Skip to main content

Physiological Adaptation to Symbiosis in Cnidarians

  • Chapter
  • First Online:
Coral Reefs: An Ecosystem in Transition

Abstract

Up to the nineteenth century, cnidarians, among other organisms such as echinoderms and sponges, were classified as zoophytes, or animal – plant. This term, initially used by Wotton in 1552 and later by Linné and Cuvier (Daudin 1926), was only referring at this time to the external shape of the organisms, fixed branched one. This term was abandoned in the twentieth century; it is however curious to note that biological and physiological reasons might support this term. Indeed, Brandt at the end of the nineteenth century showed the presence of photosynthetic algae inside the tissues of these animals. He suggested that these algae were symbiotic and called them zooxanthellae (Brandt 1881; see Perru 2003, for a review). Zooxanthellae belong to the dinoflagellate phylum and were initially considered as a single species, called Symbiodinium microadriaticum (Freudenthal 1962). It was presently shown to be highly diverse and subdivided in Symbiodinium clades (Pochon et al. 2006). Associations of these different clades with their host did not evolve randomly and members of the same cnidarian species generally harbor the same Symbiodinium clade(s) (see review by Coffroth and Santos 2005, Stambler 2010 this book).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizawa K, Miyachi S (1986) Carbonic anhydrase and CO2-concentrating mechanisms in microalgae and cyanobacteria. FEMS Microbiol Rev 39:215–233

    Article  CAS  Google Scholar 

  • Alieva NO, Konzen KA, Field SF, Meleshkevitch EA, Hunt ME, Beltran-Ramirez V, Miler DJ, Wiedenmann J, Salih A, Matz MV (2008) Diversity and evolution of coral fluorescent proteins. PLoS ONE 3:e2680

    Article  Google Scholar 

  • Allemand D, Furla P, Bénazet-Tambutté S (1998) Mechanisms of carbon acquisition for endosymbiont photosynthesis in Anthozoa. Can J Bot 76:925–941

    Article  CAS  Google Scholar 

  • Al-Moghrabi S, Goiran C, Allemand D, Speziale N, Jaubert J (1996) Inorganic carbon uptake for photosynthesis by the symbiotic coral/ dinoflagellate association. II. Mechanisms for bicarbonate uptake. J Exp Mar Biol Ecol 199:227–248

    Article  CAS  Google Scholar 

  • Ambarsari I, Brown BE, Barlow RG, Britton G, Cummings D (1997) Fluctuations in algal chlorophyll and carotenoid pigments during solar bleaching in the coral Goniastrea aspera at Phuket Thailand. Mar Ecol Prog Ser 159:303–307

    Article  CAS  Google Scholar 

  • Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Shifting to new algal symbionts may safeguard devastated reefs from extinction. Nature 430:CBl153

    Article  Google Scholar 

  • Bénazet-Tambutté S, Allemand D, Jaubert J (1996) Inorganic carbon supply to symbiont photosynthesis of the sea anemone, Anemonia viridis: role of the oral epithelial layers. Symbiosis 20:199–217

    Google Scholar 

  • Bentley R (1990) The shikimate pathway – a metabolic tree with many branches. Crit Rev Biochem Mol Biol 25:307–384

    Article  CAS  Google Scholar 

  • Bertucci A, Tambutté É, Tambutté S, Allemand D, Zoccola D (2010) Symbiosis-dependant gene expression in coral-dinoflagellate association: cloning and characterization of a P-type H + -ATPase gene. Proc R Soc B 277:87–95

    Article  CAS  Google Scholar 

  • Bou-Abdallah F, Chasteen ND, Lesser MP (2006) Quenching of superioxide radicals by green fluorescent protein. Biochim Biophys Acta 1760:1690–1695

    CAS  Google Scholar 

  • Bowes G, Salvuci ME (1989) Plasticity in the photosynthetic carbon metabolism of submersed aquatic macrophytes. Aquat Bot 34:233–266

    Article  CAS  Google Scholar 

  • Brandt K (1881) Uber das Zusammenleben von Algen und Tieren. Biologisches Centralblatt 1:524–527

    Google Scholar 

  • Bronstein JL (2001) The costs of mutualism. Amer Zool 41:825–839

    Article  Google Scholar 

  • Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34

    Article  CAS  Google Scholar 

  • D’Aoust BG, White R, Wells JM, Olsen DA (1976) Coral-algal associations: Capacity for producing and sustaining elevated oxygen tensions in situ. Undersea Biomed Res 3:35–40

    Google Scholar 

  • Daudin H (1926) Cuvier et Lamarck. Les classes zoologiques et l’idée de série animale. Félix Alcan, Paris, pp 1790–1830

    Google Scholar 

  • Douglas AE, McAuley PJ, Davies PS (1993) Algal symbiosis in cnidarian. J Zool 231:175–178

    Article  Google Scholar 

  • Dove S (2004) Scleractinian corals with photoprotective host pigments are hypersensitive to thermal bleaching. Mar Ecol Prog Ser 272:99–116

    Article  Google Scholar 

  • Dove SG, Hoegh-Guldberg O, Ranganathan S (2001) Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19:197–204

    Article  Google Scholar 

  • Dunlap WC, Yamamoto Y (1995) Small-molecule antioxidants in marine organisms: antioxidant activity of mycosporine-glycine. Comp Biochem Physiol 112B:105–114

    CAS  Google Scholar 

  • Dunlap WC, Shick JM, Yamamoto Y (2000) UV protection in marine organisms. I. Sunscreens, oxidative stress and antioxidants. In: Yoshikama Y, Toyokuni S, Yamamoto Y, Naito Y (eds) Free radicals in chemistry, biology and medicine. OICA International, London

    Google Scholar 

  • Dykens JA, Shick JM (1982) Oxygen production by endosymbiotic algae controls superoxyde dismutase activity in their animal host. Nature 297:579–580

    Article  CAS  Google Scholar 

  • Dykens JA, Shick JM, Benoit C, Buettner GR, Winston GW (1992) Oxygen radical production in the sea anemone Anthopleura elegantissima and its endosymbiotic algae. J Exp Biol 168:219–241

    CAS  Google Scholar 

  • Edge R, McGarvey DJ, Truscott TG (1997) The carotenoids as anti-oxidants - a review. J Photochem Photobiol B 41:189–200

    Article  CAS  Google Scholar 

  • Fine PEM (1975) Vectors and vertical transmission: an epidemiological perspective. Ann NY Acad Sci 266:173–194

    Google Scholar 

  • Freudenthal HD (1962) Symbiodinium gen. nov. Symbiodinium microadriaticum sp. nov., a zooxanthella: Taxonomy, life cycle, and morphology. J Protozool 9:45–52

    Google Scholar 

  • Furla P, Bénazet-Tambutté S, Jaubert J, Allemand D (1998a) Functional polarity of the tentacle of the sea anemone Anemonia viridis: Role in inorganic carbon acquisition. Amer J Physiol (Regul Integr Comp Physiol) 274:R303–R310

    CAS  Google Scholar 

  • Furla P, Bénazet-Tambutté S, Jaubert J, Allemand D (1998b) Diffusional permeability of dissolved inorganic carbon through the isolated oral epithelial layers of the sea anemone, Anemonia viridis. J Exp Mar Biol Ecol 221:71–88

    Article  CAS  Google Scholar 

  • Furla P, Allemand D, Orsenigo MN (2000a) Involvement of H+-ATPase and carbonic anhydrase in inorganic carbon uptake for endosymbiont photosynthesis. Amer J Physiol (Regul Integr Comp) 278:R870–R881

    CAS  Google Scholar 

  • Furla P, Galgani I, Durand I, Allemand D (2000b) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203:3445–3457

    CAS  Google Scholar 

  • Furla P, Allemand D, Ferrier-Pages C, Shick M (2005) The symbiotic anthozoan: physiological chimera between alga and animal. Integr Comp Biol (formerly Am Zool) 45:595–604

    Article  CAS  Google Scholar 

  • Furla P, Richier S, Merle P-L, Garello G, Plantivaux A, Forcioli D, Allemand D (2008) Roles and origins of superoxide dismutases in a symbiotic cnidarian. In: Organisms SEaEGoCR (ed) 11th international coral reef symposium, Fort Lauderdale, 2008

    Google Scholar 

  • Ganot P, Moya A, Deleury E, Allemand D, Furla P, Sabourault C (2008) Exploring symbiotic interactions in the sea anemone-zooxanthellae model by large-scale ests analysis. In: Organisms SEaEGoCR (ed) 11th International coral reef symposium, Fort Lauderdale, 2008

    Google Scholar 

  • Gilmore AM, Larkum AWD, Salih A, Itoh S, Shibata Y, Bena C, Yamasaki H, Papina M, Van Woesik R (2003) Simultaneous time resolution of the emission spectra of fluorescent proteins and zooxanthellar chlorophyll in reef-building corals. Photochem Photobiol 77:515–523

