Advertisement

Tide-Dominated Deltas

  • Steven L. GoodbredJr.
  • Yoshiki Saito
Chapter

Abstract

Among tidally influenced sedimentary environments, tide-dominated deltas are perhaps the most variable and difficult to characterize. This variability is due in part to the major role that fluvial systems play in defining their delta, with rivers differing widely in discharge, sediment load, seasonality, and grain size. Tide-dominated deltas also tend to be large systems that can extend hundreds of kilometers across and along the continental margin. The associated sediment transport regimes are typically high energy, but they vary considerably at the scale of tidal cycles and seasonal river discharge. As a consequence of varying transport energy, the sedimentary successions formed in tide-dominated deltaic settings tend to be heterolithic, with interbedded sands, silts, and clays and both fining- and coarsening-upward facies associations. The deltaic nature of tide-dominated deltas that distinguishes them from other tidally influenced settings is defined by the cross- or along-shelf progradation of a clinoform, or ‘S’ shaped, sedimentary deposit. Under the influence of strong bed shear in tidally dominated margins, this prograding clinoform is often separated into two distinct units, one associated with the subaerial deltaplain and one with an offshore subaqueous delta. Onshore, the large, fertile deltaplains built by many modern tide-dominated deltas, especially in South and East Asia, are heavily populated and sustain large economies, making them global important settings. However, the reduction of fluvial inputs by damming and water extraction, as well as intense agricultural, urban, and industrial land uses, threaten the stability and sustainability of these environments.

Keywords

Sediment Transport Sediment Load Tidal Channel Facies Association Residual Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allison MA (1998) Historical changes in the Ganges–Brahmaputra delta front. J Coast Res 14:1269–1275Google Scholar
  2. Allison MA, Lee MT, Ogston AS, Aller RC (2000) Origin of mudbanks along the northeast coast of South America. Mar Geol 163:241–256CrossRefGoogle Scholar
  3. Allison MA, Khan SR, Goodbred SL, Kuehl SA (2003) Stratigraphic evolution of the late Holocene Ganges–Brahmaputra lower delta plain. Sediment Geol 155(317–342):1594–1597Google Scholar
  4. Barua DK, Kuehl SA, Miller RL, Moore WS (1994) Suspended sediment distribution and residual transport in the coastal ocean off the Ganges-Brahmaputra river mouth. Mar Geol 120:41–61CrossRefGoogle Scholar
  5. Bhattacharya JP (2006) Deltas. In: Posamentier HW, Walker RG (eds) Facies Models Revisited, SEPM, Spec Publ 84. SEPM, Tulsa, pp 237–292Google Scholar
  6. Bhattacharya JP, Giosan L (2003) Wave-influenced deltas: geomorphological implications for facies reconstruction. Sedimentology 50:187–210CrossRefGoogle Scholar
  7. Bhattacharya JP, Willis BJ (2001) Lowstand deltas in the Frontier Formation, Powder River basin, Wyoming: Implications for sequence stratigraphic models. Am Assoc Petol Geol Bull 85:261–294Google Scholar
  8. Boyd R, Dalrymple RW, Zaitlin BA (1992) Classification of clastic coastal depositional environments. Sediment Geol 80:139–150CrossRefGoogle Scholar
  9. Carriquiry JD, Sanchez A (1999) Sedimentation in the Colorado River delta and upper Gulf of California after nearly a century of discharge loss. Mar Geol 158:125–145CrossRefGoogle Scholar
  10. Chen W, Yang Z (1993) Study of subaqueous slope instability of the modern Changjiang River delta. In: Hopley D, Wang Y (eds) Proceedings of the 1993 PACON China symposium, estuarine coastal processes. Estuarine Coastal Processes, Resource Exploration and Management, pp 133–142Google Scholar
  11. Chen J, Zhu S, Lu Q, Zhou Y, He S (1982) Descriptions of the morphology and sedimentary structures of the river mouth bar in the Changjiang estuary. In: Kennedy VS (ed) Estuarine comparisons. Academic, New York, pp 667–676Google Scholar
  12. Chen ZY, Song BP, Wang ZH, Cai YL (2000) Late Quaternary evolution of the sub-aqueous Yangtze Delta, China: sedimentation, stratigraphy, palynology, and deformation. Mar Geol 162:243–441CrossRefGoogle Scholar
  13. Choi K (2009) Rhythmic climing-ripple cross-lamination in inclined heterolithic stratification. (HIS) of a macrotidal estuarie channel, Gomso Bay, west coast of Korea. J Sediment Res 80:550–561CrossRefGoogle Scholar
  14. Choi KS, Dalrymple RW, Chun SS, Kim S-P (2004) Sedimentology of modern, inclined heterolithic stratification (IHS) in the macrotidal Han River delta. Korea J Sed Res 74:677–689CrossRefGoogle Scholar
  15. Coleman JM, Gagliano SM, Smith WG (1970) Sedimentation in a Malaysian high tide tropical delta. In: Morgan JP (ed) Deltaic sedimentation: Modern and Ancient, SEPM Spec Publ 15. SEPM, Tulsa, pp 185–197Google Scholar
  16. Coleman JM (1981) Deltas: processes of deposition and models for exploration. Burgess Publishing, MinneapolisGoogle Scholar
  17. Coleman JM, Wright LD (1978) Sedimentation in an arid macro-tidal alluvial river system: Ord River, Western Australia. J Geol 86:621–642CrossRefGoogle Scholar
  18. Dalrymple RW (2010) Tidal depositional systems. In: James NP, Dalrymple RW (eds) Facies models 4. Geological Association Canada, St. John’s, pp 199–208Google Scholar
  19. Dalrymple RW, Choi KS (2007) Morphologic and facies trends through the fluvial–marine transition in tide-dominated depositional systems: a schematic framework for environmental and sequence-stratigraphic interpretation. Earth Sci Rev 81:135–174CrossRefGoogle Scholar
  20. Dalrymple RW, Makino Y (1989) Description and genesis of tidal bedding in the Cobequid Bay-Salmon River estuary, Bay of Fundy, Canada. In: Taira A, Masuda F (eds) Sedimentary facies in the active plate margin. Terra Science, Tokyo, pp 151–177Google Scholar
  21. Dalrymple RW, Zaitlin BA, Boyd RA (1992) A conceptual model of estuarine sedimentation. J Sediment Petrol 62:1130–1146Google Scholar
  22. Dalrymple RW, Baker EK, Harris PT, Hughes M (2003) Sedimentology and stratigraphy of a tide-dominated, foreland–basin delta (Fly River, Papua New Guinea). SEPM Spec Publ 76:147–173Google Scholar
  23. Davies C, Best J, Collier R (2003) Sedimentology of the Bengal shelf Bangladesh: comparison of late Miocene sediments, Sitakund anticline, with the modem, tidally dominated shelf. Sediment Geol 155:271–300CrossRefGoogle Scholar
  24. Davis RA, Hayes MO (1984) What is a wave-dominated coast? Mar Geol 60:313–329Google Scholar
  25. Dreyer T, Whitaker M, Dexter J, Flesche H, Larsen E (2005) From spit system to tide-dominated delta: integrated reservoir model of the Upper Jurassic Sognefjord Formation on the Troll West Field. Geol Soc Lond, Petrol Geol Conf Ser 6:423–448. doi: 10.1144/0060423 Google Scholar
  26. Elliott T (1986) Deltas. In: Reading HG (ed) Sedimentary environments and facies, 2nd edn. Blackwell Scientific, Oxford, pp 113–154Google Scholar
  27. Fagherazzi S (2008) Self-organization of tidal deltas. Proc Natl Acad Sci USA 105:18692–18695CrossRefGoogle Scholar
  28. Fagherazzi S, Overeem I (2007) Models of deltaic and inner continental shelf evolution. Ann Rev Earth Planet Sci Rev 35:685–715CrossRefGoogle Scholar
  29. Fan D, Li C (2002) Rhythmic deposition on mudflats in the mesotidal Changjiang estuary, China. J Sediment Res 72:543–551CrossRefGoogle Scholar
  30. Fan D, Li CX, Wang DJ, Wang P, Archer AW, Greb SF (2004) Morphology and sedimentation on open-coast intertidal flats of the Changjiang delta, China. J Coast Res SI 43:23–35Google Scholar
