Skip to main content

Simulating and Quantifying the Environmental Influence on Coral Colony Growth and Form

  • Chapter
  • First Online:

Abstract

Understanding the growth process of scleractinian corals is crucial to study their role in the marine ecosystem and to obtain insight into their susceptibility to changes in the external physical environment. In this chapter, we describe a method for obtaining three-dimensional images of coral colonies and quantifying morphological properties of complex-shaped colonies. We introduce a method to simulate the accretive growth process in corals and models for simulating the influence of light on the local growth process and the influence of advection-diffusion on the local absorption of nutrients (e.g., inorganic carbon) at the surface of the coral. The morphometric analysis can be used to do a quantitative comparison of real and simulated forms and to identify missing parameters in the growth model. The model of the physical environment can be used to study the hydrodynamics and local distribution of nutrients and light in coral morphologies

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham ER (2001) The fractal branching of an arborescent sponge, Mar Biol 138: 503–510

    Article  Google Scholar 

  • Allemand D, Ferrier-Pagès, Furla C, Houlbrèque P, Puverel FS, Reynaud S, Tambutté É, Tambutté S, Zoccola D (2004) Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. C R Palevol 3:453–467

    Article  Google Scholar 

  • Anthony KRN (1999) Coral suspension feeding on fine particulate matter. J Exp Mar Biol Ecol 232:85–106

    Article  Google Scholar 

  • Ball EE, Hayward DC, Reece-Hoyes JS, Hislop NR, Samuel G, Saint R, Harrison PL, Miller DJ (2002) Coral development: from classical embryology to molecular control. Int J Biol 46:671–678

    CAS  Google Scholar 

  • Ball EE, Hayward DC, Saint R, Miller DJ (2004) A simple plan – cnidarians and the origins of developmental mechanisms. Nat Genet 5:567–577

    Article  CAS  Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, New York

    Google Scholar 

  • Bruno JF, Edmunds PJ (1998) Metabolic consequences of phenotypic plasticity in the coral Madracis mirabilis (Duchassaing and Michelotti): the effect of morphology and water flow on aggregate respiration. J Exp Mar Biol Ecol 229:187–195

    Article  Google Scholar 

  • Budd AF, Johnson KG, Potts DC (1994) Recognizing morphospecies in colonial reef corals: I. Landmark-based methods. Paleobiology 20:484–505

    Google Scholar 

  • Budd AF, Guzman HM (1994) Siderastrea glynni, a new species of scleractinian coral (cnidaria: anthozoa) from the eastern pacific, Proc Biol Soc Wash 107:591–599

    Google Scholar 

  • Chamberlain JA, Graus RR (1977) Water flow and hydromechanical adaptations of branched reef corals. Bull Mar Sci 25:112–125

    Google Scholar 

  • Chopard B, Droz M (1998) Cellular automata modelling of physical systems. Cambridge Univerity Press, Cambridge

    Book  Google Scholar 

  • Darke WM, Barnes DJ (1993) Growth trajectories of corallites and ages of polyps in massive colonies of reef-building corals of the genus Porites. Mar Biol 117:321–326

    Article  Google Scholar 

  • Davies JM, Dunne RP, Brown BE (1997) Coral bleaching and elevated sea-water temperature in Milne Bay Province Papua New Guinea 1996. Mar Fresh W Res 48:513–518

    Article  Google Scholar 

  • Filatov M, Kruszynski KJ, Kaandorp JA, van Liera R, Vermeij M, Bak R Morpho-space exploration of simulated coral morphologies and three-dimensional images of scleractinian corals (in preparation)

    Google Scholar 

  • Graus RR, Macintyre IG (1982) Variation in growth forms of the reef coral Montastrea annularis (Ellis and Solander): a quantitative evaluation of growth response to light distribution using computer simulation. Smithson Contr Mar Sci 12:441–464

    Google Scholar 

  • Harper JL, Rosen BR, White J (1986) The growth and form of modular organisms. The Royal Society London

    Google Scholar 

  • Heikoop JM, Dunn JJ, Risk MJ, Schwarcz HP, McConnaughey TA, Sandeman IM (2000) Separation of kinetic and metabolic isotopic effects in carbon-13 records preserved in reef coral skeletons. Geochim Cosmochim Acta 64:975–987

