Magnetization Curves for Anisotropic Magnetic Impurities Adsorbed on a Normal Metal Substrate

  • R. Žitko
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Magnetization curves ⟨S z ⟩(B, T) for magnetic impurities which couple to the host medium via exchange interactions are computed using the numerical renormalization group. Deviations from the ideal paramagnetic behavior (as described by the Brillouin function) is discussed for various TT K ratios, where T K is theKondo temperature, focusing on the implications for the interpretation of experimental X-ray magnetic circular dichroism (XMCD) results. The case of anisotropic impurities is also considered.

Key words

electronic structure cuprate superconductors kinetic energy driven superconducting mechanism out-of-plane impurities d-wave superconducting gap 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Brune and P. Gambardella. Magnetism of individual atoms adsorbed on surfaces. Surf. Sci., 602:1812, 2009.CrossRefADSGoogle Scholar
  2. 2.
    A. C. Hewson. The Kondo Problem to Heavy-Fermions. Cambridge University Press, Cambridge, 1993.CrossRefGoogle Scholar
  3. 3.
    A. F. Otte, M. Ternes, K. von Bergmann, S. Loth, H. Brune, C. P. Lutz, C. F. Hirjibehedin, and A. J. Heinrich. The role of magnetic anisotropy in the kondo effect. Nature Physics, 4:847, 2008.CrossRefADSGoogle Scholar
  4. 4.
    M. Ternes, A. J. Heinrich, and W. D. Schneider. Spectroscopic manifestations of the kondo effect on single adatoms. J. Phys.: Condens. Matter, 21:053001, 2009.Google Scholar
  5. 5.
    C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz, B. A. Jones, and A. J. Heinrich. Large magnetic anisotropy of a single spin embedded in a surface molecular network. Science, 317:1199, 2007.CrossRefADSGoogle Scholar
  6. 6.
    Y. Yayon, V. W. Brar, L. Senepati, S. C. Erwin, and M. F. Crommie. Observing spin polarization of individual magnetic adatoms. Phys. Rev. Lett., 99:067202, 2007.CrossRefADSGoogle Scholar
  7. 7.
    F. Meier, L. H. Zhou, J. Wiebe, and R. Wiesendanger. Revealing magnetic interactions from single-atom magnetization curves. Science, 320:82, 2008.CrossRefADSGoogle Scholar
  8. 8.
    T. Balashov, T. Schuh, A. F. Takacs, A. Ernst, S. Ostanin, J. Henk, I. Mertig, P. Bruno, T. Miyamachi, S. Suga, and W. Wulfhekel. Magnetic anisotropy and magnetization dynamics of individual atoms and clusters of fe and co on pt(111). Phys. Rev. Lett., 102:257203, 2009.CrossRefADSGoogle Scholar
  9. 9.
    P. Gambardella, S. S. Dhesi, S. Gardonio, C. Grazioli, P. Ohresser, and C. Carbone. Localized magnetic states of fe, co, and ni impurities on alkali metal films. Phys. Rev. Lett., 88:047202, 2002.CrossRefADSGoogle Scholar
  10. 10.
    P. Gambardella, S. Rusponi, M. Veronese, S. S. Dhesi, C. Grazioli, A. Dallmeyer, I. Cabria, R. Zeller, P. H. Dederichs, K. Kern, C. Carbone, and H. Brune. Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science, 300:1130, 2003.CrossRefADSGoogle Scholar
  11. 11.
    P. Gambardella, S. Stepanow, A. Dmitriev, J. Honolka, F. M. F. de Groot, M. Lingenfelder, S. Sen Gupta, D. D. Sarma, P. Bencok, S. Stanescu, S. Clair, S. Pons, N. Lin, A. P. Seitsonen, H. Brune, J. V. Barth, and K. Kern. Supramolecular control of the magnetic anisotropy in two-dimensional high-spin fe arrays at a metal interface. Nature Materials, 8:189, 2009.CrossRefADSGoogle Scholar
  12. 12.
    G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, and G. Materlik. Absorption of circularly polarized x-rays in iron. Phys. Rev. Lett., 58:737, 1987.CrossRefADSGoogle Scholar
  13. 13.
    C. T. Chen, F. Sette, Y. Ma, and S. Modesti. Soft-x-ray magnetic circular dichroism at the l2,3 edges of nickel. Phys. Rev. B, 42:7262, 1990.CrossRefADSGoogle Scholar
  14. 14.
    B. T. Thole, P. Carra, F. Sette, and G. van der Laan. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett., 68:1943, 1992.CrossRefADSGoogle Scholar
  15. 15.
    P. Carra, B. T. Thole, M. Altarelli, and X. Wang. X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett., 70:694, 1993.CrossRefADSGoogle Scholar
  16. 16.
    C. T. Chen, Y. U. Idzerda, H.-J. Lin, N. V. Smith, G. Meigs, E. Chaban, G. H. Ho, E. Pellegrin, and F. Sette. Experimental confirmation of the x-ray magnetic circular dichroism sum rules for iron and cobalt. Phys. Rev. Lett., 75:152, 1995.CrossRefADSGoogle Scholar
  17. 17.
    R. Žitko, R. Peters, and T. Pruschke. Properties of anisotropic magnetic impurities on surfaces. Phys. Rev. B, 78:224404, 2008.CrossRefADSGoogle Scholar
  18. 18.
    R. Žitko, R. Peters, and T. Pruschke. Splitting of the kondo resonance in anisotropic magnetic impurities on surfaces. New J. Phys., 11:053003, 2009.CrossRefGoogle Scholar
  19. 19.
    N. Andrei, K. Furuya, and J. H. Lowenstein. Solution of the kondo problem. Rev. Mod. Phys., 55:331, 1983.CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    K. G. Wilson. The renormalization group: Critical phenomena and the kondo problem. Rev. Mod. Phys., 47:773, 1975.CrossRefADSGoogle Scholar
  21. 21.
    H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson. Renormalization-group approach to the anderson model of dilute magnetic alloys. i. static properties for the symmetric case. Phys. Rev. B, 21:1003, 1980.Google Scholar
  22. 22.
    R. Bulla, T. Costi, and T. Pruschke. The numerical renormalization group method for quantumimpurity systems. Rev. Mod. Phys., 80:395, 2008.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Jožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations