Skip to main content

Orthogonal Latin Squares and the Falsity of Euler’s Conjecture

  • Chapter
  • 581 Accesses

Part of the Texts and Readings in Mathematics book series (TRM,volume 67)

Abstract

The problems relating to the existence and construction of orthogonal Latin squares have fascinated researchers for several centuries now. Though many important discoveries have been made, some problems still remain unresolved. Latin squares and orthogonal Latin squares have a beautiful underlying structure and are related to other combinatorial objects. These have applications in different areas, including statistical design of experiments and cryptology. Comprehensive accounts of the theory and applications of Latin squares are available in the books by J. Dénes and A. D. Keedwell (1974, 1991) and C. F. Laywine and G. L. Mullen (1998).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-93-86279-56-9_1
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   50.00
Price excludes VAT (USA)
  • ISBN: 978-93-86279-56-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, I., C. J. Colbourn, J. H. Dinitz and T. S. Griggs (2007). Design theory: Antiquity to 1950. In: Handbook of Combinatorial Designs, 2nd. ed. (C. J. Colbourn and J. H. Dinitz, Eds.). New York: Chapman and Hall/CRC, pp. 11–22.

    Google Scholar 

  • Bose, R. C. (1938). On the application of the properties of Galois fields to the problem of construction of hyper-Greaco-latin squares. Sankhyā 3, 323–338.

    Google Scholar 

  • Bose, R. C. and S. S. Shrikhande (1959). On the falsity of Euler’s conjecture about the non-existence of two orthogonal latin squares of order 4t+2. Proc. Natl. Acad. Sci. U. S. A. 45, 734–737.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Bose, R. C. and S. S. Shrikhande (1960). On the construction of sets of mutually orthogonal latin squares and the falsity of a conjecture of Euler. Trans. Amer. Math. Soc. 95, 191–209.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Bose, R. C., S. S. Shrikhande and E. T. Parker (1960). Further results on the constructon of mutually orthogonal latin squares and the falsity of Euler’s conjecture. Can. J. Math. 12, 189–203.

    CrossRef  MATH  Google Scholar 

  • Bruck, R. H. and H. J. Ryser (1949). The nonexistence of certain finite projective planes. Can. J. Math. 1, 88–93.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Chowla, S. and H. J. Ryser (1950). Combinatorial problems. Can. J. Math. 2, 93–99.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Dénes, J. and A. D. Keedwell (1974). Latin Squares and Their Applications. New York: Academic Press.

    MATH  Google Scholar 

  • Dénes, J. and A. D. Keedwell (eds.) (1991). Latin Squares: New Developments in the Theory and Applications. Amsterdam: North-Holland. Annals of Discrete Mathematics 46.

    MATH  Google Scholar 

  • Euler, L. (1782). Recherches sur une nouvelle espece de quarrés magiques. Verh. Zeeuw. Gen. Weten. Vlissengen 9, 85–239.

    Google Scholar 

  • Evans, T. (1982). Universal algebra and Euler’s officer problem. Amer. Math. Monthly 86, 466–479.

    MathSciNet  CrossRef  Google Scholar 

  • Fisher, R. A. and F. Yates (1934). The 6 × 6 Latin squares. J. Cambridge Phil. Soc. 30, 492–507.

    CrossRef  MATH  Google Scholar 

  • Lam, C. W. H., L. H. Thiel and S. Swiercz (1989). The nonexistence of finite projective planes of order 10. Can. J. Math. 41, 1117–1123.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Laywine, C. F. and G. L. Mullen (1998). Discrete Mathematics Using Latin Squares. New York: Wiley.

    MATH  Google Scholar 

  • Levi, F. W. (1942). Finite Geometrical Systems. University of Calcutta.

    MATH  Google Scholar 

  • MacNeish, H. F. (1921). Das problem der 36 Offiziere. Ber. Deuts. Mat. Ver. 30, 151–153.

    MATH  Google Scholar 

  • MacNeish, H. F. (1922). Euler squares. Ann. Math. 23, 221–227.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Mann, H. B. (1942). The construction of orthogonal latin squares. Ann. Math. Statist. 13, 418–423.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Mann, H. B. (1949). Analysis and Design of Experiments. New York: Dover.

    Google Scholar 

  • Moore, E. H. (1896). Tactical memoranda I–III. Amer. J. Math. 18, 264–303.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Nazarok, A. V. (1991). Five pairwise orthogonal latin squares of order 21. Issled. Oper. ASU, 54–56.

    Google Scholar 

  • Ozanam, J. (1723). Récréations Mathématiques et Physiques, qui contiennent Plusieurs Problémes utiles … agréables, d’Arithmetique, de Geometrie, d’Optique, de Gnomonique, de Cosmographie, de Mécanique, de Pyrotechnie, … de Physique. 4 Vols. Paris: Jombert (updated edition).

    Google Scholar 

  • Parker, E. T. (1959a). Construction of some sets of pairwise orthogonal Latin squares. Proc. Amer. Math. Soc. 10, 946–951.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Parker, E. T. (1959b). Orthogonal latin squares. Proc. Natl. Acad. Sci. U. S. A. 45, 859–862.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Peterson, J. (1901). Les 36 officieurs. Ann. Math. 1, 413–427.

    Google Scholar 

  • Shrikhande, S. S. (1950). The impossibility of certain symmetrical balanced incomplete block designs. Ann. Math. Statist. 21, 106–111.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Stevens, W. L. (1939). The completely orthogonalised Latin squares. Ann. Eugen. 9, 82–93.

    CrossRef  Google Scholar 

  • Stinson, D. R. (1984). A short proof of the nonexistence of a pair of orthogonal Latin squares of order six. J. Combin. Theor. Ser. A 36, 373–376.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Tarry, G. (1900). Le probléme des 36 officers. Comptes Rendus de l’Association Francaise pour l’Avancement des Sciences: Série de mathématiques, astronomie, géodésie et mécanique 29, 170–203.

    MATH  Google Scholar 

  • Wernicke, P. (1910). Das problem der 36 Offiziere. Deutsche Math.-Ver. 19, 264–267.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Hindustan Book Agency

About this chapter

Cite this chapter

Dey, A. (2013). Orthogonal Latin Squares and the Falsity of Euler’s Conjecture. In: Bhatia, R., Rajan, C.S., Singh, A.I. (eds) Connected at Infinity II. Texts and Readings in Mathematics, vol 67. Hindustan Book Agency, Gurgaon. https://doi.org/10.1007/978-93-86279-56-9_1

Download citation