Coral Calcification, Cells to Reefs

  • Denis AllemandEmail author
  • Éric Tambutté
  • Didier Zoccola
  • Sylvie Tambutté


In spite of more than one century and half of studies, mechanisms of coral biomineralization, leading to coral growth and reef formation, still remain poorly known, although major global threats to coral reefs, such as ocean acidification, primarily affect this process. Coral skeletons are used as environmental archives but the vital processes that govern incorporation of trace elements and stable isotope are still unknown. Our knowledge on coral physiology is restricted to the organismal level due to the lack of appropriate cell model, however the advent of new approaches, such as coral genomic, is changing drastically our knowledge on these animals even if only a few data are available concerning the field of biomineralization. This chapter reviews our present knowledge and discusses the different theories on coral calcification, from the molecular to the reef level. Conclusion is presented in a list of key issues to be resolved in order to understand the intimate mechanisms of calcification of corals, essential to determine the origin of the sensitivity of corals to ocean acidification, to improve paleoceanographic reconstructions or coral reef management, or “just” to understand how genes of a soft organism control the formation of an extracellular 3D-skeleton.


Calcification biomineralization physiology calicodermis ion transport Ca2+-ATPase organic matrix carbonic anhydrase amorphous calcium carbonate coral fibers light-enhanced calcification (LEC) galaxin 



We would like to thank our colleagues for stimulating discussions and comments on part of our manuscript, particularly to Anne Cohen, Jean-Pierre Cuif, Jonathan Erez, Maoz Fine, Jean-Pierre Gattuso, Anne Juillet-Leclerc, Nicole Mayer-Gostan, Anders Meibom, Patrick Payan, Stéphanie Reynaud, and Alina Szmant. We are grateful to Alexander Venn for his comments on both the content and English form. We also thank Paola Furla, Aurélie Moya, Lucilia Pereira-Mouriès, and Sandrine Puverel, who shared our passion for coral physiology during their doctoral or postdoctoral research and Christian Söllner for the gift of antibodies. We also thank Séverine Lotto, Nathalie Techer and Natacha Segonds for their excellent technical work and the staff of the library of the Oceanographic museum as well as that of aquarium for their continuous help. Finally, we also remember all the stimulating discussions with Len Muscatine in the lab or in front of a glass of French swine during his visits in Monaco and we dedicate this review to him. Work performed at the Scientific Center of Monaco was funded by the Government of the Principality of Monaco.


  1. Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci USA 82:4110–4114CrossRefGoogle Scholar
  2. Addadi L, Berman A, Moradian Oldak J, Weiner S (1989) Structural and stereochemical relations between acidic macromolecules of organic matrices and crystals. Connect Tissue Res 21:127–135CrossRefGoogle Scholar
  3. Addadi L, Joester D, Nudelman F, Weiner S (2005) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem Eur J 12:980–987CrossRefGoogle Scholar
  4. Adkins JF, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for ‘vital effects’. Geochim Cosmochim Acta 67:1129–1143CrossRefGoogle Scholar
  5. Adkins JF, Henderson GM, Wang S-L, O’Shea S, Mokadem F (2004) Growth rates of the deep-sea scleractinia Desmophyllum cristagalli and Enallopsammia rostrata. Earth Planet Sci Lett 227:481–490CrossRefGoogle Scholar
  6. Aizenberg J, Weiner S, Addadi L (2003) Coexistence of amorphous and crystalline calcium carbonate in skeletal tissues. Connect Tissue Res 44(suppl1):20–25Google Scholar
  7. Albrecht EA, Cavicchia JC (2001) Permeability barrier in the mantle epithelium lining the testis in the apple snail Pomacea canaliculata (Gastropoda: Ampullariidae). Tissue Cell 33:148–153CrossRefGoogle Scholar
  8. Al-Horani FA (2005) Effects of changing seawater temperature on photosynthesis and calcification in the scleractinian coral Galaxea fascicularis, measured with O2, Ca2+ and pH microsensors. Sci Mar 69:347–354CrossRefGoogle Scholar
  9. Al-Horani FA, Al-Moghrabi SM, de Beer D (2003a) Microsensor study of photosynthesis and calcification in the scleractinian coral, Galaxea fascicularis: active internal carbon cycle. J Exp Mar Biol Ecol 288:1–15CrossRefGoogle Scholar
  10. Al-Horani FA, Al-Moghrabi SM, de Beer D (2003b) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142:419–426Google Scholar
  11. Al-Horani FA, Ferdelman T, Al-Moghrabi SM, de Beer D (2005) Spatial distribution of calcification and photosynthesis in the scleractinian coral Galaxea fascicularis. Coral Reefs 24:173–180CrossRefGoogle Scholar
  12. Al-Horani FA, Tambutté É, Allemand D (2007) Dark calcification and the daily rhythm of calcification in the scleractinian coral, Galaxea fascicularis. Coral Reefs 26:531–538CrossRefGoogle Scholar
  13. Alivisatos AP (2000) Naturally aligned nanocrystals. Science 289:736–737CrossRefGoogle Scholar
  14. Allemand D, Furla P, Bénazet-Tambutté S (1998a) Mechanisms of carbon acquisition for endosymbiont photosynthesis in Anthozoa. Can J Bot 76:925–941CrossRefGoogle Scholar
  15. Allemand D, Tambutté É, Girard J-P, Jaubert J (1998b) Organic matrix synthesis in the scleractinian coral Stylophora pistillata: Role in biomineralization and potential target of the organotin tributyltin. J Exp Biol 201:2001–2009Google Scholar
  16. Allemand D, Ferrier-Pagès C, Furla P, Houlbrèque F, Puverel S, Reynaud S, Tambutté É, Tambutté S, Zoccola D (2004) Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. C R Palévol 3:453–467CrossRefGoogle Scholar
  17. Allemand D, Mayer-Gostan N, De Pontual H, Bœuf G, Payan P (2007) Fish otolith calcification in relation to endolymph chemistry. In: Baeuerlein E (ed) Handbook of biomineralization. Wiley-VCH, Weinheim, pp 291–308CrossRefGoogle Scholar
  18. Allison N (1996) Comparative determination of trace and minor elements in coral aragonite by ion microprobe analysis with implications from Phuket, southern Thailand. Geochim Cosmochim Acta 60:3457–3470CrossRefGoogle Scholar
  19. Alloiteau J (ed) (1957) Contribution à la systématique des Madréporaires fossiles. CNRS, ParisGoogle Scholar
  20. Anderson MJ, Van Itallie CM, Fanning AS (2004) Setting up a selective barrier at the apical junction complex. Curr Opin Cell Biol 16:140–145CrossRefGoogle Scholar
  21. Anning T, Nimer N, Merrett MJ, Brownlee C (1996) Costs and benefits of calcification in coccolithophorides. J Mar Syst 9:45–56CrossRefGoogle Scholar
  22. Anthony KRN, Connolly SR, Willis BL (2002) Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol Oceanogr 47:1417–1429CrossRefGoogle Scholar
  23. Asano A, Asano K, Sasaki H, Furuse M, Tsukita S (2003) Claudins in Caenorhabditis elegans: their distribution and barrier function in the epithelium. Curr Biol 13:1042–1046CrossRefGoogle Scholar
  24. Barnes DJ (1970) Coral skeletons: an explanation of their growth and structure. Science 170:1305–1308CrossRefGoogle Scholar
  25. Barnes DJ (1972) The structure and formation of growth-ridges in scleractinian coral skeletons. Proc R Soc Lond B 182:331–350CrossRefGoogle Scholar
  26. Barnes DJ (1985) The effect of photosynthetic and respiratory inhibitors upon calcification in the staghorn coral, Acropora formosa. In: Delesalle B, Galzin R, Salvat B (eds) Proceeding of the fifth international coral reef congress. Museum National d’Histoire Naturelle (National Museum of Natural History) and the Ecole Pratique des Hautes Etudes (Practical School of Advanced Studies), Tahiti, pp 161–166Google Scholar