    Article  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  CAS  Google Scholar 

  • Gluck S, Nelson R (1992) The role of the V-ATPase in renal epithelium H + transport. J Exp Biol 172:205–218

    CAS  Google Scholar 

  • Goiran C, Al-Moghrabi S, Allemand D, Jaubert J (1996) Inorganic carbon uptake for photosynthesis by the symbiotic coral/dinoflagellate association I. Photosynthetic performances of symbionts and dependence on sea water bicarbonate. J Exp Mar Biol Ecol 199:207–225

    Article  CAS  Google Scholar 

  • Goiran C, Allemand D, Galgani I (1997) Transient Na+ stress in symbiotic dinoflagellates after isolation from coral-host cells and subsequent immersion in seawater. Mar Biol 129:581–589

    Article  CAS  Google Scholar 

  • Goodson MS, Whitehead F, Douglas AE (2001) Symbiotic dinoflagellates in marine cnidaria: diversity and function. Hydrobiologia 461:79–82

    Google Scholar 

  • Grover R, Maguer JF, Reynaud-Vaganay S, F-P C (2002) Uptake of ammonium by the scleractinian coral Stylophora pistillata: Effect of feeding, light, and ammonium concentrations. Limnol Oceanogr 47:782–790

    Article  Google Scholar 

  • Grover R, Maguer JF, Allemand D, Ferrier-Pages C (2003) Nitrate uptake in the scleractinian coral Stylophora pistillata. Limnol Oceanogr 48:2266–2274

    Article  CAS  Google Scholar 

  • Grover R, Maguer J-F, Allemand D, Ferrier-Pagès C (2006) Urea uptake by the scleractinian coral Stylophora pistillata. J Exp Mar Biol Ecol 332:216–225

    Article  CAS  Google Scholar 

  • Halliwell B, Guteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Jordan DB, Ogren WL (1981) Species variation in the specificity of ribulose biphosphate carboxylase/oxygenase. Nature 291:513–515

    Article  CAS  Google Scholar 

  • Kirschner LB (1991) Water and ions. In: Prosser CL (ed) Environmental and metabolic animal physiology. Wiley-Liss, New York, pp 13–107

    Google Scholar 

  • Leggat W, Badger MR, Yellowlees D (1999) Evidence for an inorganic carbon-concentrating mechanism in the symbiotic dinoflagellate Symbiodinium sp. Plant Physiol 121:1247–1255

    Article  CAS  Google Scholar 

  • Leggat W, Marendy EM, Baillie B, Whitney SM, Ludwig M, Badgaer MR, Yellowlees D (2002) Dinoflagellate symbioses: strategies and adaptations for the acquisition and fixation of inorganic carbon. Funct Plant Biol 29:309–322

    Article  CAS  Google Scholar 

  • Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperature. Coral Reefs 16:187–192

    Article  Google Scholar 

  • Lesser MP (2005) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–257

    Article  Google Scholar 

  • Lopez I, Egea R, Herrera FC (1991) Are cœlenterate cells permeable to large anions? Comp Biochem Physiol 100A:193–198

    Article  CAS  Google Scholar 

  • Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from non bioluminescent Anthozoa species. Nat Biotechnol 17:969–973

    Article  CAS  Google Scholar 

  • Matz MV, Marshall NJ, Vorobyev M (2006) Are corals colorful? Photochem Photobiol 82:345–350

    Article  CAS  Google Scholar 

  • Mayfield AB, Gates RD (2007) Osmoregulation in anthozoan-dinoflagellate symbiosis. Comp Biochem Physiol 147A:1–10

    CAS  Google Scholar 

  • Mazel CH, Lesser MP, Gorbunov MY, Barry TM, Farrel JH, Wyman KD, Falkowski PG (2003) Green-fluorescent proteins in Caribbean corals. Limnol Oceanogr 48:402–411

    Article  CAS  Google Scholar 

  • Merle PL, Sabourault C, Richier S, Allemand D, Furla P (2007) Catalase characterization and implication in bleaching of a symbiotic sea anemone. Free Radic Biol Med 42(2):236–246

    Google Scholar 

  • Mobley KB, Gleason DF (2003) The effect of light and heterotrophy on carotenoid concentrations in the Caribbean anemone Aiptasia pallida (Verrill). Mar Biol 143:629–637

    Article  CAS  Google Scholar 

  • Oswald F, Schmitt F, Leutenegger A, Ivanchenko S, D’Angelo C, Salih A, Maslakova S, Bulina M, Schirmbeck R, Nienhaus GU, Matz MV, Wiedenmann J (2007) Contributions of host and symbiont pigments to the coloration of reef corals. FEBS J 274:1102–1109

    Article  CAS  Google Scholar 

  • Palmer CV, Mydlarz LD, Willis BL (2008) Evidence of an inflammatory-like response in non-normally pigmented tissues of two scleractinian corals. Proc R Soc Ser B Biol Sci 275:2687–2693

    Article  Google Scholar 

  • Perru O (2003) De la Société à la Symbiose: Une histoire des découvertes sur les associations chez les êtres vivants. Librairie philosophique J. Vrin. Institut de l’Institut Interdisciplinaire d’Etudes Epistémologiques, Paris, Lyon

    Google Scholar 

  • Plantivaux A (2006) Adaptation aux stress oxydants chez un Cnidaire symbiotique : approche biochimique et génomique: rôle de la Cu/Zn-SOD. Ph.D. thesis. Nice-Sophia Antipolis University, France

    Google Scholar 

  • Plantivaux A, Furla P, Zoccola D, Garello G, Forcioli D, Richier S, Merle P-L, Tambutté É, Tambutté S, Allemand D (2004) Molecular characterization of two CuZn-superoxide dismutases in a sea anemone. Free Radic Biol Med 37:1170–1181

    Article  CAS  Google Scholar 

  • Pochon X, Montoya-Burgos JI, Stadelmann B, Pawlowski J (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evol 38:20–30

    Article  CAS  Google Scholar 

  • Prescott M, Ling M, Beddoe T (2003) The 2.2 Å crystal structure of a pocilloporin pigment reveals a nonplanar chromophore conformation. Structure 11:275–284

    Article  CAS  Google Scholar 

  • Raven JA (1990) Sensing pH? Plant Cell Environ 13:721–729

    Article  CAS  Google Scholar 

  • Raven JA (2003) Inorganic carbon concentrating mechanisms in relation to the biology of algae. Photosynth Res 77:155–171

    Article  CAS  Google Scholar 

  • Richier S (2004) Mécanismes de résistance d’une endosymbiose marine méditerranénne aux stress oxydatifs. Ph.D. thesis. Nice-Sophia Antipolis University, France

    Google Scholar 

  • Richier S, Merle P-L, Furla P, Pigozzi D, Sola F, Allemand D (2003) Characterization of superoxide dismutases in anoxia- and hyperoxia- tolerant symbiotic cnidarians. Biochim Biophys Acta 1621:84–91

    CAS  Google Scholar 

  • Richier S, Furla P, Plantivaux A, Merle P-L, Allemand D (2005) Symbiosis-induced adaptation to oxidative stress. J Exp Biol 208:277–285

    Article  Google Scholar 

  • Richier S, Cottalorda J-M, Guillaume M, Fernandez C, Allemand D, Furla P (2008) Depth-dependant response to light of the reef building coral, Pocillopora verrucosa: implication of oxidative stress. J Exp Mar Biol Ecol 357:48–56

    Google Scholar 

  • Rodriguez-Lanetty M, Phillips WS, Weis VM (2006) Transcriptome analysis of a cnidarian-dinoflagellate mutualism reveals complex modulation of host gene expression. BMC Genomics 7:1–11

    Article  Google Scholar 

  • Roth E, Jeon K, Stacey G (1988) Homology in endosymbiotic systems: The term symbiosome. In: Palacios RV D (ed) Molecular genetics of plant-microbe interactions. The American Phytopatological Society, St Paul, pp 220–225

    Google Scholar 

  • Rowan R, Whitney SM, Fowler A, Yellowlees D (1996) Rubisco in marine symbiotic dinoflagellates: Form II enzymes in eukaryotic oxygenic phototrophs encoded by a nuclear multigene family. Plant Cell 8:539–553

    Article  CAS  Google Scholar 

  • Sachs JL, Wilcox TP (2006) A shift to parasitism in the jellyfish symbiont Symbiodinium microadriaticum. Proc R Soc B 273:425–429

    Article  Google Scholar 

  • Salih A, Hoegh-Guldberg O, Cox G (1998) Photoprotection of symbiotic dinoflagellates by fluorescent pigments in reef. In: Greenwood JG, Hall NJ (eds) Proceedings of the Australian coral ref society 75th anniversary conference, Heron Island, 1997, pp 218–230

