Fluorescence Spectroscopy and Energy Transfer Processes in Biological Systems

  • Baldassare Di Bartolo
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


This article is divided into three parts. In the first part we review the fundamental principles of fluorescence spectroscopy, starting with the consideration of fluorophores and of the characteristics of fluorescence spectroscopy. The processes of fluorescence quenching, fluorescence anisotropy, and resonance energy transfer are presented, together with the information they can provide. The techniques that produce absorption spectra, excitation spectra, fluorescence under continuous excitation and response to pulsed excitation are also examined.

In the second part the basic interactions between atoms are introduced by considering first the static and then the dynamic effects of these interactions in a two-atom system ad in a linear chain of atoms. Subsequently the different types of interactions (multipolar electric and magnetic, and exchange) are examined. After a review of the different modes of excitation of a system containing both donors and acceptors, a statistical treatment of energy transfer is presented by considering first the case of energy transfer without migration among donors, and then the case when such migration occurs.

In the third part the concepts presented in the second part are applied to distance distribution analysis and FRET (Fluorescence Resonance Energy Transfer) in biological systems.


Energy Transfer Fluorescence Spectroscopy Fluorescence Resonance Energy Transfer Fluorescence Anisotropy Energy Transfer Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.1
    Lakowicz J. R. (2006), Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New York.CrossRefGoogle Scholar
  2. 1.2
    Herschel J. F. W. (1845), Phil. Trans. Roy. Soc. (London) 135, 143CrossRefGoogle Scholar
  3. 1.3
    Gregory J. (ed.) (1966) Handbook of fluorescent probes and research products, 9th ed., Molecular Probes Inc., Eugene, ORGoogle Scholar
  4. 1.4
    Jablonski A. (1935), Z. Phys. 94, 38CrossRefGoogle Scholar
  5. 1.5
    Stokes G. G. (1852), Phil. Trans. R. Soc. (London) 142, 463CrossRefGoogle Scholar
  6. 1.6
    Kasha M. (1950), Disc. Faraday Soc. 9, 14CrossRefGoogle Scholar
  7. 1.7
    Berlman I. B. (1971), Handbook of aromatic molecules, 2nd ed., Academic, New YorkGoogle Scholar
  8. 1.8
    Stern O. and Volmer M. (1919), Phys. Z. 20, 183Google Scholar
  9. 1.9
    Albani J. R. (2007), Principles and Applications of Fluorescence Spectroscopy, Blackwell Publishing, New YorkCrossRefGoogle Scholar
  10. 1.10
    Stryer L. (1978), Annu. Rev. Biochem. 47, 819CrossRefGoogle Scholar
  11. 1.11
    Berberan-Santos M. N. (2001), in New Trends in Fluorescence Spectroscopy: Applications to Chemical and Life Sciences, 18, 733, B. Valeur and J.C. Brochon eds, Springer, New YorkGoogle Scholar
  12. 1.12
    Royer C. A. (1966), Biophys. J. 68, 1191CrossRefGoogle Scholar
  13. 2.1
    Eyring H., Walter J and Kimball G. F. (1944), Quantum Chemistry, Wiley, New York, p. 351Google Scholar
  14. 2.2
    Morgenau H. (1931), Phys. Rev. 38, 747CrossRefGoogle Scholar
  15. 2.3
    Morgenau H. (1939), Rev. Mod. Phys. 11, 1CrossRefGoogle Scholar
  16. 2.4
    Carlson B. C. and Rushbrooke G. S. (1950), Proc. Camb. Phil. Soc. 46, 626CrossRefGoogle Scholar
  17. 2.5
    Watts R. K. (1975), in Optical Properties of Ions in Solids, B. Di Bartolo ed., Plenum Press, New York and London, p. 307Google Scholar
  18. 2.6
    Perrin F. (1928), Compt. Rend. 178, 1978Google Scholar
  19. 2.7
    Stern O. and Volmer M. (1919), Physik Z. 20, 183Google Scholar
  20. 2.8
    Förster Th. (1949), Z. Naturforsch 4a, 321Google Scholar
  21. 2.9
    Förster Th. (1959), Discussions Faraday Soc. 27, 7CrossRefGoogle Scholar
  22. 2.10
    Galanin M. D, (1955), Sov. Phys. JETP 1, 317Google Scholar
  23. 2.11
    Reif F. (1965), Fundamentals of Statistical and Thermal Physics, McGraw Hill, New York, p.483Google Scholar
  24. 2.12
    Yokota M. and Tanimoto O. (1967), J. Phys. Soc. Japan 22, 779CrossRefGoogle Scholar
  25. 2.13
    Watts R. K. and Richter H. J. (1972), Phys. Rev. B6, 1584Google Scholar
  26. 2.14
    Karpick J. T. and Di Bartolo B. (1971), J. of Luminescence 4, 309CrossRefGoogle Scholar
  27. 3.1
    Lakowicz J. R. (2006), Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New YorkCrossRefGoogle Scholar
  28. 3.2
    Clegg R. M. (1966), in Fluorescence Imaging Spectroscopy, X. F. Wang and B. Herman, eds., p. 179, Wiley, New YorkGoogle Scholar
  29. 3.3
    Yokota M. and Tanimoto O. (1967), J. Phys. Soc. Japan 22(3), 779Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of PhysicsBoston CollegeChestnut HillUSA

Personalised recommendations