  27. Barnes DJ, Chalker BE (1990) Calcification and photosynthesis in reef-building corals and algae. In: Dubinsky Z (ed) Coral reefs. Elsevier, Amsterdam, pp 109–131Google Scholar
  28. Barnes DJ, Lough JM (1996) Coral skeletons: storage and recovery of environmental information. Global Change Biol 2:569–582CrossRefGoogle Scholar
  29. Baronnet A, Cuif J-P, Dauphin Y, Farre B, Nouet J (2008) Crystallization of biogenic Ca-carbonate within organo-mineral micro-domains. Structure of the calcite prisms of the Pelecypod Pinctada margaritifera (Mollusca) at the submicron to nanometre ranges. Mineralog Mag 72:539–548CrossRefGoogle Scholar
  30. Baumgartner S, Littleton JT, Broadie K, Bhat MA, Harbecke R, Lengyel JA, Chiquet-Ehrismann R, Prokop A, Bellen HJ (1996) A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Cell 87:1059–1068CrossRefGoogle Scholar
  31. Bénazet-Tambutté S, Allemand D, Jaubert J (1996) Permeability of the oral epithelial layers in cnidarians. Mar Biol 126:43–53CrossRefGoogle Scholar
  32. Bergmann W, Lester D (1940) Coral-reefs and the formation of petroleum. Science 92:452–453CrossRefGoogle Scholar
  33. Berridge MJ, Loschman J (1972) Transporting epithelia. Academic, New YorkGoogle Scholar
  34. Bertucci A, Innocenti A, Zoccola D, Scozzafava A, Allemand D, Tambutté S, Supuran CT (2009a) Carbonic anhydrase inhibitors: inhibition studies of a coral secretory isoform with inorganic anions. Bioorg Med Chem Lett 19:650–653CrossRefGoogle Scholar
  35. Bertucci A, Innocenti A, Zoccola D, Scozzafava A, Tambutté S, Supuran CT (2009b) Carbonic anhydrase inhibitors. Inhibition studies of a coral secretory isoform by sulfonamides. Bioorg Med Chem 17:5054–5058CrossRefGoogle Scholar
  36. Bertucci A, Zoccola D, Tambutté S, Vullo D, Supuran CT (2010) Carbonic anhydrase activators. The first activation study of a coral secretory isoform with amino acids and amines. Bioorg Med Chem. doi: 10.1016/j.bmc.2010.01.059 Google Scholar
  37. Bleher R, Machado J (2004) Paracellular pathway in the shell epithelium of Anodonta cygnea. J Exp Zool 301A:419–427CrossRefGoogle Scholar
  38. Böhm F, Gussone N, Eisenhauer A, Dullo W-C, Reynaud S, Paytan A (2006) Calcium isotope fractionation in modern scleractinian corals. Geochim Cosmochim Acta 70:4452–4462CrossRefGoogle Scholar
  39. Borelli G, Guibbollini ME, Mayer-Gostan N, Priouzeau F, De Pontual H, Allemand D, Puverel S, Tambutté É, Payan P (2003a) Daily variations of endolymph composition: relationship with the otolith calcification process in trout. J Exp Biol 206:2685–2692CrossRefGoogle Scholar
  40. Borelli G, Mayer-Gostan N, Merle P-L, De Pontual H, Boeuf G, Allemand D, Payan P (2003b) Composition of biomineral organic matrices with special emphasis on turbot (Psetta maxima) otolith and endolymph. Calcif Tissue Int 72:717–725CrossRefGoogle Scholar
  41. Bourne GC (1887) On the anatomy of Mussa and Euphyllia and the morphology of the Madreporian skeleton. Q J Micr Sci XXVIII:21–51, + Plate III/IVGoogle Scholar
  42. Brown BE, Hewit R, Le Tissier MD (1983) The nature and construction of skeletal spines in Pocillopora damicornis (Linnaeus). Coral Reefs 2:81–89CrossRefGoogle Scholar
  43. Brownlee C, Taylor AR (2002) Algal calcification and silification. Encyclopedia of life sciences. MacMillan, London, pp 1–5Google Scholar
  44. Bryan WH, Hill D (1941) Spherulitic crystallization as a mechanism of skeletal growth in the hexacorals. Proc R Soc Queensl 52:78–91Google Scholar
  45. Buddemeier RW, Kinzie RA (1976) Coral growth. Oceanogr Mar Biol Annu Rev 14:183–225Google Scholar
  46. Chalker BE (1976) Calcium transport during skeletogenesis in hermatypic corals. Comp Biochem Physiol 54A:455–459CrossRefGoogle Scholar
  47. Chalker BE (1977) Daily variation in the calcification capacity of Acropora cervicornis. In: Taylor DL (ed) Proc Third Int Coral Reef Symp Rosenstiel School of Marine and Atmospheric Science, Miami, Florida, pp 417–423Google Scholar
  48. Chalker BE, Taylor DL (1975) Light-enhanced calcification, and the role of oxidative phosphorylation in calcification of the coral Acropora cervicornis. Proc R Soc Lond B 190:323–331CrossRefGoogle Scholar
  49. Chamberlain JA Jr (1978) Mechanical properties of coral skeleton: compressive strength and its adaptative significance. Paleobiology 4:419–435Google Scholar
  50. Chevalier J-P (1987) Ordre des Scléractiniaires. In: Doumenc D (ed) Cnidaires Anthozoaires. Masson, Paris, pp 403–764Google Scholar
  51. Chisholm J, Gattuso J-P (1991) Validation of the alkalinity anomaly technique for investigating calcification and photosynthesis in coral reef communities. Limnol Oceanogr 36:1232–1239CrossRefGoogle Scholar
  52. Clausen C (1971) Effects of temperature on the rate of 45Calcium uptake by Pocillopora damicornis. In: Lenhoff HM, Muscatine L, Davis LV (eds) Experimental coelenterate biology. University of Hawaii Press, Honolulu, pp 246–260Google Scholar
  53. Clausen CD, Roth AA (1975a) Estimation of coral growth rates from laboratory 45Ca incorporation rates. Mar Biol 33:85–91CrossRefGoogle Scholar
  54. Clausen CD, Roth AA (1975b) Effect of temperature and temperature adaptation on calcification rate in the hermatypic coral Pocillopora damicornis. Mar Biol 33:93–100CrossRefGoogle Scholar
  55. Clode PL, Marshall AT (2002a) Low temperature FESEM of the calcifying interface of a scleractinian coral. Tissue Cell 34:187–198CrossRefGoogle Scholar
  56. Clode PL, Marshall AT (2002b) Low temperature X-ray microanalysis of calcium in a scleractinian coral: evidence of active transport mechanisms. J Exp Biol 205:3543–3552Google Scholar
  57. Clode PL, Marshall AT (2003a) Skeletal microstructure of Galaxea fascicularis exsert septa: A high- resolution SEM study. Biol Bull 204:146–154CrossRefGoogle Scholar
  58. Clode PL, Marshall AT (2003b) Calcium associated with a fibrillar organic matrix in the scleractinian coral Galaxea fascicularis. Protoplasma 220:153–161CrossRefGoogle Scholar
  59. Cohen AL, McConnaughey TA (2003) Geochemical perspectives on coral mineralization. Rev Mineral Geochem 54:151–187CrossRefGoogle Scholar
  60. Cohen AL, Layne GD, Hart SR, Lobel SR (2001) Kinetic control of skeletal Sr/Ca in a symbiotic coral: implications for the paleotemperature proxy. Paleoceanography 16:20–26CrossRefGoogle Scholar
  61. Cohen AL, McCorkle DC, De Putron S, Gaetani GA, Rose KA (2009) Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: insights into the biomineralization response to ocean acidification. Geochem Geophys Geosyst 10:1–12CrossRefGoogle Scholar
  62. Coles SL, Fadlallah YH (1991) Reef coral survival an mortabity at low temperatures in the Arabian Gulf: new species-specific lower temperature limits. Coral Reefs 9:231–237CrossRefGoogle Scholar
  63. Cölfen H, Mann S (2003) Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem Int Ed 42:2350–2365CrossRefGoogle Scholar
  64. Colombo-Pallotta MF, Rodríguez-Román A, Iglesias-Prieto R (2010) Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs. On line doi 10.1007/s00338-010-0638-xGoogle Scholar
  65. Constantz BR (1986) Coral skeleton construction: a physiochemically dominated process. Palaios 1:152–157CrossRefGoogle Scholar
  66. Constantz B (2008) Raman spectroscopy of the initial mineral phase of coral skeleton. In: Abstract Book, Oral Mini-Symposium 3: calcification and coral reef – past and future, The 11th ICRS, Fort Lauderdale, FL, p 14Google Scholar
