Advertisement

Nanoscopy Using Localization and Temporal Separation of Fluorescence From Single Molecules

  • C. Steinhauer
  • C. Forthmann
  • R. Jungmann
  • J. Vogelsang
  • F. C. Simmel
  • P. Tinnefeld
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Since the development of the first techniques [1, 2] that bypass the diffraction limit postulated by Ernst Abbe in 1873, so called superresolution microscopies have spread rapidly diverging into different variants that are capable of resolving details smaller than 200 nm. This article focuses on those based on the subsequent localization of single molecules. Therein, most molecules are prepared in a non-fluorescent dark state, leaving only a few single molecules fluorescing, which can be localized by fitting a two dimensional Gaussian function to their respective point spread functions (PSF).

Keywords

Single Molecule Temporal Separation Localization Precision Point Spread Function Superresolution Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. (2000). Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 41797,8206-8210.CrossRefGoogle Scholar
  2. 2.
    Hell, S. W. & Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780-782.CrossRefGoogle Scholar
  3. 3.
    Steinhauer, C., Forthmann, C., Vogelsang, J. & Tinnefeld, P. (2008). Superresolution microscopy on the basis of engineered dark states. J Am Chem Soc 130, 16840-16841.CrossRefGoogle Scholar
  4. 4.
    Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott-Schwartz, J. & Hess, H. F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642-1645.CrossRefGoogle Scholar
  5. 5.
    Rust, M. J., Bates, M. & Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3, 793-795.CrossRefGoogle Scholar
  6. 6.
    Hess, S. T., Girirajan, T. P. & Mason, M. D. (2006). Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91, 4258-4272.CrossRefGoogle Scholar
  7. 7.
    Heilemann, M., Margeat, E., Kasper, R., Sauer, M. & Tinnefeld, P. (2005). Carbocyanine Dyes as Efficient Reversible Single-Molecule Optical Switch. Journal of the American Chemical Society 127, 3801-3806.CrossRefGoogle Scholar
  8. 8.
    Heilemann, M., van de Linde, S., Schuttpelz, M., Kasper, R., Seefeldt, B., Mukherjee, A., Tinnefeld, P. & Sauer, M. (2008). Subdiffraction-Resolution Fluorescence Imaging with Conventional Fluorescent Probes. Angew Chem Int Ed Engl 47, 6172-6176.CrossRefGoogle Scholar
  9. 9.
    Folling, J., Bossi, M., Bock, H., Medda, R., Wurm, C. A., Hein, B., Jakobs, S., Eggeling, C. & Hell, S. W. (2008). Fluorescence nanoscopy by ground-state depletion and single- molecule return. Nat Methods 5, 943-945.CrossRefGoogle Scholar
  10. 10.
    van de Linde, S., Kasper, R., Heilemann, M. & Sauer, M. (2008). Photoswitching microscopy with standard fluorophores. Appl Phys B 93, 725-731.CrossRefGoogle Scholar
  11. 11.
    Vogelsang, J., Cordes, T., Forthmann, C., Steinhauer, C. & Tinnefeld, P. (2009). Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proc Natl Acad Sci U S A 106, 8107-8112.CrossRefGoogle Scholar
  12. 12.
    Vogelsang, J., Kasper, R., Steinhauer, C., Person, B., Heilemann, M., Sauer, M. & Tinnefeld, P. (2008). A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew Chem Int Ed 47, 5465-5469.CrossRefGoogle Scholar
  13. 13.
    Heilemann, M., van de Linde, S., Mukherjee, A. & Sauer, M. (2009). Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed Engl 48, 6903-6908.CrossRefGoogle Scholar
  14. 14.
    Qu, X., Wu, D., Mets, L. & Scherer, N. F. (2004). Nanometer-localized multiple single- molecule fluorescence microscopy. Proc Natl Acad Sci U S A 101, 11298-11303.CrossRefGoogle Scholar
  15. 15.
    Gordon, M. P., Ha, T. & Selvin, P. R. (2004). Single-molecule high-resolution imaging with photobleaching. Proc Natl Acad Sci U S A 101, 6462-6465.CrossRefGoogle Scholar
  16. 16.
    Heinlein, T., Biebricher, A., Schlueter, P., Roth, C. m., Herten, D.-P., Wolfrum, J., Heilemann, M., Mueller, C., Tinnefeld, P.& Sauer, M. (2005). High-resolution colocalization of single molecules within the resolution gap of far-field microscopy. Chemphyschem 6, 949-955.CrossRefGoogle Scholar
  17. 17.
    Wiggins, P. A., van der Heijden, T., Moreno-Herrero, F., Spakowitz, A., Phillips, R., Widom, J., Dekker, C. & Nelson, P. C. (2006). High flexibility of DNA on short length scales probed by atomic force microscopy. Nat Nanotechnol 1, 137-141.CrossRefGoogle Scholar
  18. 18.
    Rothemund, P. W. (2006). Folding DNA to create nanoscale shapes and patterns. Nature 440, 297-302.CrossRefGoogle Scholar
  19. 19.
    Shroff, H., Galbraith, C. G., Galbraith, J. A. & Betzig, E. (2008). Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5, 417-423.CrossRefGoogle Scholar
  20. 20.
    Bossi, M., Folling, J., Belov, V. N., Boyarskiy, V. P., Medda, R., Egner, A., Eggeling, C., Schonle, A. & Hell, S. W. (2008). Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nano Lett 8, 2463-2468.CrossRefGoogle Scholar
  21. 21.
    Thompson, R. E., Larson, D. R. & Webb, W. W. (2002). Precise nanometer localization analysis for individual fluorescent probes. Biophys Jl 82, 2775-2783.CrossRefGoogle Scholar
  22. 22.
    Jungmann, R., Liedl, T., Sobey, T. L., Shih, W. & Simmel, F. C. (2008). Isothermal assembly of DNA origami structures using denaturing agents. J Am Chem Soc 130, 10062-10063.CrossRefGoogle Scholar
  23. 23.
    Douglas, S. M., Dietz, H., Liedl, T., Hogberg, B., Graf, F. & Shih, W. M. (2009). Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414-418.CrossRefGoogle Scholar
  24. 24.
    Steinhauer, C., Jungmann, R., Sobey, T. L., Simmel, F. C. & Tinnefeld, P. (2009). DNA Origami as Nanoscopic Ruler for Superresolution Microscopy. Angew Chem Int Ed 48, 8870-8873.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • C. Steinhauer
    • 1
  • C. Forthmann
    • 1
  • R. Jungmann
    • 2
  • J. Vogelsang
    • 1
  • F. C. Simmel
    • 2
  • P. Tinnefeld
    • 1
  1. 1.Angewandte Physik – Biophysik & Center for NanoscienceLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Physics Department E14 & Center for NanoscienceTechnische Universität MünchenGarchingGermany

Personalised recommendations