    Google Scholar 

  • Sawyer SJ, Muscatine L (2001) Cellular mechanisms underlying temperature-induced bleaching in the tropical sea anemone Aiptasia pulchella. J Exp Biol 204:3443–3456

    CAS  Google Scholar 

  • Schlichter D, Fricke HW (1990) Coral host improves photosynthesis of endosymbiotic algae. Naturwissenschaften 77:447–450

    Article  Google Scholar 

  • Schwarz JA, Weis VM, Potts DC (2002) Feeding behavior and acquisition of zooxanthellae by planula larvae of the sea anemone Anthopleura elegantissima. Mar Biol 140:471–478

    Article  Google Scholar 

  • Sebens KP, Vandersall KS, Savina LA, Graham KR (1996) Zooplankton capture by two scleractinian corals, Madracis mirabilis and Montastrea cavernosa, in a field enclosure. Mar Biol 127:303–317

    Article  Google Scholar 

  • Seibt C, Schlichter D (2001) Compatible intracellular ion composition of the host improves carbon assimilation by Zooxanthellae in mutualistic symbioses. Naturwissenschaften 88:382–386

    Article  CAS  Google Scholar 

  • Shashar N, Cohen Y, Loya Y (1993) Extreme diel fluctuations of oxygen in diffusive boundary layers surrounding stony corals. Biol Bull 185:455–461

    Article  Google Scholar 

  • Shick JM, Dunlap WC (2002) Mycosporine-like amino acids and related gadusols: Biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu Rev Physiol 64:223–262

    Article  CAS  Google Scholar 

  • Shick JM, Dykens JA (1985) Oxygen detoxification in algal-invertebrate symbioses from great barrier reef. Oecologia 66:33–41

    Article  Google Scholar 

  • Shick JM, Lesser MP, Jokiel PL (1996) Effects of ultraviolet radiation on corals and other coral reef organisms. Glob Change Biol 2:527–545

    Article  Google Scholar 

  • Shick JM, Romaine-Lioud S, Ferrier-Pagès C, Gattuso J-P (1999) Ultraviolet-B radiation stimulates shikimate pathway-dependent accumulation of mycosporine-like amino acids in the coral Stylophora pistillata despite decreases in its population of symbiotic dinoflagellates. Limnol Oceanogr 44:1667–1682

    Article  CAS  Google Scholar 

  • Starcevic A, Akthar S, Dunlap WC, Shick JC, Hranueli D, Cullum J, Long PF (2008) Enzymes of the shikimic acid pathway encoded in the genome of a basal metazoan, Nematostella vectensis, have microbial origins. Proc Natl Acad Sci 105:2533–2537

    Article  CAS  Google Scholar 

  • Trench RK (1987) Dinoflagellates in non-parasitic symbioses. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell Scientific Publications, Oxford, pp 530–570

    Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  Google Scholar 

  • Venn AA, Tambutté É, Lotto S, Zoccola D, Allemand D, Tambutté S (2009) Intracellular pH in symbiotic cnidarians. Proc Natl Acad Sci 106(39):16574–17579

    Article  CAS  Google Scholar 

  • Wakefield TS, Kempf SC (2001) Development of host- and symbiont-specific monoclonal antibodies and confirmation of the origin of the symbiosome membrane in a cnidarian-dinoflagellate symbiosis. Biol Bull 200:127–143

    Article  Google Scholar 

  • Weis VM (1991) The induction of carbonic anhydrase in the symbiotic sea anemone Aiptasia pulchella. Biol Bull 180:496–504

    Article  CAS  Google Scholar 

  • Weis VM, Reynolds WS (1999) Carbonic anhydrase expression and synthesis in the sea anemone Anthopleura elegantissima are enhanced by the presence of dinoflagellate symbionts. Physiol Biochem Zool 72:307–316

    Article  CAS  Google Scholar 

  • Wiedenmann J, Ivanchenko S, Oswald F, Nienhaus GU (2004) Identification of GFP-like proteins in non-bioluminescent, azooxanthellate Anthozoa opens new perspectives for bioprospecting. Mar Biotechnol 6:270–277

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Furla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Furla, P., Richier, S., Allemand, D. (2011). Physiological Adaptation to Symbiosis in Cnidarians. In: Dubinsky, Z., Stambler, N. (eds) Coral Reefs: An Ecosystem in Transition. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0114-4_12

Download citation

Publish with us

Policies and ethics