  67. Constantz BR, Weiner S (1988) Acidic macromolecules associated with the mineral phase of scleractinian coral skeletons. J Exp Zool 248:253–258CrossRefGoogle Scholar
  68. Crenshaw MA (1972) The inorganic composition of molluscan extrapallial fluid. Biol Bull 143:506–512CrossRefGoogle Scholar
  69. Crossland CJ, Barnes DJ (1974) The role of metabolic nitrogen in coral calcification. Mar Biol 28:325–332CrossRefGoogle Scholar
  70. Crumbliss AL, Mc Lachlan KL, O’Daly JP, Henkens RW (1988) Preparation and activity of carbonic anhydrase immobilized on porous silica beads and graphite rods. Biotechnol Bioeng 31: 796–801CrossRefGoogle Scholar
  71. Cuif J-P, Dauphin Y (1998) Microstructural and physico-chemical characterization of ‘centers of calcification’ in septa of some recent scleractinian corals. Paläontologische Zeitschrift 72:257–270Google Scholar
  72. Cuif J-P, Dauphin Y (2004) The environment recording unit in coral skeletons: structural and chemical evidences of a biochemically driven stepping-growth process in coral fibres. Biogeosci Discuss 1:625–658CrossRefGoogle Scholar
  73. Cuif J-P, Dauphin Y (2005a) The environment recording unit in corals skeletons – a synthesis of structural and chemical evidences for a biochemically driven, stepping-growth process in fibres. Biogeosciences 2:61–73CrossRefGoogle Scholar
  74. Cuif J-P, Dauphin Y (2005b) The two-step mode of growth in the scleractinian coral skeletons from the micrometre to the overall scale. J Struct Biol 150:319–331CrossRefGoogle Scholar
  75. Cuif J-P, Dauphin Y, Denis A, Gautret P, Marin F (1996) The organo-mineral structure of coral skeletons: a potential source of new criteria for Scleractinian taxonomy. Bull Inst Océanogr Monaco 14: 359–367Google Scholar
  76. Cuif J-P, Dauphin Y, Freiwald A, Gautret P, Zibrowius H (1999) Biochemical markers of zooxanthellae symbiosis in soluble matrices of skeleton of 24 Scleractinia species. Comp Biochem Physiol 123A:269–278Google Scholar
  77. Cuif J-P, Dauphin Y, Doucet J, Salome M, Susini J (2003) XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochim Cosmochim Acta 67:75–83CrossRefGoogle Scholar
  78. Cuif J-P, Dauphin Y, Berthet P, Jegoudez J (2004) Associated water and organic compounds in coral skeletons: quantitative thermogravimetry coupled to infrared absorption spectrometry. Geochem Geophys Geosyst 5:1–9CrossRefGoogle Scholar
  79. Cuif J-P, Dauphin Y, Farre B, Nehrke G, Nouet J, Salomé M (2008) Distribution of sulphated polysaccharides within calcareous biominerals suggests a widely shared two-step crystallization process for the microstructural growth units. Mineralog Mag 72:233–237CrossRefGoogle Scholar
  80. Dana JD (1843) On the temperature limiting the distribution of corals. Am J Sci 45:130–131Google Scholar
  81. Dana JD (1846) Structure and classification of zoophytes. United States Exploring Expedition during the years 1838, 1839, 1840, 1841, 1842, under the Command of Charles Wilkes, U.S.N. 7:1–740Google Scholar
  82. Dan-Sokhawa M, Hiroyuki K, Koichi N (1995) Paracellular, transepithelial permeation of mcromolecules in the body wall epithelium of starfish embryo. J Exp Zool 271:264–272CrossRefGoogle Scholar
  83. Dauphin Y (2001) Comparative studies of skeletal soluble matrices from some Scleractinian corals and Molluscs. Int J Biol Macromol 28:293–304CrossRefGoogle Scholar
  84. Dauphin Y, Cuif J-P, Massard P (2006) Persistent organic components in heated coral aragonitic skeletons-Implications for palaeoenvironmental reconstructions. Chem Geol 231:26–37CrossRefGoogle Scholar
  85. Dauphin Y, Cuif J-P, Williams CT (2008) Soluble organic matrices of aragonitic skeletons of Merulinidae (Cnidaria, Anthozoa). Comp Biochem Physiol 150B:10–22Google Scholar
  86. De Beer D, Kühl M, Stambler N, Vaki L (2000) A microsensor study of light enhanced Ca2+ uptake and photosynthesis in the reef-building hermatypic coral Favia sp. Mar Ecol Prog Ser 194:75–85CrossRefGoogle Scholar
  87. Demers C, Reggie Hamdy C, Corsi K, Chellat F, Tabrizian M, Yahia L (2002) Natural coral exoskeleton as a bone graft substitute: A review. Biomed Mater Eng 12:15–35Google Scholar
  88. Diamond JM, Wright EM (1969) Biological membranes: physical basis of ion and nonelectrolyte selectivity. Annu Rev Physiol 31: 581–646CrossRefGoogle Scholar
  89. Dodge RE, Vaisnys JR (1975) Hermatypic coral growth-banding as environmental recorder. Nature 258:706–708CrossRefGoogle Scholar
  90. Duerden JE (1903) West Indian Madreporian polyps. Memoirs Natl Acad Sci 8:401–599, + 25 platesGoogle Scholar
  91. Dunn SR, Phillips WS, Green DR, Weis VM (2007) Knockdown of Actin and caspase gene expression by RNA interference in the symbiotic anemone Aiptasia pallida. Biol Bull 212:250–258CrossRefGoogle Scholar
  92. Edmunds PJ, Davies PS (1986) An energy budget for Porites porites (Scleractinia). Mar Biol 92:339–347CrossRefGoogle Scholar
  93. Elahi R, Edmunds PJ (2007) Tissue age effects calcification in the Scleractinian coral Madracis mirabilis. Biol Bull 212:20–28CrossRefGoogle Scholar
  94. Erez J (1978) Vital effect on stable-isotope composition seen in foraminifera and coral skeletons. Nature 273:199–202CrossRefGoogle Scholar
  95. Erez J (2003) The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. Rev Mineral Geochem 54:115–149CrossRefGoogle Scholar
  96. Erez J, Braun A (2007) Calcification in hermatypic corals is based on direct seawater supply to the biomineralization site. In: Goldschmidt Conference Abstracts 2007 Cologne, Germany, pp A260.Google Scholar
  97. Estroff LA (2008) Introduction: biomineralization. Chem Rev 108:4329–4331CrossRefGoogle Scholar
  98. Faber WW, Preisig HR (1994) Calcified structures and calcification in protists. Protoplasma 181:78–105CrossRefGoogle Scholar
  99. Fang LS, Chen YWJ, Chen CS (1989) Why does the white tip of stony coral grow so fast without zooxanthellae? Mar Biol 103:359–363CrossRefGoogle Scholar
  100. Fautin DG, Mariscal RN (1991) Cnidaria: Anthozoa. In: Harrison FW, Westfall JA (eds) Placozoa, Porifera, Cnidaria, and Ctenophora. Wiley-Liss, New York, pp 267–358Google Scholar
  101. Feher JJ, Fullmer CS, Wasserman RH (1992) Role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption. Am J Physiol 262:C517–C526Google Scholar
  102. Ferrier-Pagès C, Gattuso J-G, Dallot S, Jaubert J (2000) Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19:103–113CrossRefGoogle Scholar
  103. Fincham AG, Moradian-Oldak J, Simmer JP (1999) The structural biology of the developing dental enamel matrix. J Struct Biol 126: 270–299CrossRefGoogle Scholar
  104. Fine M, Tchernov D (2007) Scleractinian coral species survive and recover from decalcification. Science 315:1811CrossRefGoogle Scholar
  105. Fowler GH (1885) The anatomy of Madreporaria. Part I. Q J Micr Sci Lond 25:577–599Google Scholar
  106. Frömter E, Diamond J (1972) Route of passive ion permeation in epithelia. Nat New Biol 235:9–13CrossRefGoogle Scholar
  107. Fukuda I, Ooki S, Fujita T, Murayama E, Nagasawa H, Isa Y, Watanabe T (2003) Molecular cloning of a cDNA encoding a soluble protein in the coral exoskeleton. Biochem Biophys Res Comm 304:11–17CrossRefGoogle Scholar
  108. Furla P, Bénazet-Tambutté S, Jaubert J, Allemand D (1998) Functional polarity of the tentacle of the sea anemone Anemonia viridis: role in inorganic carbon acquisition. Am J Physiol (Regul Integr Comp Physiol) 274:R303–R310Google Scholar
