A Visit to Tarski’s Seminar on Elimination of Quantifiers

  • Wilfrid Hodges
Part of the Synthese Library book series (SYLI, volume 352)


In Spring 1928, 13 years before I was born, I paid an imaginary visit to Warsaw in Poland and attended Alfred Tarski’s seminar on the methodology of the deductive sciences. The sanserif text below is my imaginary record of what was said in the seminar. But the serif text, interspersed and at the end, is factual.


Abelian Group Decision Procedure Free Variable Atomic Formula Basic Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Summer Institute for Symbolic Logic, Cornell University 1957. Summaries of Talks. (Duplicated typescript)Google Scholar
  2. 2.
    Doner J. E., Mostowski A., and Tarski A. The elementary theory of wellordering – a metamathematical study. In A. Macintyre, L. Pacholski and J. Paris, editors, Logic Colloquium ’77, pages 1–54. North-Holland, Amsterdam 1978.CrossRefGoogle Scholar
  3. 3.
    Feferman A. B., and Feferman S. Alfred Tarski: Life and Logic. Cambridge University Press, Cambridge 2004.Google Scholar
  4. 4.
    Fischer M. J., and Rabin M. O. Super-exponential complexity of Presburger Arithmetic. In R. M. Karp, editor, Complexity of Computation, pages 27–41. American Mathematical Society, Providence, RI, 1974.Google Scholar
  5. 5.
    Gödel K. Die Vollständigkeit der Axiome des logischen Funktionenkalküls, Monatshefte für Mathematik und Physik, 37: 349–360, 1930; reprint and translation ‘The completeness of the axioms of the functional calculus of logic’, in [6] pages 102–123.CrossRefGoogle Scholar
  6. 6.
    Gödel K. In S. Feferman et al., editor, Collected Works I: Publications 1929–1936, pages 102–123. Oxford University Press, New York, NY, 1986.Google Scholar
  7. 7.
    Hilbert D., Neubegründung der Mathematik, Erste Beteilung, Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universität,1: 157–177, 1922; translated as ‘The new grounding of mathematics, first report’ in Paolo Mancosu, From Brouwer to Hilbert, Oxford University Press, New York, NY, 1998, pages 198–214.CrossRefGoogle Scholar
  8. 8.
    Hilbert D., and Bernays P. Grundlagen der Mathematik I. Springer, Berlin, 1968. 66 Wilfrid HodgesCrossRefGoogle Scholar
  9. 9.
    Keisler H. J. Theory of models with generalized atomic formulas, J. Symb. Logic, 25: 1–26, 1960.CrossRefGoogle Scholar
  10. 10.
    Langford C. H. Some theorems on deducibility, Ann. Math., 28: 16–40, 1927.CrossRefGoogle Scholar
  11. 11.
    Langford C. H. Theorems on deducibility (Second paper), Ann. Math., 28: 459–471, 1927.CrossRefGoogle Scholar
  12. 12.
    Lukasiewicz J. Elementy Logiki Matematycznej, mimeographed notes edited by M. Presburger, Warsaw University 1929.Google Scholar
  13. 13.
    Mal’tsev A.A general method for obtaining local theorems in group theory (Russian), Ucheniye Zapiski Ivanov. Ped. Inst. (Fiz-Mat. Fakul’tet), 1(1): 3–9, 1941; translation in Anatoliǐ Ivanovič Mal’cev, The Metamathematics of Algebraic Systems: Collected Papers 1936–1967, North-Holland, Amsterdam (1971) pages 15–21.Google Scholar
  14. 14.
    Michaux C., and Villemaire R. Presburger arithmetic and recognizability of sets of natural numbers by automata: New proofs of Cobham’s and Semenov’s theorems, Ann. Pure App. Logic, 77: 251–277, 1996.CrossRefGoogle Scholar
  15. 15.
    Mostowski A. Logika Matematyczna. Monografie Matematyczne, Warsaw, 1948.Google Scholar
  16. 16.
    Presburger M. ‘Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt, Comptes Rendus du Premier Congrès des Mathèmaticiens des Pays Slaves, Warszawa 1929, Warsaw, 92–101, 1930; supplementary note ibid. 395.Google Scholar
  17. 17.
    Russell B. Introduction to Mathematical Philosophy. George Allen and Unwin, London, 1919.Google Scholar
  18. 18.
    Skolem T., Untersuchungen über die Axiome des Klassenkalküls und über Produktations- und Summationsprobleme, welche gewisse Klassen von Aussagen betreffen, Videnskapsselskapets Skrifter I. Mat.-nat. klasse 1919, 3: 1919.Google Scholar
  19. 19.
    Skolem T. Über einige Satzfunktionen in der Arithmetik, Skrifter Vitenskapsakademieti Oslo, 1: 1–28, 1930.Google Scholar
  20. 20.
    Szmielew W. Elementary properties of Abelian groups, Fund. Math., 41: 203–271, 1955.Google Scholar
  21. 21.
    Tarski A. Sur les ensembles definissables de nombres réels I, Fund. Math., 17: 210–239, 1931; translation ‘On definable sets of real numbers’, [24] pages 110–142.Google Scholar
  22. 22.
    Tarski A. O logice matematycznej i metodzie dedukcyjnej, Biblioteczka Mat. 3–5, KsiOpen image in new windowznica-Atlas, Lwów, 1936; revised translation Introduction to Logic and to the Methodology of the Deductive Sciences. Oxford University Press, New York 1994.Google Scholar
  23. 23.
    Tarski A. A Decision Method for Elementary Algebra and Geometry. University of California Press, Berkeley, CA, 1951.Google Scholar
  24. 24.
    Tarski A. In J. Corcoran, editor, Logic, Semantics, Metamathematics, 2nd ed. Hackett, Indianapolis, IN, 1983.Google Scholar
  25. 25.
    Zygmunt J. Moj·zesz Presburger: life and work, Hist. Philos. Logic, 12: 211–223, 1991.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Queen Mary, University of LondonLondonUK

Personalised recommendations