Advertisement

Recycling Circuit Simulation Techniques for Mass-Action Biochemical Kinetics

  • Jared E. Toettcher
  • Joshua F. Apgar
  • Anya R. Castillo
  • Bruce Tidor
  • Jacob White

Abstract

Many numerical techniques developed for analyzing circuits can be “recycled”—that is, they can be used to analyze mass-action kinetics (MAK) models of biological processes. But the recycling must be judicious, as the differences in behavior between typical circuits and typical MAK models can impact a numerical technique’s accuracy and efficiency. In this chapter, we compare circuits and MAK models from this numerical perspective, using illustrative examples, theoretical comparisons of properties such as conservation and invariance of the non-negative orthant, as well as computational results from biological system models.

Keywords

Circadian Clock Null Space Incidence Matrix Species Concentration Differential Equation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Kremling and J. Saez-Rodriguez, “Systems biology—An engineering perspective,” J. Biotechnol., vol. 129, pp. 329–351, 2007. Google Scholar
  2. 2.
    H. Kitano, “Systems biology: A brief overview,” Science, vol. 295, pp. 1662–1664, 2002. Google Scholar
  3. 3.
    B.O. Palsson, Systems Biology, New York, NY, Cambridge University Press, 2006. Google Scholar
  4. 4.
    J.L. Wyatt, “Network representation of reaction-diffusion systems far from equilibrium,” Comput. Prog. Biomed., vol. 8, pp. 180–195, 1978. Google Scholar
  5. 5.
    F. Najm, Circuit Simulation, Hoboken, NJ, Wiley and Sons, 2010. Google Scholar
  6. 6.
    S. Agarwal and J. Roychowdhury, “Efficient multiscale simulation of circadian rhythms using automated phase macromodelling techniques,” Proc. Pacific Symp. Biocomputing, vol. 13, pp. 402–413, 2008. Google Scholar
  7. 7.
    L.O. Chua, C.A. Desoer, and E.S. Kuh, Linear and Nonlinear Circuits, New York, NY, McGraw-Hill, 1987. zbMATHGoogle Scholar
  8. 8.
    W.M. Deen, Analysis of Transport Phenomena, New York, NY, Oxford University Press, 1998. Google Scholar
  9. 9.
    A. Graham, Kronecker Products and Matrix Calculus with Applications, New York, NY, Halsted Press, 1981. zbMATHGoogle Scholar
  10. 10.
    S. Mandal and R. Sarpeshkar, “Log-domain circuit models of chemical reactions,” Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 2697–2700, 2009. Google Scholar
  11. 11.
    H. Schichman and D.A. Hodges, “Modelling and simulation of insulated-gate field-effect transistor switching circuits,” IEEE Journal of Solid-State Circuits, vol. SC-3, pp. 285–328, 1986. Google Scholar
  12. 12.
    L.J. Trajkovid, R.C. Melville, and S.C. Fang, “Passivity and nogain properties establish global convergence of a homotopy method for DC operating points,” Proc. IEEE Int. Symp. Circuits and Systems, pp. 914–917, 1990. Google Scholar
  13. 13.
    H. de Jong, “Modeling and simulation of genetic regulatory systems: A literature review,” Journal of Computational Biology, vol. 9, no. 1, pp. 67–103, 2002. Google Scholar
  14. 14.
    J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Third Edition, Springer, 2002 zbMATHGoogle Scholar
  15. 15.
    G.H. Golub and C.F. Van Loan, Matrix Computations, Baltimore, MD, Johns Hopkins Univ. Press, 1983. zbMATHGoogle Scholar
  16. 16.
    I.W. Sandberg, “A nonnegativity-preservation property associated with certain systems of nonlinear differential equations,” Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, pp. 230–233, 1974. Google Scholar
  17. 17.
    J.L. Wyatt Jr., “Monotone sensitivity of nonlinear nonuniform RC transmission lines with application to timing analysis of digital MOS integrated circuits,” IEEE Trans. Circuits Syst., CAS-32, pp. 28–33, 1985. Google Scholar
