Skip to main content

Precambrian Tidal Facies

  • Chapter
  • First Online:
Principles of Tidal Sedimentology

Abstract

The Precambrian stratigraphic record dating back to 3.2 billion years is replete with examples of interpreted tidal facies. This chapter discusses relevant qualitative as well as quantitative criteria that support tidal interpretations. Qualitative criteria include herringbone cross bedding, bimodal-bipolar paleocurrent patterns, tidal bedding and modified ripples. Quantitative criteria in the form of tidal rhythmites which display semidiurnal, fortnightly and monthly hierarchical bundling patterns provide the best evidence for tidal processes during the Precambrian Era. Banded iron-formations (BIF’s), which are unique to the Precambrian rock record, may record evidence of tidal modulation in the form of Earth-tidal rather than ocean-tidal rhythms. Preservation of tidal and particularly tidal-flat facies in the Precambrian was enhanced by sediment stabilization as recorded in microbially induced sedimentary structures (MISS). Tidal facies in the Precambrian record are preserved in both transgressive and highstand systems tracts, the latter as progradational delta front-prodelta deposits. Data from the Precambrian record reveal that despite a closer Earth-Moon distance, at the least in the Archean Era, bedforms were of comparable scale to those existing today and tidal ranges were probably mostly macrotidal but not extreme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JRL (1980) Sandwaves: a model of origin and internal structure. Mar Geol 26:281–328

    Google Scholar 

  • Archer AW, Hubbard MS (2003) Highest tides in the World. In: Extreme depositional environments: mega end members in geologic time. Geol Soc Am Spec Publ 370:151–174

    Google Scholar 

  • Armstrong RA, Compston W et al (1991) Zircon ion microprobe studies bearing on the age and evolution of the Witwatersrand triad. Precamb Res 53:243–266

    Article  Google Scholar 

  • Blake DH (1987) Geology of the Mount Isa Inlier and environs, Queensland and Northern Territory. Bur Min Res Bull 225, 83 p

    Google Scholar 

  • Boersma JR, Terwindt JHJ (1981) Neap-spring sequences in intertidal shoal deposits in a mesotidal estuary. Sedimentology 28:51–170

    Article  Google Scholar 

  • Catuneanu O, Biddulph MN (2001) Sequence stratigraphy of the Vaal Reef facies associations in the Witwatersrand foredeep, South Africa. Sediment Geol 141–142:113–130

    Article  Google Scholar 

  • Chan MA, Kvale EP et al (1994) Oldest direct evidence of lunar-solar tidal forcing encoded in sedimentary rhythmites, Proterozoic Big Cottonwood Formation, central Utah. Geology 22:791–794

    Article  Google Scholar 

  • Crowell JC (1999) Pre-Mesozoic ice ages: their bearing on under­standing the climate system. Geol Soc Am Mem 192:71–73

    Google Scholar 

  • Dalrymple RW (1984) Morphology and internal structure of sand waves in the Bay of Fundy. Sedimentology 31:365–382

    Article  Google Scholar 

  • Dalrymple RW, Knight RJ, Lambiase JJ (1978) Bedforms and their hydraulic stability relationships in a tidal environment, Bay of Fundy, Canada. Nature 275-A:100–104

    Article  Google Scholar 

  • Dalrymple RW, Makino Y, Zaitlin BA (1991) Temporal and spatial patterns of rhythmite deposition on mudflats in the macrotidal, Cobequid Bay-Salmon River estuary, Bay of Fundy, Canada, Clastic tidal sedimentology. Can Soc Petrol Geol Mem 16:137–160

    Google Scholar 

  • Dalrymple RW, Zaitlin BA, Boyd R (1992) Estuarine facies models: conceptual basis and stratigraphic implications. J Sediment Petrol 62:1130–1146

    Google Scholar 

  • Dalrymple RW, Baker EK, Harris PT, Hughes MG (2003) Sedimentology and stratigraphy of a tide-dominated, foreland-basin delta, Fly River, Papua New Guinea. In: Tropical deltas of Southeast Asia and vicinity-sedimentology, stratigraphy, and petroleum geology. SEPM Spec Publ 76:147–173

    Google Scholar 

  • de Boer PL et al (1989) The diurnal inequality of the tide as a parameter for recognizing tidal influences. J Sediment Petrol 59:912–921

    Google Scholar 

  • de la Winter HR, Brink MC (1991) Chronostratigraphic subdivision of the Witwatersrand Basin based on a Western Transvaal composite column. South Afr J Geol 94:191–203

    Google Scholar 

  • Ehlers TA, Chan MA (1999) Tidal sedimentology and estuarine deposition of the Proterozoic Big Cottonwood Formation, Utah. J Sediment Res 69:1169–1180

    Google Scholar 

  • Eriksson KA (1977) Tidal deposits from the Archaean Moodies Group, Barberton Mountain Land, South Africa. Sediment Geol 18:257–281

    Article  Google Scholar 

  • Eriksson KA (1983) Archean iron-formations: environments of deposition and controls on formation. J Geol Soc Austr 30:473–482

    Article  Google Scholar 

  • Eriksson KA, Simpson EL (1990) Recognition of high-frequency sea-level changes in Proterozoic siliciclastic tidal deposits, Mount Isa, Australia. Geology 18:474–477

    Article  Google Scholar 

  • Eriksson KA, Simpson EL (2000) Quantifying the oldest tidal record: the 3.2 Ga Moodies Group, Barberton greenstone Belt, South Africa. Geology 28:831–834

    Article  Google Scholar 

  • Eriksson KA, Vos RG (1979) A fluvial fan depositional model for middle Proterozoic red beds from the Waterberg Group, South Africa. Precamb Res 9:169–188

    Article  Google Scholar 

  • Eriksson KA, Turner BR, Vos RG (1981) Evidence of tidal processes from the lower part of the Witwatersrand Supergroup. Sediment Geol 29:309–325

    Article  Google Scholar 

  • Eriksson KA, Simpson EL, Jackson MJ (1994) Stratigraphic evolution of a Proterozoic rift to thermal-relaxation basin, Mount Isa Inlier, Australia: constraints on nature of lithospheric extension. Int Assoc Sediment Spec Publ 20:203–221

    Google Scholar 

  • Eriksson KA, Simpson EL, Mueller W (2006) Depositional and geodynamic setting of fluvio-tidal facies in the 3.2 Ga Moodies Group, South Africa. Sediment Geol 190:13–24

    Article  Google Scholar 

  • Ewers WE, Morris RC (1981) Studies of the Dales Gorge Member of the Brockman Iron Formation, Western Australia. Econ Geol 76:1929–1953

    Article  Google Scholar 

  • Fralick P (1987) Depositional environment of Archean iron formation: inferences from layering in sediment and volcanic hosted end members, Precambrian iron-formations. Theophrastus Publications, Athens, pp 251–266

    Google Scholar 

  • Gehling JG (2000) Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara member within the Rawnsley Quarzite, South Australia. Precamb Res 100:65–95

    Article  Google Scholar 

  • Hagadorn JW, Bottjer DJ (1999) Restriction of a Late Neoproterozoic biotape: suspect-microbial structures and trace fossils at the Vendian-Cambrian transition. Unexplored microbial worlds. Palaios 14:73–85

    Article  Google Scholar 

  • Harris CW, Eriksson KA (1990) Allogenic controls on the evolution of storm to tidal shelf sequences in the early Proterozoic Uncompahgre Group, southwest Colorado, U.S.A. Sedimentology 37:189–213

    Article  Google Scholar 

  • Harris PT, Hughes MG et al (2004) Sediment transport in distributary channels and its export to the pro-deltaic environment in a tidally dominated delta: Fly River, Papua New Guinea. Cont Shelf Res 24:2431–2454

    Article  Google Scholar 

  • Heubeck C (2009) An early ecosystem of Archean tidal microbial mats (Moodies Group, South Africa, 3.2 Ga). Geology 37:931–934

    Article  Google Scholar 

  • Heubeck C, Wendt JI et al (1993) Timing of deformation of the Archean Greenstone Belt, South Africa: constraints from zircon dating of the Salisbury Kop Pluton. South Afr J Geol 96:1–8

    Google Scholar 

  • Hori K, Saito Y et al (2002) Architecture and evolution of the tide-dominated Changjiang (Yangtze) River delta, China. Sediment Geol 146:249–264

    Google Scholar 

  • Hunter RE (1977) Basic types of stratification in small eolian dunes. Sedimentology 24:361–388

    Article  Google Scholar 

  • Jackson JM, Simpson EL, Eriksson KA (1990) Facies and sequence stratigraphic analysis in an intracratonic, thermal-relaxation basin: the middle Proterozoic, lower Quilalar Formation, Mount Isa Orogen, Australia. Sedimentology 37:1053–1078

    Article  Google Scholar 

  • Jaeger JM, Nittrouer CA (1995) Tidal controls on the formation of fine-scale sedimentary strata near the Amazon river mouth. Mar Geol 125:259–281

    Article  Google Scholar 

  • Kamo SL, Davis DW (1994) Reassessment of Archean crustal development in the Barberton Mountain Land, South Africa, based on U-Pb dating. Tectonics 13:167–192

    Article  Google Scholar 

  • Klein GD (1977) Clastic tidal facies. Continuing Education Publication Company, Champaign IL, 149 p

    Google Scholar 

  • Knoll AH, Walter M et al. (2004) The Ediacaran Period: a new addition to the Geologic Time Scale. Terminal Proterozoic Subcommission of the International Commission on Stratigraphy

    Google Scholar 

  • Kocurek G, Fielder G (1982) Adhesion structures. J Sediment Petrol 52:1229–1241

    Google Scholar 

  • Kreisa R, Moiola RJ (1986) Sigmoidal tidal bundles and other tide-generated sedimentary structures of the Curtis Formation, Utah. Geol Soc Am Bull 97:381–387

    Article  Google Scholar 

  • Kvale EP, Archer AW (1991) Characteristics of two, Pennsylvanian-age, semi-diurnal tidal deposits in the Illinois Basin, USA. Can Soc Petrol Geol Mem 16:179–188

    Google Scholar 

  • Kvale EP, Johnson HW et al (1999) Calculating lunar retreat rates using tidal rhythmites. J Sediment Res 69:1154–1168

    Google Scholar 

  • Lambeck K (1980) The earth’s variable rotation: geophysical causes and consequences. Cambridge University Press, Cambridge, 449 p

    Book  Google Scholar 

  • Lemon NM, Gostin VA (1990) Glacigenic sediments of the late Proterozoic Elatina Formation and equivalents, Adeliade Geosyncline, South Australia. In: Evolution of a Late Precambrian-Early Palaeozoic Rift complex: the Adelaide Geosyncline. Geol Soc Aust Spec Publ 16:149–163

    Google Scholar 

  • Noffke N, Krumbein WE (1999) A quantitative approach to sedimentary surface structures contoured by the interplay of microbial colonization and physical dynamics. Sedimentology 46:417–426

    Article  Google Scholar 

  • Noffke N, Gerdes G et al (2001) Microbially induced sedimentary structures indicating climatological, hydrological and depositional conditions within recent and Pleistocene coastal facies zones, southern Tunisia. Facies 44:23–30

    Article  Google Scholar 

  • Noffke N, Knoll AH, Grotzinger JP (2002) Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: a case study from the upper Neoproterozoic Nama Group, Namibia. Palaios 17:1–14

    Article  Google Scholar 

  • Noffke N, Gerdes G, Klenke Th (2003a) Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporate salty and evaporitic carbonatic). Earth Sci Rev 12:1–14

    Google Scholar 

  • Noffke N, Hazen R, Nhleko N (2003b) Earth’s earliest microbial mats in a siliciclastic marine environment (Mozaan Group, 2.9 Ga, South Africa). Geology 31:673–676

    Article  Google Scholar 

  • Noffke N, Eriksson KA, Hazen RE, Simpson EL (2006) A new window into early life: microbial mats in Earth’s oldest siliciclastic tidal flats (3.2 Ga Moodies Group, South Africa). Geology 34:253–256

    Article  Google Scholar 

  • Noffke N, Beukes N et al (2008) An actualistic perspective into Archean worlds – (cyano) bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup, South Africa. Geobiology 6:5–20

    Article  Google Scholar 

  • Ojakangas RW (1983) Tidal deposits in the early Proterozoic basin of the Lake Superior region-the Palms and the Pokegema Formations: evidence for subtidal-shelf deposition of Superior-type banded iron-formations. Early Proterozoic Geology of the Great Lakes Region. Geol Soc Am Mem 160:49–66

    Google Scholar 

  • Ojakangas GW (1996) Cyclic tidal laminations in the Early Proterozoic Pokegama Formation: digital image analysis and computer modeling (abstrat). In: 42nd Institute of Lake Superior geology, pp 44–45

    Google Scholar 

  • Page RW (1983a) Timing of superposed volcanism in the Proterozoic Mount Isa Inlier, Australia. Precamb Res 21:223–245

    Article  Google Scholar 

  • Page RW (1983b) Chronology of magmatism, skarn formation and uranium mineralization, Mary Kathleen, Queensland, Australia. Econ Geol 85:838–853

    Article  Google Scholar 

  • Pidgeon RT, Horwitz RC (1991) The origin of olistoliths in Proterozoic rocks of the Ashburton Trough, Western Australia, using zircon U-Pb isotopic characteristics. Austr J Earth Sci 38:55–63

    Article  Google Scholar 

  • Preiss WV (1987) The Adelaide Geosyncline. South Aust Dept Mines Energy Bull 53, 438 p

    Google Scholar 

  • Rinehart JS (1972a) Fluctuations in geyser activity caused by variations in earth tidal forces, barometric pressure, and tectonic stresses. J Geophys Res 77:342–350

    Article  Google Scholar 

  • Rinehart JS (1972b) 18.6-year earth tide regulates geyser activity. Science 177:346–347

    Article  Google Scholar 

  • Rinehart JS (1974) Geysers. Am Geophys Union Trans 56:1052–1062

    Article  Google Scholar 

  • Schmidt PW, Williams GE (1995) The Neoproterozoic climatic paradox: equatorial palaeolatitude for Marinoan glaciation near sea level in South Australia. Earth Planet Sci Lett 134:107–124

    Article  Google Scholar 

  • Simonson BM (1985) Sedimentological constraints on the origins of Precambrian iron-formations. Geol Soc Am Bull 96:244–252

    Article  Google Scholar 

  • Simpson EL, Eriksson KA (1991) Depositional facies and controls on parasequence development in siliciclastic tidal deposits from the early Proterozoic, upper Mount Guide Quartzite, Mount Isa Inlier, Australia. Can Soc Petrol Geol Mem 16:371–387

    Google Scholar 

  • Soegaard K, Eriksson KA (1985) Evidence for tidal, wave and storm interaction on a Precambrian shelf: the 1.7 Ga Ortega Group, New Mexico. J Sediment Petrol 55:672–684

    Google Scholar 

  • Sonett CP, Kvale EP et al (1996) Late proterozoic and Paleozoic tides, retreat of the moon and rotation of the earth. Science 273:100–104

    Article  Google Scholar 

  • Tankard AJ, Jackson MPA et al (1982) Crustal evolution of Southern Africa. Springer, New York, 523 p

    Google Scholar 

  • Tessier B (1993) Upper intertidal rhythmites in the Mont-Saint-Michel Bay (NW France): perspectives for paleoreconstruction. Mar Geol 110:355–367

    Article  Google Scholar 

  • Trendall AF (1973) Varve cycles in the Weeli Wolli Formation of the Precambrian Hamersley Group, Western Australia. Econ Geol 68:1089–1097

    Article  Google Scholar 

  • Trendall AF (1983) The Hamersley Basin. Iron-formation: facts and problems. Elsevier, Amsterdam, pp 69–129

    Book  Google Scholar 

  • Trendall AF, Blockley JG (1970) The iron formations of the Precambrian Hamersley Group, Western Australia. Geol Surv West Aust Bull 119:366p

    Google Scholar 

  • Trendall AF et al (1990) Percise zircon U-Pb chronological comparison of the volcano-sedimentary sequences of the Kaapvaal and Pilbara Cratons between about 3.1 and 2.4 Ga. In: 3rd International Archean Symposium, Perth, pp 81–83

    Google Scholar 

  • Visser MJ (1980) Neap-spring cycles reflected in Holocene subtidal large-scale bedform deposits: a preliminary note. Geology 8:543–546

    Article  Google Scholar 

  • Von Brunn V, Hobday DK (1976) Early Precambrian tidal sedimentation in the Pongola Supergroup of South Africa. J Sed Petrol 46:670–679

    Google Scholar 

  • Vos RG, Eriksson KA (1977) An embayment model for tidal deposits occurring within a fluvially-dominated middle Proterozoic sequence in South Africa. Sediment Geol 18:161–173

    Article  Google Scholar 

  • Williams GE (1989) Late Precambrian tidal rhythmites in South Australia and the history of the Earth’s rotation. J Geol Soc Lond 146:97–111

    Article  Google Scholar 

  • Williams GE (1991) Upper Proterozoic tidal rhythmites, South Australia: sedimentary features, deposition, and implications for the earth’s paleorotation. Clastic tidal sedimentology. Can Soc Petrol Geol Mem 16:161–177

    Google Scholar 

  • Williams GE (2000) Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit. Rev Geophys 38:37–59

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Eriksson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Eriksson, K.A., Simpson, E. (2012). Precambrian Tidal Facies. In: Davis Jr., R., Dalrymple, R. (eds) Principles of Tidal Sedimentology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0123-6_15

Download citation

Publish with us

Policies and ethics