  109. Furla P, Allemand D, Orsenigo MN (2000a) Involvement of H+-ATPase and carbonic anhydrase in inorganic carbon uptake for endosymbiont photosynthesis. Am J Physiol (Regul Integr Comp) 278:R870–R881Google Scholar
  110. Furla P, Galgani I, Durand I, Allemand D (2000b) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203:3445–3457Google Scholar
  111. Gaillardet J, Allègre C (1995) Boron isotopic compositions of corals: seawater or diagenesis record? Earth Planet Sci Lett 136:665–676CrossRefGoogle Scholar
  112. Galloway SB, Work TM, Bochsler VS, Harley RA, Kramarsky-Winters E, Mc Laughlin SM, Meteyer CU, Morado JF, Nicholson JH, Parnell PG, Peters EC, Reynolds TL, Rotstein DS, Sileo L, Woodley CM (2007) Coral disease and health workshop: coral histopathology workshop II. National Oceanic and Atmospheric Administration, Silver SpringGoogle Scholar
  113. Gattuso J-P (1987) Écomorphologie, métabolisme, croissance et calcification du scléractiniaire à zooxanthelles Stylophora pistillata (Golfe d’Aqaba, Mer rouge). Influence de l’éclairement. PhD thesis, Aix-Marseille IIGoogle Scholar
  114. Gattuso J-P, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Change 18:37–46CrossRefGoogle Scholar
  115. Gattuso J-P, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: A review on interactions and control by carbonate chemistry. Am Zool 39:160–183Google Scholar
  116. Gattuso J-P, Reynaud-Vaganay S, Furla P, Romaine-Lioud S, Jaubert J, Bourge I, Frankignoulle M (2000) Calcification does not stimulate photosynthesis in the zooxanthellate scleractinian coral Stylophora pistillata. Limnol Oceanogr 45:246–250CrossRefGoogle Scholar
  117. Gautret P, Marin F (1993) Evaluation of diagenesis in scleractinian corals and calcified demosponges by substitution index measurement and intraskeletal organic matrix analysis. Cour Forsch Senckenb 164:317–327Google Scholar
  118. Gautret P, Cuif J-P, Freiwald A (1997) Composition of soluble mineralizing matrices in zooxnathellate and non-zooxanthellate scleractinian corals: biochemical assessment of photosynthetic metabolism through the study of a skeletal feature. Facies 36:189–194CrossRefGoogle Scholar
  119. Gautret P, Cuif J-P, Stolarski J (2000) Organic components of the skeleton of scleractinian corals. Evidence from in situ acridine orange staining. Acta Palaeontol Pol 45:107–118Google Scholar
  120. Gladfelter EH (1983) Skeletal development in Acropora cervicornis: II. Diel patterns of calcium carbonate accretion. Coral Reefs 2:91–100CrossRefGoogle Scholar
  121. Goldberg WM (2001a) Desmocytes in the calicoblastic epithelium of the stony coral Mycetophyllia reesi and their attachment to the skeleton. Tissue Cell 33:388–394CrossRefGoogle Scholar
  122. Goldberg WM (2001b) Acid polysaccharides in the skeletal matrix and calicoblastic epithelium of the stony coral Mycetophyllia reesi. Tissue Cell 33:376–387CrossRefGoogle Scholar
  123. Goreau T (1956) Hystochemistry of mucopolysaccharide-like substances and alkaline phosphatase in madreporaria. Nature 177:1029–1030CrossRefGoogle Scholar
  124. Goreau TF (1959) The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biol Bull 116:59–75CrossRefGoogle Scholar
  125. Goreau TJ (1977) Coral skeletal chemistry: physiological and environmental regulation of stable isotopes and trace metals in Montastrea annularis. Proc R Soc Lond B 196:291–315CrossRefGoogle Scholar
  126. Goreau TF, Goreau NI (1959a) The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under different conditions. Biol Bull 117:239–250CrossRefGoogle Scholar
  127. Goreau TF, Goreau NI (1959b) The physiology of skeleton formation in corals. III. Calcium rate as a function of colony weight and total nitrogen in the reef coral Manicina areolota (Lin.). Biol Bull 118:419–429CrossRefGoogle Scholar
  128. Grasso LC, Maindonald J, Rudd S, Hayward DC, Saint R, Miller DJ, Ball EE (2008) Microarray analysis identifies candidates genes for key roles in coral development. BMC Genom 9:540. doi: 10.1186/1471-2164-9-540 CrossRefGoogle Scholar
  129. Green C, Bergquist PR (1982) Phylogenetic relationships within the invertebrata in relation to the structure of septate junctions and the development of ‘occluding’ junctional types. J Cell Sci 53:279–305Google Scholar
  130. Green CR, Flower NE (1980) Two new septate junctions in the phylum coelenterata. J Cell Sci 42:43–59Google Scholar
  131. Gupta L, Suzuki A, Kawahata H (2006) Aspartic acid concentrations in coral skeletons as recorders of past disturbances of metabolic rates. Coral Reefs 25:599–606CrossRefGoogle Scholar
  132. Hayasi K (1937) On the detection of calcium in the calicoblasts of some reef corals. Palaeo Trop Biol Sta Stud 2:169–176Google Scholar
  133. Hayes RL, Goreau NI (1977) Intracellular crystal-bearing vesicles in the epidermis of scleractinian corals, Astrangia danae (Agassiz) and Porites porites (Pallas). Biol Bull 152:26–40CrossRefGoogle Scholar
  134. Hemming NG, Hanson GN (1992) Boron isotopic composition and concentration in modern marine carbonates. Geochim Cosmochim Acta 56:537–543CrossRefGoogle Scholar
  135. Herfort L, Thake B, Taubner I (2008) Bicarbonate stimulation of calcification and photosynthesis in two hermatypic corals. J Phycol 44:91–98CrossRefGoogle Scholar
  136. Highsmith RC (1979) Coral growth rates and environmental controm of density banding. J Exp Mar Biol Ecol 37:105–125CrossRefGoogle Scholar
  137. Hochachka PW, Buck LT, Doll CJ, Land SC (1996) Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Nat Acad Sci USA 93:9493–9498Google Scholar
  138. Holcomb M, Cohen AL, Gabitov RI, Hutter JL (2009) Compositional and morphological features of aragonite precipitated experimentally from seawater and biogenically by corals. Geochim Cosmochim Acta 73:4166–4179CrossRefGoogle Scholar
  139. Hönisch B, Hemming NG, Grottoli AG, Amat A, Hanson GN, Bijma J (2004) Assessing scleractinian corals as recorders for paleo-pH: Empirical calibration and vital effects. Geochim Cosmochim Acta 68:3675–3685CrossRefGoogle Scholar
  140. Houlbrèque F, Tambutté É, Richard C, Ferrier-Pagès C (2004) Importance of the micro-diet for scleractinian corals. Mar Ecol Prog Ser 282:151–160CrossRefGoogle Scholar
  141. Howe SA, Marshall AT (2002) Temperature effects on calcification rate and skeletal deposition in the temperate coral, Plesiastrea versipora (Lamarck). J Exp Mar Biol Ecol 275:63–81CrossRefGoogle Scholar
  142. Hudson RL (1992) Ion transport by the isolated mantle epithelium of the freshwater clam, Unio complanatus. Am J Physiol 263: R76–R83Google Scholar
  143. Ichikawa K (2007) Buffering dissociation/formation reaction of biogenic calcium carbonate. Chem Eur J 13:10176–10181CrossRefGoogle Scholar
  144. Ingalls AE, Lee C, Druffel ERM (2003) Preservation of organic matter in mound-forming coral skeletons. Geochim Cosmochim Acta 67:2827–2841CrossRefGoogle Scholar
  145. Ip YK, Krishnaveni P (1991) Incorporation of strontium (90Sr++) into the skeleton of the hermatypic coral Galaxea fascicularis. J Exp Zool 258:273–276CrossRefGoogle Scholar
  146. Isa Y (1986) An electron microscope study on the mineralization of the skeleton of the staghorn coral Acropora hebes. Mar Biol 93:91–101CrossRefGoogle Scholar
  147. Isa Y, Okazaki M (1987) Some observations on the Ca2+-binding phospholipids from scleractinian coral skeletons. Comp Biochem Physiol 87B:507–512Google Scholar
  148. Isa Y, Yamazato K (1984) The distribution of carbonic anhydrase in a staghorn coral Acropora hebes (Dana). Galaxea 3:25–36Google Scholar
  149. Jackson AE, Yellowlees D (1990) Phosphate uptake by zooxanthellae isolated from corals. Proc R Soc Lond B 242:201–204CrossRefGoogle Scholar
  150. Jackson DJ, Mcdougall C, Green K, Simpson F, Wörheide G, Degnan BM (2006) A rapidly evolving secretome builds and patterns a sea shell. BMC Biol 4:40. doi: 10.1186/1741-7007-4-40 CrossRefGoogle Scholar
  151. Jacques TG, Pilson MEQ (1977) Laboratory observations on respiration, photosynthesis and factors affecting calcification in the temperate coral Astrangia danae. In: Taylor DL (ed) Proceedings of third international coral reef symposium – Rosenstiel School of Marine and Atmospheric Science, Miami, FL, pp 455–461Google Scholar
  152. Johnston IS (1980) The ultrastructure of skeletogenesis in zooxanthellate corals. Int Rev Cytol 67:171–214CrossRefGoogle Scholar
  153. Jokiel PL, Coles SL (1977) Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar Biol 43:201–208CrossRefGoogle Scholar
  154. Jokiel PL, Maragos JE, Franzisket L (1978) Coral growth: buoyant weight technique. In: UNESCO (ed) Coral reefs: research methods, Paris, pp 529–541Google Scholar
  155. Jolivet A, Bardeau J-F, Fablet R, Paulet Y-M, De Pontual H (2008) Understanding otolith biomineralization processes: new insights into microscale spatial distribution of organic and mineral fractions from Raman microspectrometry. Anal Bioanal Chem 392:551–560CrossRefGoogle Scholar
  156. Jury CP, Whitehead RF, Szmant AM (2010) Effects of variations in carbonate chemistry on the calcification rates of Madracis mirabilis (Duchassaing 1861): bicarbonate concentrations best predict calcification rates. Global Change Biol 16:1632–1644Google Scholar
  157. Kahng SE, Maragos JE (2006) The deepest zooxanthellate scleractinian corals in the world? Coral Reefs 25:254CrossRefGoogle Scholar
  158. Kakei M, Nakahara H (1996) Aspects of carbonic anhydrase and carbonate content during mineralization of the rat enamel. Biochim Biophys Acta 1289:226–230Google Scholar
  159. Karoonuthaisiri N, Titiyevskiy K, Thomas JL (2003) Destabilization of fatty acid-containing liposomes by polyamidoamine dendrimers. Colloids Surf B 27:365–375CrossRefGoogle Scholar
  160. Katsu T, Imamura T, Komagoe K, Masuda K, Mizushima T (2007) Simultaneous measurements of K+ and calcein release from liposomes and the determination of pore size formed in a membrane. Anal Sci 23:517–522CrossRefGoogle Scholar
  161. Kawaguti S (1937) On the physiology of reef corals II. The effect of light on colour and form of reef corals. Palao Trop Biol Sta Stud 177:177–186Google Scholar
  162. Kawaguti S, Sakumoto D (1948) The effect of light on the calcium deposition of corals. Bull Oceanogr Inst Taïwan 4:65–70Google Scholar
  163. Kawaguti S, Sato K (1968) Electron microscopy on the polyp of staghorn corals with special reference to its skeleton formation. Biol J Okayama Univ 14:87–98Google Scholar
  164. Keil TA, Steinbrecht RA (1987) Diffusion barriers in silkmoth sensory epithelia: application of lanthanum tracer to olfactory sensilla of Antheraea polyphemus and Bombyx mori. Tissue Cell 19: 119–134CrossRefGoogle Scholar
  165. Klein MJ, Ahearn GA (1999) Calcium transport mechanisms of crustacean hepatopancreatic mitochondria. J Exp Zool 283: 147–159CrossRefGoogle Scholar
  166. Kleypas JA, McManus JW, Menez LAB (1999) Environmental limits to coral reef development: Where do we draw the line? Am Zool 39:146–159Google Scholar
  167. Knutson DW, Buddemeier RW, Smith SV (1972) Coral chronometers: seasonal growth bands in reef corals. Science 177:270–272CrossRefGoogle Scholar
  168. Kottra G, Frömter E (1983) Functional properties of the paracellular pathway in some leaky epithelia. J Exp Biol 106:217–229Google Scholar
  169. Krempf A (1907) Sur la formation du squelette chez les hexacoralliaires à polypier. CR Acad Sci Paris Ser D 144:157–159Google Scholar
  170. Krishnaveni P, Chou LM, Ip YK (1989) Deposition of calcium (45Ca2+) in the coral Galeaxea fascicularis. Comp Biochem Physiol 94A:509–513CrossRefGoogle Scholar
  171. Kühl M, Cohen Y, Dalsgaard T, Jorgensen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172CrossRefGoogle Scholar
  172. Lambert G, Lambert CC (1996) Spicule formation in the New Zealand ascidian Pyura pachydermatina (Chordata, Ascidiacea). Connect Tissue Res 34–5:25–31Google Scholar
  173. Lane NJ (1979) Freeze fracture and tracer studies on the intercellular junctions in insect rectal tissues. Tissue Cell 11:481–506CrossRefGoogle Scholar
  174. Le Tissier MDAA (1987) The nature and construction of skeletal spines in Pocillopora damicornis (Linnaeus). PhD thesis, University of Newcastle upon Tyne, UK, 140 ppGoogle Scholar
  175. Le Tissier MDAA (1988a) Patterns of formation and the ultrastructure of the larval skeleton of Pocillopora damicornis. Mar Biol 98:493–501CrossRefGoogle Scholar
  176. Le Tissier MDAA (1988b) Diurnal patterns of skeleton formation in Pocillopora damicornis (Linnaeus). Coral Reefs 7:81–88CrossRefGoogle Scholar
  177. Le Tissier MDAA (1990) The ultrastructure of the skeleton and skeletogenic tissues of the temperate coral Caryophyllia smithii. J Mar Biol Ass UK 70:295–310CrossRefGoogle Scholar
  178. Le Tissier MDAA (1991) The nature of the skeleton and skeletogenic tissues in the Cnidaria. Hydrobiologia 216/217:397–402CrossRefGoogle Scholar
  179. Leggat W, Marendy EM, Baillie B, Whitney SM, Ludwig M, Badgaer MR, Yellowlees D (2002) Dinoflagellate symbioses: strategies and adaptations for the acquisition and fixation of inorganic carbon. Funct Plant Biol 29:309–322CrossRefGoogle Scholar
  180. Lelong C, Mathieu M, Favrel P (2001) Identification of new bone morphogenetic protein-related members in invertebrates. Biochimie 83:423–426CrossRefGoogle Scholar
  181. Levy O, Appelbaum L, Gothlif Y, Hayward DC, Miller DJ, Hoegh-Guldberg O (2007) Light-responsive cryptochromes from a simple multicellular animal, the coral Acropora millepora. Science 318:467–469CrossRefGoogle Scholar
  182. Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131CrossRefGoogle Scholar
  183. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York/OxfordGoogle Scholar
  184. Ma TYH (1934) On the season change of growth in a reef coral, Favia speciosa (Dana) and the temperature of the japanese seas during the latest geological times. Proc Imp Acad (Tokyo) 10:353–356Google Scholar
  185. Magie CR, Martindale MQ (2008) Cell-cell adhesion in the Cnidaria: insights into the evolution of tissue morphogenesis. Biol Bull 214:218–232CrossRefGoogle Scholar
  186. Mann S (1983) Mineralization in biological systems. Struct Bond 54:125–174CrossRefGoogle Scholar
  187. Mann S (2001) Biomineralization. Principles and concepts in bioinorganic materials chemistry. Oxford University Press, New YorkGoogle Scholar
  188. Mann K, Macek B, Olsen JV (2006) Proteomic analysis of the acid-soluble organic matrix of the chicken calcified eggshell layer. Proteomics 6:3801–3810CrossRefGoogle Scholar
  189. Marin F, Smith M, Isa Y, Muyzer G, Westbroek P (1996) Skeletal matrices, muci, and the origin of invertebrate calcification. Proc Nat Acad Sci USA 93:1554–1559Google Scholar
  190. Marin F, Luquet G, Marie B, Medakovic D (2008) Molluscan shell proteins: Primary structure, origin, and evolution. Curr Top Dev Biol 80:209–276CrossRefGoogle Scholar
  191. Marschal C, Garrabou J, Harmelin JG, Pichon M (2004) A new method for measuring growth and age in the precious red coral Corallium rubrum (L.). Coral Reefs 23:423–432CrossRefGoogle Scholar
  192. Marshall AT (1996) Calcification in hermatypic and ahermatypic corals. Science 271:637–639CrossRefGoogle Scholar
  193. Marshall AT, Clode PL (2002) Effect of increased calcium concentration in sea water on calcification and photosynthesis in the scleractinian coral Galaxea fascicularis. J Exp Biol 205:2107–2113Google Scholar
  194. Marshall AT, Clode PL (2003) Light-regulated Ca2+ uptake and O2 secretion at the surface of a scleractinian coral Galaxea fascicularis. Comp Biochem Physiol 136A:417–426Google Scholar
  195. Marshall AT, Clode P (2004) Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral. Coral Reefs 23:218–224Google Scholar
  196. Marshall AT, Wright OP (1993) Confocal laser scanning light microscopy of the extra-thecal epithelia of undecalcified scleractinian corals. Cell Tissue Res 272:533–543CrossRefGoogle Scholar
  197. Marshall AT, Wright A (1998) Coral calcification: autoradiography of a scleractinian coral Galaxea fascicularis after incubation in 45Ca and 14C. Coral Reefs 17:37–47CrossRefGoogle Scholar
  198. Marubini F, Thake B (1999) Bicarbonate addition promotes coral growth. Limnol Oceanogr 44:716–720CrossRefGoogle Scholar
  199. Marubini F, Ferrier-Pagès C, Furla P, Allemand D (2008) Coral calcification responds to seawater acidification: a working hypothesis towards a physiological mechanism. Coral Reefs 27:491–499CrossRefGoogle Scholar
  200. McConnaughey TA, Falk RH (1991) Calcium-proton exchange during algal calcification. Biol Bull 180:185–195CrossRefGoogle Scholar
  201. McConnaughey TA, Whelan JF (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci Rev 42:95–117CrossRefGoogle Scholar
  202. McNeil BI, Matear RJ, Barnes DJ (2004) Coral reef calcification and climate change: The effect of ocean warming. Geophys Res Lett 31:1–4Google Scholar
  203. Meibom A, Stage M, Wooden J, Constantz BR, Dunbar RB, Owen A, Grumet N, Bacon CR, Chamberlain C (2003) Monthly Strontium/Calcium oscillations in symbiotic coral aragonite: Biological effects limiting the precision of the paleotemperature proxy. Geophys Res Lett 30:71–74CrossRefGoogle Scholar
  204. Meibom A, Cuif J-P, Hillion F, Constantz BR, Juillet-Leclerc A, Dauphin Y, Watanabe T, Dunbar RB (2004) Distribution of magnesium in coral skeleton. Geophys Res Lett 31:L23306. doi: 10.1029/2004GL021313 CrossRefGoogle Scholar
  205. Meibom A, Yurimoto H, Cuif J-P, Domart-Coulon I, Houlbrèque F, Constantz B, Dauphin Y, Tambutté É, Tambutté S, Allemand D, Wooden J, Dunbar R (2006) Vital effects in coral skeletal composition display strict three-dimensional control. Geophys Res Lett 33:L11608. doi: 10.1029/2006GL025968 CrossRefGoogle Scholar
  206. Meibom A, Mostefaoui S, Cuif J-P, Dauphin Y, Houlbrèque F, Dunbar R, Constantz B (2007) Biological forcing controls the chemistry of reef-building coral skeleton. Geophys Res Lett 34:L02601. doi: 10.1029/2006GL028657 CrossRefGoogle Scholar
  207. Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, Willis BL, Matz MV (2009) Sequencing and de novo analysis of a coral larval transcriptome using 454 GS-Flx. BMC Genom 10:219CrossRefGoogle Scholar
  208. Milne Edwards H (1857) Histoire naturelle des Coralliaires ou polypes proprement dits, Lib. Encyclopédique de Roret, Paris, FranceGoogle Scholar
  209. Mitsunaga K, Akasaka K, Shimada H, Fujin Y, Yasumasu I, Numandi H (1986) Carbonic anhydrase activity in developing sea urchin embryos with special reference to calcification of spicules. Cell Differ 18:257–262CrossRefGoogle Scholar
  210. Mitterer RM (1978) Amino acid composition and metal binding capability of the skeleton protein of corals. Bull Mar Sci 28:173–180Google Scholar
  211. Miyamoto H, Miyashita T, Okushima M, Nakano S, Morit T, Matsushiro A (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci USA 93:9657–9660CrossRefGoogle Scholar
  212. Miyamoto H, Miyoshi F, Kohno J (2005) The Carbonic Anhydrase domain protein Nacrein is expressed in the epithelial cells of the mantle and acts as a negative regulator in calcification in the Mollusc Pinctada fucata. Zool Sci 22:311–315CrossRefGoogle Scholar
  213. Motoda S (1940) The environment and the life of masive reef coral, Goniastrea aspera Verrill inhabiting the reef flatin Palao. Palao Trop Biol Stn Stud 2:61–104Google Scholar
  214. Moura G, Vilarinho L, Santos AC, Machado J (2000) Organic compounds in the extrapalial fluid and haemolymph of Anodonta cygnea (L.) with emphasis on the seasonal biomineralization process. Comp Biochem Physiol 125B:293–306Google Scholar
  215. Moya A, Tambutté S, Tambutté É, Zoccola D, Caminiti N, Allemand D (2006) Study of calcification during a daily cycle of the coral Stylophora pistillata. Implications for “Light-Enhanced Calcification”. J Exp Biol 209:3413–3419CrossRefGoogle Scholar
  216. Moya A, Ferrier-Pagès C, Furla P, Richier S, Tambutté É, Allemand D, Tambutté S (2008a) Calcification and associated physiological parameters during a stress event in the scleractinian coral Stylophora pistillata. Comp Biochem Physiol 151A:29–36Google Scholar
  217. Moya A, Tambutté S, Lotto S, Allemand D, Zoccola D (2008b) Carbonic anhydrase in the scleractinian coral Stylophora pistillata: characterization, localization, and role in biomineralization. J Biol Chem 283:25475–25484CrossRefGoogle Scholar
  218. Moya A, Tambutté S, Béranger G, Gaume B, Scimeca J-C, Allemand D, Zoccola D (2008c) Cloning and use of a coral 36B4 gene to study differential expression of genes in “light-enhanced calcification” of corals. Mar Biotech 10:653–663CrossRefGoogle Scholar
  219. Mueller E (1984) Effects of a calcium channel blocker and an inhibitor of phosphodiesterase on calcification in Acropora formosa. In: Proceedings of Advances in Reef Science, Joint meeting of the Atlantic Reef Committee and the Internaional Society for Reef Studies, Miami, FL, pp 87–88Google Scholar
  220. Muscatine L (1971) Calcification in corals. In: Lenhoff HM, Muscatine L, Davis LV (eds) Experimental coelenterate biology. University of Hawaii Press, Honolulu, Joint meeting of the Atlantic Reef Committee and the International Society for Reef Studies, Miami, FL, pp 227–237Google Scholar
  221. Muscatine L, Cernichiari E (1969) Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol Bull 137:506–523CrossRefGoogle Scholar
  222. Muscatine L, Tambutté É, Allemand D (1997) Morphology of coral desmocytes, cells that anchor the calicoblastic epithelium to the skeleton. Coral Reefs 16:205–213CrossRefGoogle Scholar
  223. Muscatine L, Goiran C, Land L, Jaubert J, Cuif J-P, Allemand D (2005) Stable isotopes (δ C13 and δ N15) of organic matrix from coral skeleton. Proc Natl Acad Sci USA 102:1525–1530CrossRefGoogle Scholar
  224. Nakata K, Shimomura N, Shiina N, Izumi M, Ichikawa K, Shiro M (2002) Kinetic study of catalytic CO2 hydration by water-soluble model compound of carbonic anhydrase and anion inhibition effect on CO2 hydration. J Inorg Biochem 89:255–266CrossRefGoogle Scholar
  225. Nyberg J, Csapo J, Malmgren BA, Winter A (2001) Changes in the D- and L-content of aspartic acid, glutamic, acid, and alanine in a scleractinian coral over the last 300 years. Org Geochem 32:623–632CrossRefGoogle Scholar
  226. Nys Y (1990) Régulation endocrinienne du métabolisme calcique chez la poule et calcification de la coquille. Thèse de doctorat, Université de Paris, Paris, p 6Google Scholar
  227. Nys Y, Zawadzki J, Gautron J, Mills AD (1991) Whitening of brown-shelled eggs: mineral composition of uterine fluid and rate of protoporphyrin deposition. Poult Sci 70:1236–1245Google Scholar
  228. Oaki Y, Kotachi A, Miura T, Imai H (2006) Bridged nanocrystals in biominerals and their biomimetics: classical yet modern crystal growth on the nanoscale. Adv Func Mater 16:1633–1639CrossRefGoogle Scholar
  229. Ogilvie MM (1897) Microscopic and systematic study of madreporarian types of corals. Phil Trans R Soc Lond 187B:83–345Google Scholar
  230. Palmer AR (1992) Calcification in marine molluscs. How costly is it? Proc Natl Acad Sci USA 89:1379–1387CrossRefGoogle Scholar
  231. Pearse VB (1970) Incorporation of metabolic CO2 into coral skeleton. Nature 228:383CrossRefGoogle Scholar
  232. Pearse VB, Muscatine L (1971) Role of symbiotic algae (zooxanthellae) in coral calcification. Biol Bull 141:350–363CrossRefGoogle Scholar
  233. Perrin C (2003) Compositional heterogeneity and microstructural diversity of coral skeletons: implications for taxonomy and control on early diagenesis. Coral Reefs 22:109–120CrossRefGoogle Scholar
  234. Perrin C, Smith DC (2007) Decay of skeletal organic matrices and early diagenesis in coral skeletons. CR Palevol 6:253–260CrossRefGoogle Scholar
  235. Puverel S, Tambutté É, Zoccola D, Domart-Coulon I, Bouchot A, Lotto S, Allemand D, Tambutté S (2005a) Antibodies against the organic matrix in scleractinians: a new tool to study coral biomineralization. Coral Reefs 24:149–156CrossRefGoogle Scholar
  236. Puverel S, Tambutté É, Pereira-Mouries L, Zoccola D, Allemand D, Tambutté S (2005b) Soluble organic matrix of two Scleractinian corals: Partial and comparative analysis. Comp Biochem Physiol 141B:480–487Google Scholar
  237. Puverel S, Houlbrèque F, Tambutté É, Zoccola D, Payan P, Caminiti N, Tambutté S, Allemand D (2007) Evidences of low molecular weight components in the organic matrix of the reef-building coral, Stylophora pistillata. Comp Biochem Physiol 147A:850–856Google Scholar
  238. Ramseyer K, Miano TM, D’Orazio V, Wildberger A, Wagner T, Geister J (1997) Nature and origin of organic matter in carbonates from speleotherms, marine cements and coral skeletons. Org Geochem 26:361–378CrossRefGoogle Scholar
  239. Rasmussen CE (1988) The use of strontium as an indicator of anthropogenically altered environmental parameters. In: Proceedings of the 6th International Coral Reef Symposium, vol 2, Townsville, pp 325–330Google Scholar
  240. Raz-Bahat M, Erez J, Rinkevich B (2006) In vivo light-microscopic documentation for primary calcification processes in the hermatypic coral Stylophora pistillata. Cell Tissue Res 325:361–368CrossRefGoogle Scholar
  241. Reyes-Bermudez A, Lin Z, Hayward DC, Miller DJ, Ball EE (2009) Differential expression of three galaxin-related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora. BMC Evol Biol 9:1–29CrossRefGoogle Scholar
  242. Reynaud S, Hemming NG, Juillet-Leclerc A, Gattuso J-P (2004) Effect of pCO2 and temperature on the boron isotopic composition of the zooxanthellate coral Acropora sp. Coral Reefs 23:539–546Google Scholar
  243. Reynaud-Vaganay S, Gattuso J-P, Cuif J-P, Jaubert J, Juillet-Leclerc A (1999) A novel culture technique for scleractinian corals: application to investigate changes in skeletal ∂18O as a function of temperature. Mar Ecol Progr Ser 180:121–130CrossRefGoogle Scholar
  244. Ridgwell A, Zeebe RE (2005) The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet Sci Lett 234:299–315CrossRefGoogle Scholar
  245. Ries JB, Stanley SM, Hardie LA (2006) Scleractinian corals produce calcite, and grow more slowly, in artificial Cretaceous seawater. Geol Soc Am 34:525–528Google Scholar
  246. Rinkevich B, Loya Y (1984) Does light enhance calcification in hermatypic corals? Mar Biol 80:1–6CrossRefGoogle Scholar
  247. Rollion-Bard C, Chaussidon M, France-Lanord C (2003) pH control on oxigen isotopic composition of symbiotic corals. Earth Planet Sci Lett 215:275–288CrossRefGoogle Scholar
  248. Roth AA, Clausen CD, Yahiku PY, Clausen VE, Cox WW (1982) Some effects of light on coral growth. Pac Sci 36:65–81Google Scholar
  249. Sanderman IM (2008) Light driven lipid peroxidation of coral membranes and a suggested role in calcification. Rev Biol Trop 56:1–9Google Scholar
  250. Schmid V, Ono S, Reber-Muller S (1999) Cell-substrate interactions in cnidaria. Microsc Res Tech 44:254–268CrossRefGoogle Scholar
  251. Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293CrossRefGoogle Scholar
  252. Schneider K, Levy O, Dubinsky Z, Erez J (2009) In situ diel cycles of photosynthesis and calcification in hermatypic corals. Limmol Oceanogr 54:1995–2002Google Scholar
  253. Shechter A, Berman A, Singer A, Freiman A, Grinstein M, Erez J, Aflalo ED, Sagi A (2008) Reciprocal changes in calcification of the gastrolith and cuticle during the molt cycle of the red claw crayfish Chera quadricarinatus. Biol Bull 214:122–134CrossRefGoogle Scholar
  254. Silliman B (1846) On the chemical composition of the calcareous corals. Am J Sci Arts 51:189–199Google Scholar
  255. Simkiss K (1964) Phosphates as crystal poisons of calcification. Biol Rev 39:487–505CrossRefGoogle Scholar
  256. Sinclair D (2004) Interactive comment on “The environment recording unit in coral skeletons: structural and chemical evidences of a biochemically driven stepping-growth process in coral fibres” by J.P. Cuif and Y. Dauphin. Biogeosci Disc 1(2004):265–272, Biogeosci Disc 1: 265–272Google Scholar
  257. Smith SV, Kinsey W (1978) Calcification and organic carbon metabolism as indicated by carbon dioxide. UNESCO, ParisGoogle Scholar
  258. Söllner C, Burghammer M, Busch-Nentwich E, Berger J, Schwarz H, Riekel C, Nicolson T (2003) Control of crystal size and lattice formation by Starmaker in otolith biomineralization. Science 302:282–286CrossRefGoogle Scholar
  259. Sorauf JE (1999) Skeletal microstructure, geochemistry, and organic remnants in Cretaceous scleractinian corals: Santonian Gosau beds of Gosau. Austria J Paleontol 73:1029–1041Google Scholar
  260. Stern B, Abbott GD, Collins MJ, Armstrong HA (1999) Development and comparison of different methos for the extraction of biomineral associated lipids. Anc Biomol 2:321–324Google Scholar
  261. Stolarski J (2003) Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: a biocalcification proxy. Acta Palaeontol Pol 4:497–530Google Scholar
  262. Stolarski J, Meibom A, Przeniosto R, Mazur M (2007) A cretaceous scleractinian coral with a calcitic skeleton. Science 318:92–94CrossRefGoogle Scholar
  263. Supuran CT, Scozzafava A (2007) Carbonic anhydrases as targets for medicinal chemistry. Bioorg Med Chem 15:4336–4350CrossRefGoogle Scholar
  264. Swart PK (1979) The effect of seawater calcium concentrations on the growth and skeletal composition of a scleractinian coral, Acropora squamosa. J Sediment Pet 49:951–954Google Scholar
  265. Tambutté É, Allemand D, Bourge I, Gattuso J-P, Jaubert J (1995) An improved 45Ca protocol for investigating physiological mechanisms in coral calcification. Mar Biol 122:453–459CrossRefGoogle Scholar
  266. Tambutté É, Allemand D, Mueller E, Jaubert J (1996) A compartmental approach to the mechanism of calcification in hermatypic corals. J Exp Biol 199:1029–1041Google Scholar
  267. Tambutté É, Allemand D, Zoccola D, Meibom A, Lotto S, Caminiti N, Tambutté S (2007a) Observations of the tissue-skeleton interface in the scleractinian coral Stylophora pistillata. Coral Reefs 26:517–529CrossRefGoogle Scholar
  268. Tambutté S, Tambutté É, Zoccola D, Caminiti N, Lotto S, Moya A, Allemand D, Adkins J (2007b) Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea. Mar Biol 151:71–83CrossRefGoogle Scholar
  269. Tambutté S, Tambutté É, Zoccola D, Allemand D (2007c) Organic matrix and Biomineralization of scleractinian corals. In: Baeuerlein E (ed) Handbook of biomineralization: biology aspects and structure formation. Wiley-VCH, Weinheim, pp 243–259Google Scholar
  270. Taylor DL (1977) Intra-colonial transport of organic compund and calcium in some atlantic reef corals. In: Taylor DL (ed) Proc Third Int Coral Reef Symp. Rosenstiel School of Marine and Atmospheric Science, Miami, FL, pp 431–436Google Scholar
  271. Taylor DL (1983) Mineralization in symbiotic systems. Endocytobiology 2:689–697Google Scholar
  272. Technau U, Rudd S, Maxwell P, Gordon PMK, Saina M, Grasso LC, Hayward DC, Sensen CW, Saint R, Holstein TW, Ball EE, Miller DJ (2005) Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. Trends Genet 21:633–639CrossRefGoogle Scholar
  273. Teng HH, Dove PM, Orme CA, De Yoreo JJ (1998) Thermodynamics of calcite growth: baseline for understanding biomineral formation. Science 282:724–727CrossRefGoogle Scholar
  274. Tentori E, Allemand D (2006) Light-enhanced calcification and dark decalcification in isolates of the soft coral Cladiella sp. during tissue recovery. Biol Bull 211:193–202CrossRefGoogle Scholar
  275. Tohse H, Murayama E, Ohira T, Takagi Y, Nagasawa H (2006) Localization and diurnal variations of carbonic anhydrase mRNA expression in the inner ear of the rainbow trout Oncorhynchus mykiss. Comp Biochem Physiol 145C:257–264Google Scholar
  276. Truchot J-P (1987) Comparative aspects of extracellular acid-base balance. Springer, Berlin/HeidelbergGoogle Scholar
  277. Tyler S (2003) Epithelium - The primary building block for Metazoan complexity. Integr Comp Biol 43:55–63CrossRefGoogle Scholar
  278. Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899CrossRefGoogle Scholar
  279. Vandermeulen JH (1975) Studies on reef corals. III. Fine structural changes of calicoblast cells in Pocillopora damicornis during settling and calcification. Mar Biol 31:69–77CrossRefGoogle Scholar
  280. Vaughan TW (1919) Corals and the formation of coral reefs. Ann Rep Smithson Inst 17:189–238Google Scholar
  281. Veis A (2005) A window on biomineralization. Science 307: 1419–1420CrossRefGoogle Scholar
  282. Veis DJ, Albinger TM, Clohisy J, Rahima M, Sabsay B, Veis A (1986) Matrix proteins of the teeth of the sea urchin Lytechinus variegatus. J Exp Zool 240:35–46CrossRefGoogle Scholar
  283. Vengosh A, Kolodny Y, Starinsky A, Chivas AR, McCulloch MT (1991) Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochim Cosmochim Acta 55:2901–2910CrossRefGoogle Scholar
  284. Venn AA, Tambutté É, Lotto S, Zoccola D, Allemand D, Tambutté S (2009) Imaging intracellular pH in a reef coral and symbiotic anemone. Proc Natl Acad Sci USA 106:16574–16579CrossRefGoogle Scholar
  285. Vertino A, Stolarski J, Beuck L (2007) Organo-mineral skeleton of deep-water scleractinia: shelter and “snack” for bioeroding organisms. In: 10th International symposium on fossil Cnidaria and Porifera, St Petersburg, Russia, p 98Google Scholar
  286. Vielzeuf D, Garrabou J, Baronnet A, Grauby O, Marschal C (2008) Nano to macroscale biomineral architecture of red coral (Corallium rubrum). Am Mineral 93:1799–1815CrossRefGoogle Scholar
  287. Von Heider A (1881) Die Gattung Cladocora Ehrenb. Sber Akad Wiss Wien 84:634–637Google Scholar
  288. Wainwright SA (1963) Skeletal organization in the coral, Pocillopora damicornis. Q J Micr Sci 104:169–183Google Scholar
  289. Wang JT, Douglas AE (1999) Essential amino acid synthesis and nitrogen recycling in an alga-invertebrate symbiosis. Mar Biol 135: 219–222CrossRefGoogle Scholar
  290. Watanabe T, Fukuda I, China K, Isa Y (2003) Molecular analyses of protein components of the organic matrix in the exoskeleton of two scleractinian coral species. Comp Biochem Physiol 136B:767–774Google Scholar
  291. Weiner S, Levi-Kalisman Y, Raz S, Addadi L (2003) Biologically formed amorphous calcium carbonate. Connect Tissue Res 44(suppl1):214–218Google Scholar
  292. Weis V, Allemand D (2009) Whar determines coral health? Science 324:1153–1155CrossRefGoogle Scholar
  293. Weis VM, Smith GJ, Muscatine L (1989) A ‘CO2 supply’ mechanism in zooxanthellate cnidarians: role of carbonic anhydrase. Mar Biol 100:195–202CrossRefGoogle Scholar
  294. Wellington GM, Glynn PW (1983) Environmental influences on skeletal banding in Eastern Pacific (Panama) Corals. Coral Reefs 1:215–222CrossRefGoogle Scholar
  295. Wells JW (1956) Scleractinia. In: Moore RC (ed) Treatise of invertebrate paleontology. Geological Society of America, Lawrence, pp F328–F444Google Scholar
  296. Wheeler AP (1992) Mechanisms of molluscan shell formation. In: Bonucci E (ed) Calcification in biological systems. CRC, Boca Raton, pp 179–216Google Scholar
  297. Xu Y, Feng L, Jeffrey PD, Shi Y, Morel FM (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452:56–61CrossRefGoogle Scholar
  298. Yamashiro H (1995) The effects of HEBP, an inhibitor of mineral deposition, upon photosynthesis and calcification in the scleractinian coral, Stylophora pistillata. J Exp Mar Biol Ecol 191:57–63CrossRefGoogle Scholar
  299. Yamashiro H, Samata T (1996) New type of organic matrix in corals formed at the decalcified site: structure and composition. Comp Biochem Physiol 113A:297–300CrossRefGoogle Scholar
  300. Yonge CM, Nicholls AG (1931) Studies on the physiology of corals. V. On the relationship between corals and zooxanthellae. Sci Rep Gt Barrier Reef Exped 1:177–211Google Scholar
  301. Young SD (1971) Organic material from scleractinian coral skeletons. I. Variation in composition between several species. Comp Biochem Physiol 40B:113–120Google Scholar
  302. Young SD (1973) Calcification and synthesis of skeletal organic material in the coral, Pocillopora damicornis (L.) (Astrocoeniidae, Scleractinia). Comp Biochem Physiol 44A:669–672CrossRefGoogle Scholar
  303. Young SD, O’Connor JD, Muscatine L (1971) Organic material from scleractinian coral skeletons. II. Incorporation of 14C into protein, chitin and lipid. Comp Biochem Physiol 40B:945–958Google Scholar
  304. Yuasa HJ, Suzuki T, Yazawa M (2001) Structural organization of lower marine nonvertebrate calmodulin genes. Gene 279:205–212CrossRefGoogle Scholar
  305. Ziegler A (2008) The cationic composition and pH in the moulting fluid of Porcellio scaber (Crustacea, Isopoda) during calcium carbonate deposit formation and resorption. J Comp Physiol B 178:67–76CrossRefGoogle Scholar
  306. Zoccola D, Tambutté É, Sénegas-Balas F, Michiels J-F, Failla J-P, Jaubert J, Allemand D (1999) Cloning of a calcium channel α1 subunit from the reef-building coral, Stylophora pistillata. Gene 227:157–167CrossRefGoogle Scholar
  307. Zoccola D, Tambutté É, Kulhanek E, Puverel S, Scimeca J-C, Allemand D, Tambutté S (2004) Molecular cloning and localization of a PMCA P-type calcium ATPase from the coral Stylophora pistillata. Biochim Biophys Acta 1663:117–126CrossRefGoogle Scholar
  308. Zoccola D, Moya A, Béranger GE, Tambutté É, Allemand D, Carle GF, Tambutté S (2009) Specific expression of BMP2/4 ortholog in biomineralizing tissues of corals and action on mouse BMP receptor. Mar Biotech 11:260–269CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Denis Allemand
    • 1
    Email author
  • Éric Tambutté
    • 1
  • Didier Zoccola
    • 1
  • Sylvie Tambutté
    • 1
  1. 1.Centre Scientifique de MonacoMonacoPrincipality of Monaco

Personalised recommendations