bell’s inequality using parametric down-converted photons. Phys. Lett. A 212, 10 (1996) zbMATHCrossRefMathSciNetADSGoogle Scholar
  56. 692.
    Schrödinger, E.: Foundations of quantum mechanics. Naturwissenschaften 48, 52 (1935) Google Scholar
  57. 693.
    Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807–812 (1935), 823–828, 844–849 CrossRefADSGoogle Scholar
  58. 698.
    Schweber, S.S.: An Introduction to Relativistic Quantum Field Theory. Dover, New York (2005) Google Scholar
  59. 736.
    Streater, R.F., Wightman, A.S.: PCT, Spin, Statistics and All That. Benjamin, New York (1964) Google Scholar
  60. 737.
    Stormer, E.: Contemp. Math. 62, 345–356 (1987) MathSciNetGoogle Scholar
  61. 745.
    Terhal, B.M.: Detecting quantum entanglement. J. Theor. Comput. Sci. 287(1), 313–335 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  62. 776.
    Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997) zbMATHCrossRefMathSciNetADSGoogle Scholar
  63. 789.
    Volovich, I.V., Volovich, Y.I.: Bell’s theorem and random variables. quant-ph/0009058 (2000)
  64. 790.
    Volovich, I.V.: Bell’s theorem and locality in space. quant-ph/0012010 (2000)
  65. 791.
    Volovich, I.V.: An attack to quantum cryptography from space. quant-ph/0012054 (2000)
  66. 792.
    Volovich, I.V., Volovich, Y.I.: On classical and quantum cryptography. In: Lectures at the Volterra–CIRM International School, Quantum Computer and Quantum Information, Trento, Italy, 25–31 July 2001. quant-ph/0108133
  67. 793.
    Volovich, I.V.: Quantum cryptography in space and Bell’s theorem. In: Khrennikov, A. (ed.) Foundations of Probability and Physics: Proceedings of the Conference, Vaxjo, Smoland, Sweden, 25 November–1 December 2000. QP-PQ: Quantum Probability and White Noise Analysis, vol. 13, pp. 364–373. World Scientific, Singapore (2002) Google Scholar
  68. 794.
    Volovich, I.V.: Quantum information in space and time. quant-ph/0108073 (2001)
  69. 797.
    Volovich, I.V.: Towards quantum information theory in space and time. In: Khrennikov, A. (ed.) Proceedings of the Conference, Quantum Theory: Reconsideration of Foundations, Vaxjo, Smaland, Sweden, 17–21 June 2001, pp. 423–441. Vaxjo University Press, Vaxjo (2002) Google Scholar
  70. 811.
    Weinberg, S.: The Quantum Theory of Fields. Cambridge University Press, Cambridge (1995) Google Scholar
  71. 813.
    Werner, R.F.: All teleportation and dense coding schemes. quant-ph/0003070 (2000)
  72. 818.
    Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Information SciencesTokyo University of ScienceNodaJapan
  2. 2.Mathematical PhysicsSteklov Mathematical InstituteMoscowRussia

Personalised recommendations