The Role of Biology in the Unity of Science Program

Chapter
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 18)

Abstract

Making a distinction between unity and unification and within Carnap’s framework, we will proceed to determine the program of the unity of science as the integration of scientific laws and theories. After that, the role of an evolutionary theory – the Darwinian hypothesis – in this program is examined in a contemporary proposal that seeks the sources of normic laws.

Keywords

Unity and unification of science Normic laws Darwinian evolutionary theory Carnap Schurz 

Notes

Acknowledgment

The author would like to thank to the anonymous reviewer for his/her helpful and critical comments to the first version of this paper. This research was supported by Ministerio de Ciencia e Innovacion de España. Proyecto SEJ 2007-60023.

References

  1. Behe, M. (1992). Experimental support for regarding functional classes of proteins to be highly isolated from each other. In Buell, J., Hearn, V. (eds), Darwinism Science or Philosophy? pp. 60–71. Richardson, TX: Foundation for Thought and Ethics.Google Scholar
  2. Carnap, R. (1938). Logical Foundations of the Unity of Science, International Encyclopedia of Unified Science, vol I, pp. 42–62. Chicago, IL: Chicago University Press.Google Scholar
  3. Curtis, H. (1989). Guide to Biology. New York, NY: Freeman.Google Scholar
  4. Dawkins, R. (1989). The Blind Watchmaker. New York, NY: W-W Norton & Co.Google Scholar
  5. Dray, W. (1957). Laws and Explanation in History. Oxford: Oxford University Press.Google Scholar
  6. Eigen, M. (1976) Wie entseht Information? Prinzipien der Selbstorganisation in der Biologie. Berichte der Bunsengesellschaft für Physikalische Chemie, 80, 1059.Google Scholar
  7. Galison, P., Stump, D. J. (1996). The Disunity of Science: Boundaries, Contexts, and Power. Stanford, CA: Stanford University Press.Google Scholar
  8. Hempel, C. (1966). The Philosophy of Natural Science. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  9. Kaufmann, S. (1995). At Home in the Universe. The Search for the Laws of Self-Organization and Complexity. New York, NY: Oxford University Press.Google Scholar
  10. Küppers, B.-O. (1987). Der Ursprung biologischer Information: Zur Naturphilosophy der Lebensentstehung. Munich, Germany: Piper GmbH & Co. English translation: 1989. Information and the Origin of Life. The MIT Press, Cambridge, MA.Google Scholar
  11. Leibniz, W. G. (1966). In Couturat, L. (ed), Opuscules et Fragments Inedits. Hildesheim: Georg OlmsGoogle Scholar
  12. Lennox, J. G. (2001). Aristotle on the unity and desunity of sciences, International Studies in the Philosophy of Sciences 15(2), 133–144.CrossRefGoogle Scholar
  13. Lovtrup, S. (1987). Darwinism, the Refutation of a Myth. London: Croom Helm.Google Scholar
  14. Margulis, L. (1991). Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis. Cambridge, MA: The MIT.Google Scholar
  15. Meyer, S. (2002). The scientific status of intelligent design. Science and Evidence for Design in the Universe. San Francisco, CA: Ignatius Press.Google Scholar
  16. Meyer, S. (2004). The origin of biological information and the higher taxonomic categories, Proceeding of the Biological Society of Washington 117(2), 213–239.Google Scholar
  17. Ohno, S. (1996). The notion of the Cambrian pananimalia genome, Proceedings of the National Academy of Sciences of the United States of America, 93, 8475–8478.CrossRefGoogle Scholar
  18. Reidhaar-Olson, J., Sauer, R. (1990). Functionally acceptable solutions in two alpha-helical regions of lambda repressor, Proteins, Structure, Functions and Genetics 7(4), 306–316.CrossRefGoogle Scholar
  19. Saap, J. (1994). Evolution by Association: A History of Symbiosis. New York, NY: Oxford University Press.Google Scholar
  20. Saap, J. (2003). Genesis: The Evolution of Biology. New York, NY: Oxford University Press.Google Scholar
  21. Schurz, G. (2001). What is ‘normal’? An evolution-theoretic foundation for normic laws and their relation to statistical normality, Philosophy of Science, 68, 476–497.CrossRefGoogle Scholar
  22. Schurz, G. (2004). Normic-laws, non-monotonic reasoning, and the unity of science. In Rahman, S. et al. (eds), Logic, Epistemology and the Unity of Science, pp. 181–211. Dordrecht: Kluwer.CrossRefGoogle Scholar
  23. Schurz, G. (2005). Non-monotonic reasoning from an evolution theoretical perspective: Ontic, logic and cognitive foundation, Synthese, 146, 37–51.CrossRefGoogle Scholar
  24. Scriven, M. (1959). Truism as grounds for historical explanations. In Gardiner, P. (ed), Theories of History. New York, NY: Free Press.Google Scholar
  25. Stebbins, L., Ayala, F. (1981). Is a new evolutionary synthesis necessary? Science, 213, 967–971.CrossRefGoogle Scholar
  26. Suarez, F. (1960). Disputationes Metaphysicae. Madrid: Editorial Gredos.Google Scholar
  27. Von Wright, G. H. (1971). Explanation and Understanding. Ithaca, NY: Cornell University Press.Google Scholar
  28. Webster, G., Goodwin, B. (1996). Form and Transformation. Generative and Relational Principles in Biology. Cambridge, UK: Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Universidad Tecnológica Nacional and Universidad Nacional de CuyoMendozaArgentina
  2. 2.Centro de Filosofia das CienciasUniversidad de LisboaLisboaPortugal

Personalised recommendations