  31. Fan D, Guo Y, Wang P, Shi JZ (2006) Cross-shore variations in morphodynamic processes of an open-coast mudflat in the Changjiang Delta, China: with an emphasis on storm impacts. Cont Shelf Res 26:517–538CrossRefGoogle Scholar
  32. Gagliano SM, McIntire WG (1968) Reports on the Mekong Delta. Coastal Studies Institute, Louisiana State University Technical Report 57, 144 pGoogle Scholar
  33. Galloway WE (1975) Process framework for describing the morphologic and stratigraphic evolution of deltaiv depositional systems. In: Broussard ML (ed) Deltas: models for exploration. Houston Geological Society, Houston, pp 87–98Google Scholar
  34. Gani MR, Bhattacharya JP (2007) Basic building blocks and process variability of a Cretaceous delta: internal facies architecture releals a more dynamic interaction of river, wave, and tidal processes. J Sediment Res 77:284–302CrossRefGoogle Scholar
  35. Gastaldo RA, Allen GP, Huc A-Y (1995) The tidal character of fluvial sediments of the modern Mahakam River delta, Kalimantan, Indonesia. Int Assoc Sediment Spec Publ 24:171–181Google Scholar
  36. Giosan L, Constantinescu S, Clift PD, Tabrez AR, Danish M, Inam A (2006) Recent morphodynamics of the Indus delta shore and shelf. Cont Shelf Res 26:1668–1684CrossRefGoogle Scholar
  37. Goodbred SL Jr (2003) Response of the Ganges dispersal system to climate change: a source-to-sink view since the last interstade. Sediment Geol 162:83–104CrossRefGoogle Scholar
  38. Goodbred SL Jr, Kuehl SA (1999) Holocene and modern sediment budgets for the Ganges–Brahmaputra River: evidence for highstand dispersal to floodplain, shelf, and deep-sea depocenters. Geology 27:559–562CrossRefGoogle Scholar
  39. Goodbred SL Jr, Kuehl SA (2000) The significance of large sediment supply, active tectonism and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges–Brahmaputra delta. Sediment Geol 133:227–248CrossRefGoogle Scholar
  40. Goodbred SL Jr, Kuehl SA, Steckler MS, Sarker MH (2003) Controls on facies distribution and stratigraphic preservation in the Ganges–Brahmaputra delta sequence. Sediment Geol 155:301–316CrossRefGoogle Scholar
  41. Harris PT, Baker EK, Cole AR, Short SA (1993) A preliminary study of sedimentation in the tidally dominated Fly River Delta, Gulf of Papua. Cont Shelf Res 13:441–472CrossRefGoogle Scholar
  42. Harris PT, Pattiaratchi CB, Keene JB, Dalrymple RW, Gardner JV, Baker EK, Cole AR, Mitchell D, Gibbs P, Schroeder WW (1996) Late Quaternary deltaic and carbonate sedimentation in the Gulf of Papua foreland basin: response to sea-level change. J Sediment Res 66:801–819Google Scholar
  43. Harris PT, Hughes MG, Baker EK, Dalrymple RW, Keene JB (2004) Sediment transport in distributary channels and its export to the pro-deltaic environment in a tidally dominated delta: Fly River, Papua New Guinea. Cont Shelf Res 24:2431–2454CrossRefGoogle Scholar
  44. Heap AD, Bryce S, Ryan DA (2004) Facies evolution of Holocene estuaries and deltas: a large-sample statistical study from Australia. Sediment Geol 168:1–17CrossRefGoogle Scholar
  45. Hill PS, Fox JS, Crockett JS, Curran KJ, Friedrichs CT, Geyer WR, Milligan TG, Ogston AS, Puig P, Scully ME, Traykovski PA, Wheatcroft RA (2007) Sediment delivery to the seabed on continental margins. In: Nittrouer CA, Austin JA, Field MA, Kravitz JH, Syvitski JPM, Wiberg PL (eds) Continental margin sedimentation: from sediment transport to sequence stratigraphy. Blackwell Publishing, Oxford, pp 49–99Google Scholar
  46. Hori K, Saito Y (2007) Classification, architecture, and evolution of large-river deltas. In: Gupta A (ed) Large rivers: geomorphology and management. Wiley, Chichester, pp 75–96Google Scholar
  47. Hori K, Saito Y, Zhao Q, Cheng X, Wang P, Sato Y, Li C (2001) Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China. Geomorphology 41:233–248CrossRefGoogle Scholar
  48. Hori K, Saito Y, Zhao Q, Wang P (2002a) Architecture and evolution of the tide-dominated Changjiang (Yangtze) River delta, China. Sediment Geol 146:249–264Google Scholar
  49. Hori K, Saito Y, Zhao Q, Wang P (2002b) Evolution of the coastal depositional systems of the Changjiang (Yangtze) river in response to late Pleistocene– Holocene sea-level changes. J Sediment Res 72:884–897CrossRefGoogle Scholar
  50. Hori K, Tanabe S, Saito Y, Haruyama S, Nguyen V, KitamuraI A (2004) Delta initiation and Holocene sea-level change: example from the Song Hong (Red River) delta, Vietnam. Sediment Geol 164:237–249CrossRefGoogle Scholar
  51. Ichaso AA, Dalrymple RW (2009) Tide- and wave-generated fluid mud deposits in the Tilje Formation (Jurassic), offshore Norway. Geology 37:539–542CrossRefGoogle Scholar
  52. Jaeger JN, Nittrouer CA (1995) Tidal controls on the formation of fine-scale sedimentary strata near the Amazon river mouth. Mar Geol 125:259–281CrossRefGoogle Scholar
  53. Kudrass HR, Michels KH, Wiedicke M, Suckow A (1998) Cyclones and tides as feeders of a submarine canyon off Bangladesh. Geology 26:715–718CrossRefGoogle Scholar
  54. Kuehl SA, DeMaster DJ, Nittrouer CA (1986) Nature of sediment accumulation on the Amazon continental shelf. Cont Shelf Res 6:209–225CrossRefGoogle Scholar
  55. Kuehl SA, Levy BM, Moore WS, Allison MA (1997) Subaqueous delta of the Ganges–Brahmaputra river system. Mar Geol 144:81–96CrossRefGoogle Scholar
  56. Kuehl SA, Allison MA, Goodbred SL, Kudrass HR (2005) The Ganges-Brahmaputa Delta. In: Giosan L, Bhattacharya JP (eds) River Deltas–Concepts, Models, and Examples, SEPM Special Publication, 83. SEPM, Tulsa, pp 87–129Google Scholar
  57. Kummu M, Lu XX, Wang JJ, Varis O (2010) Basin-wide sediment trapping efficiency of emerging reservoirs along the Mekong. Geomorphology 119:181–197CrossRefGoogle Scholar
  58. Liu JP, Xue Z, Ross K, Wang HJ, Yang ZS, Li AC, Gao S (2009) Fate of sediments delivered to the sea by Asian large rivers: long-distance transport and formation of remote alongshore clinothems. Sediment Rec 7:4–9Google Scholar
  59. McCrimmon GG, Arnott RWC (2009) The Clearwater Formation, Cold Lake, Alberta: a worldclass hydrocarbon reservoir hosted in a complex succession of tide-dominated deltaic deposits. Bull Can Petrol Geol 50:370–392CrossRefGoogle Scholar
  60. Michels KH, Kudrass HR, Hubscher C, Suckow A, Wiedicke M (1998) The submarine delta of the Ganges–Brahmaputra: cyclone-dominated sedimentation patterns. Mar Geol 149:133–154CrossRefGoogle Scholar
  61. Middleton GV (1991) A short historical review of clastic tidal sedimentology. In: Smith DG, Reinson GE (eds) clastic tidal sedimentology, Can. Soc. Petrol. Geol. Memoir 16. Canadian Society of Petroleum Geologists, Calgary, pp ix–xvGoogle Scholar
  62. Milliman JD, Jin QM ed (1985) Sediment dynamics of the Changjiang Estuary and the Adjacent East China Sea. Cont Shelf Res 4:1–254Google Scholar
  63. Milliman JD, Meade RH (1983) World-wide delivery of river sediment to the oceans. J Geol 91:1–21CrossRefGoogle Scholar
  64. Milliman JD, Syvitski JPM (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J Geol 100:525–544CrossRefGoogle Scholar
  65. Montaño Y, Carbajal N (2008) Numerical experiments on the long-term morphodynamics of the Colorado River Delta. Ocean Dyn 58:19–29CrossRefGoogle Scholar
  66. Nittrouer CA, DeMaster DJ (eds) (1986) Sedimentary processes on the Amazon continental shelf. Cont Shelf Res 6:1–361Google Scholar
  67. Nittrouer CA, Kuehl SA, DeMaster DJ, Kowssmann RO (1986) The deltaic nature of Amazon shelf sedimentation. Geol Soc Am Bull 97:444–458CrossRefGoogle Scholar
  68. Ogston AS, Cacchione DA, Sternberg RW, Kineke GC (2000) Observations of storm and river flood-driven sediment transport on the northern California continental shelf. Cont Shelf Res 20:2141–2162CrossRefGoogle Scholar
  69. Ogston AS, Sternberg RW, Nittrouer CA, Martin DP, Goñi MA, Crockett JS (2008) Sediment delivery from the Fly River tidally dominated delta to the nearshore marine environment and the impact of El Niño. J Geophys Res 113:F01S11. doi: 10.1029/2006JF000669 CrossRefGoogle Scholar
  70. Orton GJ, Reading HG (1993) Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size. Sedimentology 40:475–512CrossRefGoogle Scholar
  71. Postma H (1967) Sediment transport and sedimentation in the marine environment. In: Lauff GH (ed) Estuaries, American Association for the Advancement of Science, Publication 83. American Association for the Advancement of Science, Washington, DC, pp 158–186Google Scholar
  72. Prior DB, Yang Z-S, Bornhoid BD, Keller GH, Lin ZH, Wiseman WJ Jr, Wright LD, Lin TC (1986) The subaqueous delta of the modern Huanghe (Yellow River). Geo-Mar Lett 6:67–75CrossRefGoogle Scholar
  73. Reineck HE, Singh IB (1980) Depositional Sedimentary Environments. Springer, Berlin, 551 ppGoogle Scholar
  74. Russell RJ, Russell RD (1939) Mississippi River delta sedimentation. In: Trask PD (ed) Recent Marine Sediments. Amer Assoc Petrol Geol, Tulsa, pp 151–177Google Scholar
  75. Slingerland R, Driscoll NW, Milliman JD, Miller SR, Johnstone EA (2008) Anatomy and growth of a Holocene clinothem in the Gulf of Papua. J Geophys Res 113:F01S13. doi: 10.1029/2006JF000628 CrossRefGoogle Scholar
  76. Storms JEA, Hoogendoorn RM, Dam RAC, Hoitink AJF, Kroonenberg SB (2005) Late-Holocene evolution of the Mahakam delta, east Kalimantan, Indonesia. Sediment Geol 180:149–166CrossRefGoogle Scholar
  77. Swanson KM, Watson E, Aalto R, Lauer JW, Bera MT, Marshall A, Taylor MP, Apte SC, Dietrich WE (2008) Sediment load and floodplain deposition rates: comparison of the Fly and Strickland rivers, Papua New Guinea. J Geophys Res 113:F01S03. doi: 10.1029/2006JF000623 CrossRefGoogle Scholar
  78. Swenson JB, Paola C, Pratson L, Voller VR, Murray AB (2005) Fluvial and marine controls on combined subaerial and subaqueous delta progradation: Morphodynamic modeling of compound-clinoform development. J Geophys Res 110(F2):1–16CrossRefGoogle Scholar
  79. Swift DJP, Duane D, Pilkey OH (eds) (1972) Shelf sediment transport: process and pattern. Douden Hutchinson & Ross, StroudsburgGoogle Scholar
  80. Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT, Brakenridge GR, Day J, Vörösmarty CJ, Saito Y, Giosan L, Nicholls RJ (2009) Sinking deltas due to human activities. Nat Geosci 2:681–689CrossRefGoogle Scholar
  81. Ta TKO, Nguyen VL, Tateishi M, Kobayashi I, Saito Y, Nakamura T (2002) Sediment facies and late Holocene progradation of the Mekong River Delta in Bentre Province, southern Vietnam: an example of evolution from a tide-dominated to a tide- and wave-dominated delta. Sediment Geol 152:313–325CrossRefGoogle Scholar
  82. Ta TKO, Nguyen VL, Tateishi M, Kobayashi I, Saito Y (2005) Holocene delta evolution and depositional models of the Mekong River Delta, southern Vietnam. In: Giosan L, Bhattacharya JP (eds) River Deltas – Concepts, Models and Examples, SEPM Special Publication 83. SEPM, Tulsa, pp 453–466Google Scholar
  83. Tamura T, Horaguchi K, Saito Y, Nguyen VL, Tateishi M, Ta TKO, Nanayama F, Watanabe K (2010) Monsoon-influenced variations in morphology and sediment of a mesotidal beach on the Mekong River delta coast. Geomorphology 116:11–23CrossRefGoogle Scholar
  84. Tanabe S, Saito Y, Vu QL, Hanebuth TJJ, Ngo QL (2006) Holocene evolution of the Song Hong (Red River) delta system, northern Vietnam. Sediment Geol 187:29–61CrossRefGoogle Scholar
  85. Tänavsuu-Milkeviciene K, Plink-Björklund P (2009) Recognition of tide-dominated versus tide-influenced deltas: Middle Devonian strata of the Baltic Basin. J Sediment Res 79:887–905CrossRefGoogle Scholar
  86. Thompson RW (1968) Tidal flat sedimentation on the Colorado River delta, northwestern Gulf of California. Geological Society of America Memoir, 107, 133 pGoogle Scholar
  87. Uehara K, Saito Y (2003) Late Quaternary evolution of the Yellow/East China Sea tidal regime and its impacts on sediments dispersal and seafloor morphology. Sediment Geol 162:25–38CrossRefGoogle Scholar
  88. Uehara K, Saito Y, Hori K (2002) Paleotidal regime in the Changjiang (Yangtze) Estuary, the East China Sea, and the Yellow Sea at 6 ka and 10 ka estimated from a numerical model. Mar Geol 183:179–192CrossRefGoogle Scholar
  89. Van Wagoner JC, Nummedal D, Jones CR, Taylor DR, Jennette DC, Riley GW (eds) (1991) Sequence stratigraphy applications to shelf sandstone reservoirs. American Association of Petroleum Geologists, Field Conference GuidebookGoogle Scholar
  90. Walsh JP, Nittrouer CA (2004) Mangrove sedimentation in the Gulf of Papua, Papua New Guinea. Mar Geol 208:225–248CrossRefGoogle Scholar
  91. Walsh JP, Nittrouer CA (2009) Understanding fine-grained river-sediment dispersal on continental margins. Mar Geol 263:34–45CrossRefGoogle Scholar
  92. Walsh JP, Nittrouer CA, Palinkas CM, Ogston AS, Sternberg RW, Brunskill GJ (2004) Clinoform mechanics in the Gulf of Papua, New Guinea. Cont Shelf Res 24:2487–2510CrossRefGoogle Scholar
  93. Willis BJ (2005) Deposits of tide-influenced river deltas. In: Giosan L, Bhattacharya JP (eds) River Deltas–Concepts, Models, and Examples, SEPM Special Publication, 83. SEPM, Tulsa, pp 87–129Google Scholar
  94. Willis BJ, Gabel S (2001) Sharp-based, tide-dominated deltas of the SegoSandstone, Book Cliffs, Utah, USA. Sedimentology 48:479–506CrossRefGoogle Scholar
  95. Willis BJ, Gabel SL (2003) Formation of deep incisions into tide-dominated river deltas: implication for the stratigraphy of the Sego sandstone, Book Cliffs, Utah, U.S.A. J Sediment Res 73:246–263CrossRefGoogle Scholar
  96. Wolanski E, Spagnol S (2000) Environmental degradation by mud in tropical estuaries. Reg Environ Chang 1:152–162CrossRefGoogle Scholar
  97. Wolanski E, King B, Galloway D (1995) Dynamics of the turbidity maximum in the Fly River estuary, Papua New Guinea. Estuarine, Coast Shelf Sci 40:321–337CrossRefGoogle Scholar
  98. Wolanski E, Nguyen NH, Le TD, Nguyen HN, Nguyen NT (1996) Fine-sediment dynamics in the Mekong River estuary, Vietnam. Estuarine, Coast Shelf Sci 43:565–582CrossRefGoogle Scholar
  99. Woodroffe CD, Nicholls RJ, Saito Y, Chen Z, Goodbred SL (2006) Landscape variability and the response of Asian megadeltas to environmental change. In: Harvey N (ed) Global change and integrated coastal management: the Asia-Pacific region. Springer, Berlin, pp 277–314CrossRefGoogle Scholar
  100. Wright LD, Coleman JM (1971) The discharge/wave power climate and the morphology of delta coasts. Assoc Am Geograph Proc 3:186–189Google Scholar
  101. Wright LD, Friedrichs CT (2006) Gravity-driven sediment transport on continental shelves: a status report. Continental Shelf Research 26:2092–2107CrossRefGoogle Scholar
  102. Yang Z, Wang H, Saito Y, Milliman JD, Xu K, Qiao S, Shi G (2006) Dam impacts on the Changjiang (Yangtze River) sediment discharge to the sea: the past 55 years and after the Three Gorges Dam. Water Resources Research 42:W04407. doi: 10.1029/2005WR003970 CrossRefGoogle Scholar
  103. Yoshida S, Willis A, Miall AD (1996) Tectonic control of nested sequence architecture in the Castlegate Sandstone (Upper Cretaceous), Book Cliffs, Utah. J Sediment Res 66:737–748Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesVanderbilt UniversityNashvilleUSA
  2. 2.Geological Survey of JapanAISTTsukubaJapan

Personalised recommendations