  18. 18.
    J.F. Apgar, J.E. Toettcher, D. Endy, F.M. White, and B. Tidor, “Stimulus design for model selection and validation in cell signaling,” PLoS Comput. Biol., vol. 4, no. 2, 2008. Google Scholar
  19. 19.
    J.F. Apgar, D.K. Witmer, F.M. White, and B. Tidor, “Sloppy models, parameter uncertainty, and the role of experimental design,” Mol. Bio. Syst., vol. 6, pp. 1890–1900, 2010. Google Scholar
  20. 20.
    J.E. Toettcher, C. Mock, E. Batchelor, A. Loewer, and G. Lahav, “A synthetic–natural hybrid oscillator in human cells,” PNAS, vol. 107, no. 39, pp. 17047–17052, 2010. Google Scholar
  21. 21.
    Mathworks, Matlab (tm) 2007a. Natick, MA. Google Scholar
  22. 22.
    A. Goldbeter and D.E. Koshland, Jr., “An amplified sensitivity arising from covalent modification in biological systems,” Proc. Natl. Acad. Sci. USA, vol. 78, pp. 6840–6844, 1981. MathSciNetGoogle Scholar
  23. 23.
    T.J. Aprille and T.N. Trick, “A computer algorithm to determine the steady-state response of nonlinear oscillators,” IEEE Trans. Circuit Theory, vol. CT-19, pp. 354–360, 1972. MathSciNetGoogle Scholar
  24. 24.
    K.S. Kundert, J.K. White, and A. Sangiovanni-Vincentelli, Steady-State Methods for Simulating Analog and Microwave Circuits, Amsterdam, The Netherlands, Kluwer, 1990. zbMATHGoogle Scholar
  25. 25.
    D.E. Zak, J. Stelling, and F.J. Doyle, “Sensitivity analysis of oscillatory (bio)chemical systems,” Comput. Chem. Eng., vol. 29, no. 3, pp. 663–673, 2005. Google Scholar
  26. 26.
    S.R. Taylor, R. Gunawan, L.R. Petzold, and F.J. Doyle, “Sensitivity measures for oscillating systems: Application to mammalian circadian gene network,” IEEE Transactions on Automatic Control, vol. 53, pp. 177–188, 2008. MathSciNetGoogle Scholar
  27. 27.
    A.K. Wilkins, P.I. Barton, and B. Tidor, “The Per2 negative feedback loop sets the period in the mammalian circadian clock mechanism,” PLoS Comput. Biol., vol. 3, no. 12, 2007. Google Scholar
  28. 28.
    I. Vytyaz, D.C. Lee, P.K. Hanumolu, Un-Ku Moon, and K. Mayaram, “Sensitivity Analysis for Oscillators,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 9, pp. 1521–1534, 2008. Google Scholar
  29. 29.
    A. Demir, “Floquet theory and non-linear perturbation analysis for oscillators with differential-algebraic equations,” International Journal of Circuit Theory and Applications, vol. 28, no. 2, pp. 163–185, 2000. zbMATHMathSciNetGoogle Scholar
  30. 30.
    M.J. Rust, J.S. Markson, W.S. Lane, D.S. Fisher, and E.K. O’Shea, “Ordered phosphorylation governs oscillation of a three-protein circadian clock,” Science, vol. 318, no. 5851, pp. 809–812, 2007. Google Scholar
  31. 31.
    J.E. Toettcher, A.R. Castillo, G. Lahav, J.K. White, and B. Tidor, in preparation. Google Scholar
  32. 32.
    M. Nakajima, K. Imai, H. Ito, T. Nishiwaki, Y. Murayama, H. Iwasaki, T. Oyama, and T. Kondo. “Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro,” Science, vol. 308, no. 5720, pp. 414–415, 2005. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jared E. Toettcher
    • 1
  • Joshua F. Apgar
    • 2
  • Anya R. Castillo
    • 3
  • Bruce Tidor
    • 4
  • Jacob White
    • 5
  1. 1.Department of Cellular and Molecular PharmacologyUniversity of CaliforniaSan FranciscoUSA
  2. 2.Systems Biology GroupBoehringer Ingelheim PharmaceuticalsRidgefieldUSA
  3. 3.Engineering Systems DivisionMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of Electrical Engineering and Computer Science and the Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  5. 5.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations