Skip to main content

Tidal Channels on Tidal Flats and Marshes

  • Chapter
  • First Online:
Principles of Tidal Sedimentology

Abstract

In shallow coastal settings channels provide a pathway for the tide to propagate and are, thus, a primary control on the sedimentation and ecology of these environments. Being shaped by bidirectional flows, tidal channels exhibit morphologies, which, despite apparent similarities, bear significant and fundamental differences to fluvial channels, specifically their scaling with size. This chapter considers the classification of tidal channels and the networks they form. We examine the hydrodynamics of shallow tidal channels, including asymmetry in period or velocity between the ebb and flood tides, and the hysteresis seen in stage-velocity curves in regions with large intertidal areas. Channel initiation may occur either through incision or by variations in rates of deposition. Tidal channels evolve over time and a number of relationships are presented that have been derived to describe the geometry of tidal channels. Mutually-evasive pathways of flood and ebb flows may produce cuspate meanders; a morphology unique to tidal channels. Of particular importance, in terms of preservation potential, is the development of meanders in channels and the resulting pointbars. Pointbars in tidal environments are often fully or partially detached from the bank by a channel formed by the subordinate tidal current, however their exact morphology varies being dependent on channel sinuosity and tidal asymmetry. Channels are preserved through infilling (as tidal prism is reduced) and through lateral accretion, particularly at meanders. Pointbars in tidal regions are generally heavily bioturbated in the upper tidal range, and mid-tidal zones will exhibit inclined stratigraphy, often with intercalated beds of muddier and sandier deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad JD, Garcia MH (2009a) Experiments in a high-amplitude Kinoshita-generated meandering channel. 2: implications of bend orientation on bed morphodynamics. Water Resour Res. doi:10.1029/2008WR007017

  • Abad JD, Garcia MH (2009b) Experiments in a high-amplitude Kinoshita-generated meandering channel. 1: implications of bend orientation on mean and turbulence flow structure. Water Resour Res. doi:10.1029/2008WR007016

  • Adams P (1997) Absence of creeks and pans in temperate Australian salt marshes. Mangroves Salt Marshes 1:239–241

    Article  Google Scholar 

  • Allen JRL (1965) Coastal geomorphology of eastern Nigeria: Beachridge barrier islands and vegetated tidal flats. Geol Mijn 44:1–21

    Google Scholar 

  • Allen JRL (1997) Simulation models of salt marsh morphodynamics: some implications for high-intertidal sediment couplets related to sea-level change. Sed Geol 113:211–223

    Article  Google Scholar 

  • Allen JRL (2000) Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Q Sci Rev 19:1155–1231

    Article  Google Scholar 

  • Allen JRL, Duffy MJ (1998) Temporal and spatial depositional patterns in the Severn Estuary, Southwestern Britain: intertidal studies at spring-neap and seasonal scales, 1991–1993. Mar Geol 146:147–171

    Article  Google Scholar 

  • Ashley G (1980) Channel morphology and sediment movement in a tidal river Pitt River British Columbia. Ear Surf Process 5:347–368

    Article  Google Scholar 

  • Ashley GM, Zeff ML (1988) Tidal channel classification for a low-mesotidal salt marsh. Mar Geol 82:17–32

    Article  Google Scholar 

  • Bagnold RA (1960) Some aspects of the shape of river meanders. US Geol Surv Prof Pap 282(E):135–144

    Google Scholar 

  • Barwis JH (1978) Sedimentology of some South Carolina tidal-creek pointbars and a comparison with their fluvial counterparts. In: Miall AD (ed) Fluvial sedimentology, Canadian Society of Petroleum Geologists Memoir 5. Canadian Society Petroleum Geologists, Calgary, pp 129–160

    Google Scholar 

  • Barwis JH, Hayes MO (1979) Regional patterns of modern barrier island and tidal inlet deposits as applied to paleoenvironmental studies. In: Ferm JC, Horne JC, Weisenfluh GA, Staub JR (eds) Carboniferous depositional environments in the Appalachian region. Univ So Carol, Dep Geol, Carol Coal Group, Columbia, pp 472–498

    Google Scholar 

  • Bayliss-Smith TP, Healey R, Lailey R, Spencer T, Stoddart DR (1979) Tidal flow in salt marsh creeks. Estuar Coast Mar Sci 9:235–255

    Article  Google Scholar 

  • Bejan A (1982) Theoretical explanation for the incipient formation of meanders in straight rivers. Geophys Res Lett 9:831–834

    Article  Google Scholar 

  • Belknap DF, Kraft JC (1985) Influence of antecedent geology on stratigraphic preservation potential and evolution of Delaware’s barrier system. Mar Geol 63:235–262

    Article  Google Scholar 

  • Bird ECF (1984) Coasts. Blackwell, Oxford

    Google Scholar 

  • Boon JD (1975) Tidal discharge asymmetry in a salt marsh drainage system. Limnol Oceanogr 20:71–80

    Article  Google Scholar 

  • Braudrick CA, Dietrich WE, Leverich GT, Sklar LS (2009) Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers. Proc Natl Acad Sci. doi:10.107/pnas.0909417106

  • Brown SL (1998) Sedimentation on Humber salt marsh sedimentary process. In: Black KS, Paterson DM, Cramp A (eds) Sedimentary processes in the intertidal zone, Geological Society Special Publication 139. The Geological Society, London, pp 69–84

    Google Scholar 

  • Cleveringa J, Oost AP (1999) The fractal geometry of tidal-channeltidal channel systems in the Dutch Wadden sea. Geol Mijn 78:21–30

    Article  Google Scholar 

  • Collins LM, Collins JN, Leopold LB (1987) Geomorphic processes of an estuarine marsh. Prelim Hypotheses Int Geomorph 1:1049–1072

    Google Scholar 

  • D’Alpaos A, Lanzoni S, Marani M, Fagherazzi S, Rinaldo A (2005) Tidal network ontogeny: channel initiation and early development. J Geophys Res. doi:101029/2004JF000182

  • D’Alpaos A, Lanzoni S, Marani M, Rinaldo A (2007a) Landscape evolution in tidal embayments: modeling the interplay of erosion sedimentation and vegetation dynamics. J Geophys Res. doi:101029/2006JF000537

  • D’Alpaos A, Lanzoni S, Marani M, Bonometto A, Cecconi G, Rinaldo (2007b) Spontaneous tidal network formation within a constructed salt marsh: observations and morphodynamic modeling. Geomorphology 91:186–197

    Article  Google Scholar 

  • D’Alpaos A, Lanzoni S, Marani M, Rinaldo A (2010) On the tidal prism-channel area relations. J Geophys Res. doi:101029/2008JF001243

  • Dalrymple RW, Choi KS (2007) Morphologic and facies trends through the fluvial-marine transition in tide-dominated depositional systems: a systematic framework for environmental and sequence-stratigraphic interpretation. Earth Sci Rev 81:135–174

    Article  Google Scholar 

  • Dalrymple RW, Makino Y, Zaitlin BA (1991) Temporal and spatial patterns of rhythmite deposition on mud flats in the macrotidal, Cobequid Bay Salmon River estuary, Bay of Fundy, Canada. In: Smith DG, Reinson GE, Zaitlin BA, Rahmani RA (eds) Clastic tidal sedimentology, Canadian Society of Petroleum Geologists Memoir 16. Canadian Society of Petroleum Geologists, Calgary, pp 137–160

    Google Scholar 

  • Dalrymple RW, Zaitlin BA, Boyd R (1992) Estuarine facies models: conceptual basis and stratigraphic implications. J Sed Petrol 62:1130–1146

    Google Scholar 

  • Davis RA, FitzGerald DM (2004) Beaches and Coasts, Blackwell Science, Oxford, England. 419 p

    Google Scholar 

  • De Vriend HJ (1996) Mathematical modelling of meso–tidal barrier island coasts Part I Empirical and semi-empirical models. In: Liu PL, Liu PL-F (eds) Advances in coastal and ocean engineering, Fluid Mechanism 386. World Scientific, Singapore, pp 15–42

    Google Scholar 

  • Diplas P (1990) Characteristics of self-formed straight channels. J Hydraul Eng ASCE 116:707–728

    Article  Google Scholar 

  • Dronkers J (1986) Tidal asymmetry and estuarine morphology. Neth J Sea Res 20:117–31

    Article  Google Scholar 

  • Dury GH (1971) Channel characteristics in a meandering tidal channel: crooked river Florida. Geog Ann Ser A Phys Geogr 53:188–197

    Article  Google Scholar 

  • Dyer KR (1997) Estuaries—physical introduction, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Eisma D (1998) Intertidal deposits: river mouths tidal flats & coastal lagoons. CRC Press, New York

    Google Scholar 

  • Escoffier FF (1940) The stability of tidal inlets. Shore Beach 8:114–115

    Google Scholar 

  • Fagherazzi S, Furbish DJ (2001) On the shape and widening of salt marsh creeks. J Geophys Res 106(C1):991–1003

    Article  Google Scholar 

  • Fagherazzi S, Bortoluzzi A, Dietrich WE, Adami A, Marani M, Lanzoni S, Rinaldo A (1999) Tidal networks: 1 Automatic network extraction and preliminary scaling features from digital terrain maps. Water Resour Res 35:3891–3904

    Article  Google Scholar 

  • Fagherazzi S, Gabet EJ, Furbish DJ (2004) The effect of bidirectional flow on tidal channel planforms. Earth Surf Proc Land 29:295–309

    Article  Google Scholar 

  • Fagherazzi S, Carniello L, D’Alpaos A, Defina A (2006) Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. Proc Natl Acad 103:8337–8341

    Article  Google Scholar 

  • Fagherazzi S, Hannion M, D’Odorico P (2008) Geomorphic structure of tidal hydrodynamics in salt marsh creeks. Water Resour Res. doi:101029/2007WR006289

  • Feagin RA et al (2009) Does vegetation prevent wave erosion of salt marsh edges? Proc Natl Acad Sci 106:10109–10113

    Article  Google Scholar 

  • Fenies H, Faugères JC (1998) Facies and geometry of tidal channel-fill deposits (Arcachon lagoon, SW France). Mar Geol 150:131–148

    Article  Google Scholar 

  • French JR, Stoddart DR (1992) Hydrodynamics of salt marsh creek systems: implications for marsh morphological development and material exchange. Earth Surf Process Land 17:23–252

    Article  Google Scholar 

  • Friedrichs CT (1995) Stability shear stress and equilibrium cross-sectional geometry of sheltered tidal channels. J Coast Res 11:1062–1074

    Google Scholar 

  • Friedrichs CT, Aubrey DG (1988) Non-linear tidal distortion in shallow well-mixed estuaries: a synthesis. Estuar Coast Shelf Sci 27:521–545

    Article  Google Scholar 

  • Gabet EJ (1998) Lateral migration and bank erosion in a salt marsh tidal channel in San Francisco Bay, California. Estuaries 4B:745–753

    Article  Google Scholar 

  • Garofalo D (1980) The influence of wetland vegetation on tidal stream migration and morphology. Estuaries 3:258–270

    Article  Google Scholar 

  • Ginsberg SS, Perillo GME (2004) Characteristics of tidal channels in a mesotidal estuary of Argentina. J Coast Res 20:489–497

    Article  Google Scholar 

  • Hibma A, de Vriend HJ, Stive MJF (2003) Numerical modelling of shoal pattern formation in well-mixed elongated estuaries. Estuar Coast Shelf Sci 57:98–191

    Article  Google Scholar 

  • Hibma A, Stive MJF, Wang ZB (2004a) Estuarine morphodynamics. Coast Eng 51:765–778

    Article  Google Scholar 

  • Hibma A, Schuttelaars HM, de Vriend HJ (2004b) Initial formation and long-term evolution of channel-shoal patterns. Cont Shelf Res 24:1637–1650

    Article  Google Scholar 

  • Hood WG (2006) A conceptual model of depositional rather than erosional tidal channel development in the rapidly prograding Skagit River Delta (Washington USA). Earth Surf Proc Land. doi:101002/esp1381

  • Hood WG (2010) Tidal channel meander formation by depositional rather than erosional processes: examples from the prograding Skagit River Delta (Washington, USA). Earth Surf Proc Land 35:319–330

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Bull Geol Soc Am Bull 56:275–370

    Article  Google Scholar 

  • Howard AD (1996) Modelling channel evolution and floodplain morphology. In: Anderson MG, Walling DE, Bates PD (eds) Floodplain processes. Wiley, Chichester

    Google Scholar 

  • Howes NC (2009) The impact of wetland loss on inlet morphology and tidal range within Barataria Bay Lousiana. MSc Thesis Boston University, Boston

    Google Scholar 

  • Howes NC et al (2010) Wetland loss during hurricanes: failure of low salinity marshes. Proc Natl Acad Sci. doi:101073/pnas0914582107

  • Huat BBK, Asadi A, Kazemian S (2009) Experimental investigation on geomechanical properties of tropical organic soils and peat. Am J Eng Appl Sci 2:184–1888

    Article  Google Scholar 

  • Hughes ZJ, FitzGerald DM, Wilson CA, Pennings SC, Wieiski K, Mahadevan A (2009) Rapid headward erosion of marsh creeks in response to relative sea-level rise. Geophys Res Lett. doi:101029/2008GL036000

  • Jarrett JT (1976) Tidal prism-inlet area relationships. Gen Invest Tidal Inlets Rep 332 US Army Coastal Engineering Research Center, Fort Belvoir

    Google Scholar 

  • Kirwan ML, Murray AB (2007) A coupled geomorphic and ecological model of tidal marsh evolution. Proc Natl Acad Sci 104:6118–6122

    Article  Google Scholar 

  • Klein GdeVries (1977) Clastic tidal facies. CEPCO, Champaign, p 148

    Google Scholar 

  • Knighton AD, Woodroffe CD, Mills K (1992) The evolution of tidal creek networks Mary River Northern Australia. Earth Surf Proc Land 17:67–190

    Article  Google Scholar 

  • Lanzoni S, Seminara G (2002) Long-term evolution and morphodynamic equilibrium of tidal channels. J Geophys Res. doi:101029/2000JC000468

  • Lee CB, Yoo HR, Park KS (1992) Distribution and properties of intertidal surface sediments of Kyeonggi Bay west coast of Korea. J Oceanol Soc Korea 27:277–289

    Google Scholar 

  • Leonard LA, Croft AL (2006) The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuar Coast Shelf Sci 69:325–336

    Article  Google Scholar 

  • Leonard LA, Luther ME (1995) Flow hydrodynamics in tidal marsh canopies. Am Soc Limnol Ocean 40:1474–1484

    Article  Google Scholar 

  • Leopold LB, Wolman MG (1960) River meanders 1. Geol Soc Am Bull 71:769–793

    Article  Google Scholar 

  • Leopold LB, Wolman MG, Miller JP (1964) Fluvial processes. In: Geomorphology. W H Freeman, San Francisco

    Google Scholar 

  • Li C, O’Donnell J (2005) The effect of channel length on the residual circulation in tidally dominated channels. J Phys Ocean 35:1826–1840

    Article  Google Scholar 

  • Li C, Chen C, Guadagnoli D, Georgiou I (2008) Geometry induced residual eddies in estuaries with curved channels – observations and modeling studies. J Geophys Res. doi:101029/2006JC004031

  • Marani M, Lanzoni S, Zandolin D, Seminara G, Rinaldo A (2002) Tidal meanders. Water Resour Res. doi:101029/ 2001WR000404

  • Marani M, Belluco E, D’Alpaos A, Defina A, Lanzoni S, Rinaldo A (2003) On the drainage density of tidal networks. Water Resour Res. doi:101029/2001WR001051

  • Marani M, Lanzoni S, Silvestri S, Rinaldo A (2004) Tidal landforms patterns of halophytic vegetation and the fate of the lagoon of Venice. J Mar Syst 51:191–210

    Article  Google Scholar 

  • Minkoff DR, Escapa M, Ferramola FE, Maraschin SD, Pierini JO, Perillo GME, Delrieux C (2006) Effects of crab-halophytic plant interactions on creek growth in a SW Atlantic salt marsh: a Cellular Automata model. Estuar Coast Shelf Sci 69:403–413

    Article  Google Scholar 

  • Mowbray T, Visser MJ (1984) Reactivation surfaces in subtidal channel deposits, Oosterschede, Southwest Netherlands. J Sed Pet 54:811–824

    Google Scholar 

  • Mudd SM, D’Alpaos A, Morris JT (2010) How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. J Geophys Res. doi:101029/2009JF001566

  • Murphy S, Voulgaris G (2006) Identifying the role of tides, rainfall and seasonality in marsh sedimentation using long-term suspended sediment concentration data. Mar Geol 227:31–50

    Article  Google Scholar 

  • Neumeier U (2007) Velocity and turbulence variations at the edge of salt marshes. Cont Shelf Res 27:1046–1059

    Article  Google Scholar 

  • Novakowski KI, Torres R, Gardner LR, Voulgaris G (2004) Geomorphic analysis of tidal creek networks. Water Resour Res. doi:10.1029/2003WR002722

  • O’Brien MP (1969) Equilibrium flow areas of inlets in sandy coasts. J Water Harbors Coastal Eng Div Am Soc Civ Eng 95:43–52

    Google Scholar 

  • Parker RS (1977) Experimental study of drainage basin evolution and its hydrologic implications. In: Hydrol Papers 90. Colorado State University, Fort Collins

    Google Scholar 

  • Parker BB (1991) The relative importance of the various nonlinear mechanisms in a wide range of tidal interactions (review). In: Parker BP (ed) Tidal hydrodynamics. Wiley, New York

    Google Scholar 

  • Parker et al (2010) A new framework for modeling the migration of meandering rivers. Earth Surf Proc Land. doi:10.1002/esp. 2113

  • Pearson NJ, Gingras MK (2006) An ichnological and sedimentological facies model for muddy point-bar deposits. J Sed Res 76:771–782

    Article  Google Scholar 

  • Perillo GME, Iribarne OO (2003) Processes of tidal channel development in salt and freshwater marshes. Earth Surf Proc Land 28:1473–1482

    Article  Google Scholar 

  • Perillo GME, Garcia Martinez MB, Piccolo MC (1996) Geomorfología de canales de marea: Aná lisis de fractales y espectral. In: Actas VI Reunión Argentina de Sedimentología, Bahía Blanca, pp 155–160

    Google Scholar 

  • Pestrong R (1965) The development of drainage patterns on tidal marshes. Stanford Univ Publ Geol Sci Tech Rep 10:1–87

    Google Scholar 

  • Pestrong R (1972) Tidal flat sedimentation at Cooley Landing southwest San Francisco Bay. Sed Geol 8:251–288

    Article  Google Scholar 

  • Pethick JS (1969) Drainage in tidal marshes. In: Steers JA (ed) The coastline of England and Wales, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Pethick JS (1980) Velocity surges and asymmetry in tidal channels. Estuar Coast Mar Sci 11:331–345

    Article  Google Scholar 

  • Pethick JS (1984) An introduction to coastal geomorphology. Edward Arnold, London

    Google Scholar 

  • Pethick JS (1992) Salt marsh geomorphology. In: Allen JRL, Pye K (eds) Salt marshes: morphodynamics conservation and engineering significance. Cambridge University Press, Cambridge

    Google Scholar 

  • Pye K, French PW (1993) Erosion and accretion processes on British Salt Marshes Vol 1 Introduction: salt marsh Processes and Morphology. Cambridge Environmental Research Consultants, Cambridge

    Google Scholar 

  • Redfield AC (1972) Development of a New England salt marsh. Ecol Mono 42:201–237

    Article  Google Scholar 

  • Reineck HE (1967) Layered sediments of tidal flats beaches and shelf bottoms of the North Sea. In: Lauff GH (ed) Estuaries: American Association for the Advancement of Science, Spec Publ 83

    Google Scholar 

  • Ren Mei-e (1986) Modern sedimentation in the coastal and nearshore zones of China. China Ocean Press, Bejing and Springer, Berlin/Heidelberg

    Google Scholar 

  • Rieu R, Van Heteren S, Van der Spek AJF, De Boer PL (2005) Development and preservation of a mid-Holocene tidal channel network offshore the western Netherlands. J Sed Res 75:409–419

    Article  Google Scholar 

  • Rinaldo A, Fagherazzi S, Lanzoni S, Marani M, Dietrich WE (1999) Tidal networks: 3 Landscape-forming discharges and studies in empirical geomorphic relationships. Water Resour Res 35(12):3919–3929

    Article  Google Scholar 

  • Rinaldo A, Belluco E, D’Alpaos A, Feola A, Lanzoni S, Marani A (2004) Tidal networks: form and function. In: Fagherazzi S, Marani M, Blum LK (eds) The ecogeomorphology of tidal marshes. Amer Geophys Union, Washington, DC

    Google Scholar 

  • Santos A, Rossetti D (2006) Depositional model of the Ipixuna Formation (Late Cretaceous-? Early Tertiary), Rio Capim area, northern Brazil. Latin Am J Sed Basin Anal 13:101–117

    Google Scholar 

  • Schwimmer RA (2001) Rate and processes of marsh shoreline erosion in Rehoboth Bay Delaware USA. J Coast Res 17:672–683

    Google Scholar 

  • Schwimmer RA (2008) A temporal geometric analysis of eroding marsh shorelines: can fractal dimensions be related to process? J Coast Res 24:152–158

    Article  Google Scholar 

  • Seminara G (2006) Meanders. J Fluid Mech 554:271–297

    Article  Google Scholar 

  • Settlemyre JL, Gardner RL (1977) Suspended sediment flux though a salt marsh drainage basin. Estuar Coast Mar Sci 5:653–663

    Article  Google Scholar 

  • Shi Z, Lamb HF, Collins RL (1995) Geomorphic change of salt marsh tidal creek network in the Dyfi Estuary Wales. Marine Geol 128:73–83

    Article  Google Scholar 

  • Solari L, Seminara G, Lanzoni S, Marani M, Rinaldo A (2002) Sand bars in tidal channels Part 2. Tidal meanders. J Fluid Mech 451:203–238

    Google Scholar 

  • Steel TJ, Pye K (1997) The development of salt marsh tidal creek networks: evidence from the UK. Proc Can Coast Conf 1:267–280

    Google Scholar 

  • Steers JA (1969) The coastline of England and Wales, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Symonds AM, Collins MB (2007) The establishment and degeneration of a temporary creek system in response to managed coastal realignment: the Wash UK. Earth Surf Proc Land 32:1783–1796

    Article  Google Scholar 

  • Temmerman S, Bouma TJ, Van de Koppel J, Van der Wal D, De Vries MB, Herman PMJ (2007) Vegetation causes channel erosion in a tidal landscape. Geology 35:631–634

    Article  Google Scholar 

  • Terwindt JHJ (1988) Palaeo-tidal reconstructions of inshore tidal depositional environments. In: de Boer PL, van Gelder A, Nio S-D (eds) Tide-influenced Sedimentary environments and facies. D Reidel Publishing Company, Boston

    Google Scholar 

  • van der Wegen M, Wang ZB, Savenije HHG, Roelvink JA (2008) Long-term morphodynamic evolution and energy dissipation in a coastal plain tidal embayment. J Geophys Res. doi:101029/2007JF000898

  • van Eerdt MM (1985) The influence of vegetation on erosion and accretion in salt marshes of the Oosterschelde The Netherlands. Vegetation 62:367–373

    Article  Google Scholar 

  • van Proosdij D, Baker G (2007) Intertidal morphodynamics of the Avon River estuary. Final Report submitted to Nova Scotia Department of Transportation and Public Works. http://www.gov.ns.ca/tran/highways/Hwy101twinningWindsor.asp

  • van Straaten LMJU (1954) Composition and structure of recent marine sediments in the Netherlands. Leid geol Meded 19:1–110

    Google Scholar 

  • van Veen J (1950) Ebb and flood-channel systems in the Netherlands tidal waters (in Dutch English summary) KNAG 2ed Series Part 67. Republished translated and annotated by Delft University of Technology 2001 ISBN 9040723389

    Google Scholar 

  • Watzke DA (2004) Short-term evolution of a marsh island system and the importance of cold front forcing, Terrebone Bay, Louisiana. Masters Thesis, Louisiana State University, Baton Rouge

    Google Scholar 

  • Wilson KR, Kelley JT, Croitoru A, Dionne M, Belknap DF, Steneck R (2009) Stratigraphic and ecophysical characterizations of salt pools: dynamic landforms of the webhannet salt marsh, Wells ME, USA. Estuaries Coasts 32:855–870

    Article  Google Scholar 

  • Wolanski E, Williams D, Hanert E (2006) The sediment trapping efficiency of the macro-tidal Daly Estuary, tropical Australia. Estuar Coast Shelf Sci 69:291–29

    Article  Google Scholar 

  • Wright LD, Coleman JM, Thom BG (1973) Processes of channel development in a high-tide range environment: Cambridge Gulf-Ord River delta Western Australia. J Geol 81:15–41

    Article  Google Scholar 

  • Zeff ML (1988) Sedimentation in a salt marsh–tidal channel system. South N J Mar Geol 82:33–48

    Google Scholar 

  • Zeff ML (1999) Salt marsh tidal channel morphometry: applications for wetland creation and restoration. Restor Ecol 7:205–211

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoe J. Hughes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hughes, Z.J. (2012). Tidal Channels on Tidal Flats and Marshes. In: Davis Jr., R., Dalrymple, R. (eds) Principles of Tidal Sedimentology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0123-6_11

Download citation

Publish with us

Policies and ethics