    Article  CAS  Google Scholar 

  • Jonker PP, Vossepoel AM (1995) Mathematical morphology in 3D images: comparing 2D & 3D skeletonization algoriths, pp 83–108, In: BENEFIT Summer School on Morphological Image and Signal Processing, Zakopane, K. Wojciechowski (ed.), Silesian Technical University, ACECS, Gliwice, Poland

    Google Scholar 

  • Kaandorp JA (1999) Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients. Mar Biol 134:295–306

    Article  Google Scholar 

  • Kaandorp JA, Kuebler JE (2001) The algorithmic beauty of seaweeds, sponges and corals. Springer, Heidelberg

    Google Scholar 

  • Kaandorp JA, Sloot PMA (2001) Morphological models of radiate accretive growth and the influence of hydrodynamics. J Theor Biol 209:257–274

    Article  CAS  Google Scholar 

  • Kaandorp JA, Lowe CP, Frenkel D, Sloot PMA (1996) The effect of nutrient diffusion and flow on coral morphology. Phys Rev Let 77:2328–2331

    Article  CAS  Google Scholar 

  • Kaandorp JA, Koopman EA, Sloot PMA, Bak RPM, Vermeij MJA, Lampmann LEH (2003) Simulation and analysis of flow patterns around the scleractinian coral Madracis mirabilis (Duchassaing and Michelotti). Philos Trans R Soc Lond B 358:1551–1557

    Article  Google Scholar 

  • Kaandorp JA, Sloot PMA, Merks RMH, Bak RPM, M.J.A. Vermeji MJA, Maier C (2005) Morphogenesis of the branching reef coral Madracis mirabilis, Proc Roy Soc B 272:127–133

    Google Scholar 

  • Kandhai D, Hlushkou D, Hoekstra AG, Sloot PMA, Van As H, Tallarek U (2002) Influence of stagnant zones on transient and asymptotic dispersion in macroscopically homogeneous porous media. Phys Rev Lett 88:234501–234504

    Article  CAS  Google Scholar 

  • Koponen A, Kandhai D, Hellen E, Alava M, Hoekstra A, Kataja M, Niskanen K, Sloot PMA, Timmonen J (1998) Permeability of three-dimensional random fiber webs. Phys Rev Lett 80:716–719

    Article  CAS  Google Scholar 

  • Kruszynski K, Kaandorp JA, van Liere R (2007) A computational method for quantifying morphological variation in scleractinian corals. Coral Reefs 26:831–840

    Article  Google Scholar 

  • Lesser MP, Weis VM, Patterson MR, Jokiel PL (1994) Effects of morphology and water motion on carbon delivery and productivity in the reef coral, Pocillopora damicornis (Linnaeus): diffusion barriers, inorganic carbon limitation, and biochemical plasticity. J Exp Mar Biol Ecol 178:153–179

    Article  CAS  Google Scholar 

  • Le Tissier MD’AA, Clayton B, Brown BE, Spencer Davies P (1994) Skeletal correlates of coral density banding and an evaluation of radiography as used in scelerochronology. Mar Ecol Prog Ser 110:29–44

    Article  Google Scholar 

  • Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. ACM Comput Graph 21:163–169

    Article  Google Scholar 

  • Lowe CP, Frenkel D (1995) The super long-time decay of velocity fluctuations in a two-dimensional fluid. Physica 220:251–260

    Article  Google Scholar 

  • Maier C, Patzold J, Bak RPM (2003) The skeletal isotopic composition as an indicator of ecological plasticity in the coral genus Madracis. Coral Reefs 22:370–380

    Article  Google Scholar 

  • Marubini F, Thake B (1999) Bicarbonate addition promotes coral growth. Limnol Oceanogr 44:716–720

    Article  CAS  Google Scholar 

  • Marubini F, Ferrier-Pages C, Cuif J (2002) Suppression of skeletal growth in scleractinian corals by decreasing ambient carbonate-ion concentration: a cross-family comparison. Proc R Soc Lond B 270:179–184

    Article  Google Scholar 

  • Mass T, Genin A (2008) Environmental versus intrinsic determination of colony symmetry in the coral Pocillopora verrucosa. Mar Ecol Prog Ser 2008 369:131–137

    Article  Google Scholar 

  • McConnaughey TA, Burdett J, Whelan JF, Paul CK (1997) Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochim Cosmochim Acta 61:611–622

    Article  CAS  Google Scholar 

  • Merks RMH, Hoekstra AG, Sloot PMA (2002) The moment propagation method for advection-diffusion in the lattice Boltzmann method: validation and Peclet number limits. J Comput Phys 183:563–576

    Article  Google Scholar 

  • Merks RMH, Hoekstra AG, Kaandorp JA, Sloot PMA (2003) Models of coral growth: Spontaneous branching, compactification and the Laplacian growth assumption. J Theor Biol 224:153–166

    Article  Google Scholar 

  • Meroz E, Brickner I, Loya Y, Retzman-Shemer A, Ilan M (2002) The effect of gravity on coral morphology. Proc R Soc B 269:717–720

    Article  Google Scholar 

  • Muko S, Kawasaki K, Sakai K, Takasu F, Shigesada N (2000) Morphological plasticity in the coral Porites sillimaniani and its adaptive significance. Bull Mar Sci 66:225–239

    Google Scholar 

  • Nakamura T, van Woesik R (2001) Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event. Mar Ecol Prog Ser 212:301–304

    Article  Google Scholar 

  • Nakamura T, Yamasaki H, van Woesik R (2003) Water flow facilitates recovery from bleaching in the coral Stylophora pistillata. Mar Ecol Prog Ser 256:287–291

    Article  Google Scholar 

  • Reidenbach MA, Koseff JR, Monismith SG, Steinbuck JV, Genin A (2006) Effects of waves, unidirectional currents, and morphology on mass transfer in branched reef corals. Limnol Oceanogr 51:1134–1141

    Article  Google Scholar 

  • Sanchez JA, Lasker HR (2003) Patterns of morphological integration in marine modular organisms: supra-module organization in branching octocoral colonies. Proc Roy Soc B 270:2039–2044

    Google Scholar 

  • Schroeder W, Martin K, Lorensen B (1997) The visualization toolkit: an object-oriented approach to 3D graphics, 2nd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Sebens KP, Witting J, Helmuth B (1997) Effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassaing and Michelotti). J Exp Mar Biol Ecol 211:1–28

    Article  Google Scholar 

  • Shaish L, Abelson A, Rinkevich B (2007) How plastic can phenotypic plasticity be? The branching coral Stylophora pistillata as a model system. PLoS ONE 2007 2(7):e644

    Article  Google Scholar 

  • Sorokin YI (1993) Coral reef ecology. Springer, Heidelberg

    Google Scholar 

  • Succi S (2001) The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford University Press, Oxford

    Google Scholar 

  • Todd PA, Sanderson PG, Chou LM (2001) Morphological variation in the polyps of the scleractinian coral Favia speciosa (Dana) around Singapore, Hydrobiologia 444:227–235

    Article  Google Scholar 

  • Todd PA (2008) Morphological plasticity in scleractinian corals. Biol Rev 83(3):315–337

    Article  Google Scholar 

  • Veron JEN, Pichon M (1976) Scleractinia of eastern Australia part Families Thamnasteriidae, Astrocoeniidae, Pocilloporidae. Australian Government Publishing Service, Canberra

    Google Scholar 

  • Webster DR, Weissburg MJ (2009) The hydrodynamics of chemical cues among aquatic organisms. Annu Rev Fluid Mech 41:73–90

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the Netherlands Organization for Scientific Research (VEARD project, 643.100.601) and the EC (MORPHEX, NEST contract no. 043322).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaap A. Kaandorp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kaandorp, J.A., Filatov, M., Chindapol, N. (2011). Simulating and Quantifying the Environmental Influence on Coral Colony Growth and Form. In: Dubinsky, Z., Stambler, N. (eds) Coral Reefs: An Ecosystem in Transition. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0114-4_11

Download citation

Publish with us

Policies and ethics