Skip to main content
  • 150 Accesses

Abstract

A cryptographic system consists of a one to one enciphering transformation f from a set \(\mathcal{P}\) of plaintext message units to a set \(\mathcal{C}\) of ciphertext message units. For example, for a fixed N- letter alphabet, identified with ℤ/Nℤ, consider the mapping f : \(\mathcal{P}\) = ℤ/Nℤ → 𝑪 = ℤ/Nℤ given by f(P) = \(\mathcal{C}\)aP + b (mod N), where a ∈ (ℤ/Nℤ)* and b ∈ ℤ/Nℤ are fixed. The pair K E = (a, b) is called the enciphering key. To compute f−1, in order to decipher, one needs to compute the deciphering key K D = (a−1, −a−1b) so that Pa−1Ca−1b (mod N). The keys K E and K D are concealed. In the above example and other classical cryptosystems it is possible to determine the deciphering key from the enciphering key (and vice-versa).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 56.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. M. Aldemary, R. L. Rivest and A. Shamir, A method for obtaining digital signatures and public-key cryptosystems, Communications of the ACM, 21 (1978), 120–126.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Nongkynrih, Primality and factoring, this volume.

    Google Scholar 

  3. T. Beth, M. Frisch and G.T. Simmons, Public-key Cryptography: State of the Art and Future Directions, Springer-Verlag (Berlin), 1992.

    Book  MATH  Google Scholar 

  4. W. Diffe and M.E. Hellman, New directions in cryptography, IEEE Transactions in Information Theory IT-22 (1976), 644–654.

    Article  MathSciNet  MATH  Google Scholar 

  5. T. ElGamel, A public-key cryptosystem and a signature system based on discrete logarithms, IEEE Transactions in information theory, 31 (1985), 469–472.

    Article  Google Scholar 

  6. M.E. Hellman and S. Pohlig, An improved algorithm for for computing logarithms over GF(p) and its cryptographic significance, IEEE Transactions in Information Theory, 24 (1978), 106–110.

    Article  MathSciNet  MATH  Google Scholar 

  7. M.E. Hellman and R.C. Merkle, Hiding information and signature in trapdoor knapsacks, IEEE Transactions in Information Theory IT-24 (1978), 525–530.

    Article  Google Scholar 

  8. N. Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag (New York), 1987.

    Book  MATH  Google Scholar 

  9. A. Menezes, Elliptic Curves Public Key Cryptosystems, Kluwer publications, 1993.

    Book  MATH  Google Scholar 

  10. A. Salomaa, Public Key Cryptography, Springer-Verlag (Berlin), 1990.

    Book  MATH  Google Scholar 

  11. A. Shamir, A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystems, Proceedings of the 23rd Annual Symposium on the Foundation of Computer Science (1982), 145–152.

    Google Scholar 

  12. D. Stinson, Cryptography: Theory and Practice, CRC Press, Boca Raton, London, Tokyo 1995.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Hindustan Book Agency

About this chapter

Cite this chapter

Bhandari, A.K. (2003). The Public Key Cryptography. In: Bhandari, A.K., Nagaraj, D.S., Ramakrishnan, B., Venkataramana, T.N. (eds) Elliptic Curves, Modular Forms and Cryptography. Hindustan Book Agency, Gurgaon. https://doi.org/10.1007/978-93-86279-15-6_21

Download citation

Publish with us

Policies and ethics