Advertisement

Simplified Rotor Dynamics

  • Ioannis A. Raptis
  • Kimon P. Valavanis
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 45)

Abstract

The helicopter’s main source of propulsion is provided by the main and tail rotor. The aerodynamic forces and moments are nonlinear functions of motion characteristics and controls. Due to the complexity and the uncertainty associated with the aerodynamic phenomena, a detailed model of the forces and moments produced by the main rotor would be of high order and completely impractical for any controller design. In this Chapter, the modeling approach presented in (Koo and Sastry in Proceedings of the 37th IEEE Conference on Decision and Control, vol. 4, 1998, pp. 3635–3640; Lee et al. in Proceedings of Society of Instrument and Control Engineers, 1993, pp. 1385–1390; Mettler in Identification Modeling and Characteristics of Miniature Rotorcraft, Kluwer Academic Publishers, Norwell, 2003; Mettler et al. in Presented at the American Helicopter Society 55th Forum, May 1999 ) is followed to arrive at a simplified derivation of the main rotor dynamics and the produced thrust force vector that are considered sufficient for controller design purposes.

Keywords

Pitch Angle Aerodynamic Force Rotor Dynamic Main Rotor Thrust Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 7.
    A.R.S. Bramwell, G. Done, D. Balmford, Bramwell’s Helicopter Dynamics (Butterworth Heinemann, Stoneham, 2001) Google Scholar
  2. 13.
    R. Chen, Effects of primary rotor parameters on flapping dynamics, Technical report, TP-1431, NASA, 1980 Google Scholar
  3. 18.
    M.E. Dreier, Introduction to Helicopter and Tiltrotor Flight Simulation. AIAA Education Series (AIAA, Washington, 2007) CrossRefGoogle Scholar
  4. 40.
    W. Johnson, Helicopter Theory (Princeton University Press, Princeton, 1980) Google Scholar
  5. 47.
    T.J. Koo, S. Sastry, Output tracking control design of a helicopter model based on approximate linearization, in Proceedings of the 37th IEEE Conference on Decision and Control, vol. 4, 1998, pp. 3635–3640 Google Scholar
  6. 56.
    E.H. Lee, H. Shim, L. Park, K. Lee, Design of hovering attitude controller for a model helicopter, in Proceedings of Society of Instrument and Control Engineers, 1993, pp. 1385–1390 Google Scholar
  7. 58.
    J.G. Leishman, Principles of Helicopter Aerodynamics (Cambridge University Press, Cambridge, 2000) Google Scholar
  8. 70.
    B. Mettler, Identification Modeling and Characteristics of Miniature Rotorcraft (Kluwer Academic Publishers, Norwell, 2003) CrossRefGoogle Scholar
  9. 72.
    B. Mettler, M.B. Tischler, T. Kanade, System identification of small-size unmanned helicopter dynamics, in Presented at the American Helicopter Society 55th Forum, May 1999 Google Scholar
  10. 79.
    G.D. Padfield, Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modeling, AIAA Education Series (Blackwell Science, Oxford, 1996) Google Scholar
  11. 104.
    M.B. Tischler, M.G. Cauffman, Frequency-response method for rotorcraft system identification: Flight applications to BO-105 coupled fuselage/rotor dynamics. Journal of the American Helicopter Society 3, 3–17 (1992) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Electrical and Computer Engineering, and, Department of Computer Science, School of Engineering and Computer ScienceUniversity of DenverDenverUSA

Personalised recommendations