Photons and Photon Correlation Spectroscopy

  • Ralph Von Baltz
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


The majority of optical phenomena and even most of photonics can be well understood on the basis of Classical Electrodynamics. The Maxwell-Theory is perfectly adequate for understanding diffraction, interference, image formation, photonic-band-gap and negative-index materials, and even most nonlinear phenomena such as frequency doubling, mixing or short pulse physics. However, spontaneous emission or intensity correlations are not (or incorrectly) captured. For example, photons in a single-mode laser well above the threshold are (counter-intuitively) completely uncorrelated whereas thermal photons have a tendency to “come” in pairs (within the coherence time).


Coherent State Photon Correlation Spectroscopy Beam Splitter Photon Number Michelson Interferometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Paul, Photonen. Eine Einführung in die Quantenoptik, B. G. Teubner Stuttgart, Leipzig (1999).Google Scholar
  2. 2.
    R. Loudon, The Quantum Theory of Light, Clarendon Press, Oxford (1973).Google Scholar
  3. 3.
    R. Kidd et al. The evolution of the modern photon, Am. J. Phys. 57, 27 (1988).CrossRefGoogle Scholar
  4. 4.
    Ch. C. Gerry and P. L. Knight, Introductory Quantum Optics, Cambridge University Press, Cambridge (2005).Google Scholar
  5. 5.
    M. O. Scully and S. S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge (1999).Google Scholar
  6. 6.
    H. A. Bachor, A Guide to Experiments in Quantum Optics, Wiley-VCH, New York (1998).Google Scholar
  7. 7.
    S. Haroche and J-M. Raimond, Exploring the Quantum, Oxford University Press, Oxford (2006).CrossRefGoogle Scholar
  8. 8.
    C. de Witt, A. Blandin, and C. Cohen-Tannoudji (eds), Quantum Optics and Quantum Electronics, Gordon&Breach, New York (1965).Google Scholar
  9. 9.
    R. J. Glauber (ed.), Quantum Optics, Academic, New York (1969).Google Scholar
  10. 10.
    Quantum Optics, S. M. Kay and A. Maitland (eds). Academic (1970).Google Scholar
  11. 11.
    L. Mandel and E. Wolf, (eds.), Coherence and Quantum Optics, Plenum, New York (1973).Google Scholar
  12. 12.
    R. v. Baltz, Photons and Photon Statistics: From Incandescent Light to Lasers, in: Frontiers of Optical Spectroscopy, B. Di Bartolo (ed.), Kluwer, New York (2004).Google Scholar
  13. 13.
    Ph. Lenard, Über die lichtelektrische Wirkung, Annalen der Physik (Leipzig), 8, 149 (1902).Google Scholar
  14. 14.
    A. Einstein, Über einen die Erzeugung und Verwandlung des Lichts betreffenden heuristischen Gesichtspunkt, Annalen der Physik (Leipzig), 17, 132 (1905).Google Scholar
  15. 15.
    R. A. Millikan, A direct photoelectric determination of Planck’s h, Phys. Rev. 7, 355 (1914).CrossRefGoogle Scholar
  16. 16.
    A. H. Compton, The spectrum of scattered X-rays, Phys. Rev. 22, 409 (1923).CrossRefGoogle Scholar
  17. 17.
    E. O. Lawrence and J. W. Beams, The element of time in the photoelectric effect, Phys. Rev. 32, 478 (1928).CrossRefGoogle Scholar
  18. 18.
    A. T. Forrester, R. A. Gudmundsen, and P. O. Johnson, Photoelectric mixing of incoherent light, Phys. Rev. 99, 1691 (1955).CrossRefGoogle Scholar
  19. 19.
    G. I. Taylor, Interference fringes with feeble light, Proc. Cambr. Phil. Soc. 15, 114 (1909).Google Scholar
  20. 20.
    A. J. Dempster and H. F. Batho, Light Quanta and Interference, Phys. Rev. 30, 644 (1927).CrossRefGoogle Scholar
  21. 21.
    L. Janossy, Experiments and Theoretical Considerations Concerning The Dual Nature of Light, in H. Haken and M. Wagner (eds.), Cooperative Phenomena, Springer-Verlag, Berlin (1973).Google Scholar
  22. 22.
    G. Breit, Are quanta unidirectional?, Phys. Rev. 22, 313 (1923).CrossRefGoogle Scholar
  23. 23.
    P. A. M. Dirac, The Quantum Theory of the Emission and Absorption of Radiation, Proc. R. Soc. A 114, 243 (1927), see also The Principles of Quantum Mechanics, fourth edition, Oxford University Press, Oxford (1958).Google Scholar
  24. 24.
    R. Hanbury Brown and R. Q. Twiss, Correlations between photons in two coherent beams of light, Nature 177, 27 (1956).CrossRefGoogle Scholar
  25. 25.
    J. F. Clauser, Experimental distinction between the quantum and classical field theoretic predictions for the photoelectric effect, Phys. Rev. D 9, 853 (1974).CrossRefGoogle Scholar
  26. 26.
    J. N. Dodd, The Compton effect - a classical treatment, Eur. J. Phys. 4, 205 (1983).CrossRefGoogle Scholar
  27. 27.
    L. D. Landau and E. M. Lifshitz, Theoretische Physik, Akademie Verlag, Berlin (1970).Google Scholar
  28. 28.
    R. J. Glauber, The Quantum Theory of Optical Coherence, Phys. Rev. 130, 2529 (1963), Coherent and Incoherent States of the Radiation Field, Phys. Rev. 131, 2766 (1964), and in Refs.[8, 9].Google Scholar
  29. 29.
    H. C. Ohanian, What is spin?, Am. J. Phys. 54, 500 (1986).CrossRefGoogle Scholar
  30. 30.
    Ph. Grangier, A. Aspect and J. Vigue, Quantum interference effect for two atoms radiating a single photon, Phys. Rev. Lett. 54, 418 (1985).CrossRefGoogle Scholar
  31. 31.
    S. F. Jacobs, How monocromatic is laser light?, Am. J. Phys. 47, 597 (1979).CrossRefGoogle Scholar
  32. 32.
    C. H. Holbrow, E. Galvez, and M. E. Parks, Photon quantum mechanics and beam splitters, Am. J. Phys. 70, 260 (2002).CrossRefGoogle Scholar
  33. 33.
    S. Prasad, M. O. Scully, and W. Martienssen, A quantum description of the beam splitter, Opt. Commun. 62, 139 (1987).CrossRefGoogle Scholar
  34. 34.
    P. Grangier, G. Roger, and A. Aspect, Experimental evidence for photon anticorrelation effects on a beam splitter: a new light on single-photon interferences. Eur. Phys. Lett. 1, 173 (1986). See also Physics World, Feb. (2003).Google Scholar
  35. 35.
    R. Hanbury Brown, The Intensity Interferometer, Taylor& Francis (1974); see also
  36. 36.
    G. A. Rebka and R. V. Pound, Time-correlated photons, Nature 180, 1035 (1957).CrossRefGoogle Scholar
  37. 37.
    B. L. Morgan and L. Mandel, Measurement of photon bunching in thermal light, Phys. Rev. Lett. 16, 1012 (1966); H. J. Kimble, M. Dagenais, and L. Mandel, Photon antibunching in resonance fluorescence, Phys. Rev. Lett 39, 691 (1977).Google Scholar
  38. 38.
    W. Martiensen and E. Spiller, Coherence and fluctuations in light beams, Am. J. Phys. 32, 919 (1964).CrossRefGoogle Scholar
  39. 39.
    F. T. Arecchi, E. Gatti, and A. Sona, Time distribution of photons from coherent and Gaussian sources, Phys. Lett. 20, 27 (1966).CrossRefGoogle Scholar
  40. 40.
    M. Dagenais and L. Mandel, Investigations of two-time correlations in photon emissions from a single atom, Phys. Rev. A18, 2217 (1978).Google Scholar
  41. 41.
    F. Diedrich and H. Walther, Nonclassical radiation of a single stored ion, Phys. Rev. Lett. 58, 203 (1987).CrossRefGoogle Scholar
  42. 42.
    M. Kobayashi and H. Inaba, Photon statistics and correlation analysis of ultraweak light originating from living organisms for extraction of biological information, Appl. Opt. 39, 183 (2000).CrossRefGoogle Scholar
  43. 43.
    I. Langmuir, Pathological Science, Phys. Today, Oct. 1989, p. 36.Google Scholar
  44. 44.
    C. H. Hong, Z. Y. Ou, and L. Mandel, Measurement of subpicosecond time intervals betweenGoogle Scholar
  45. 45.
    two photons by interference, Phys. Rev. Lett. 59, 2044 (1987).Google Scholar
  46. 46.
    Z. Y. Ou and L. Mandel, Observation of spatial quantum beating with separated photodetectors, Phys. Rev. Lett. 61, 54 (1988).CrossRefGoogle Scholar
  47. 47.
    J. Beugnon et al. (Grangier’s group), Quantum interference between two single photons emitted by independently trapped atoms, Lett Nat 440, 779 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ralph Von Baltz
    • 1
  1. 1.Institut für Theorie der Kondensierten MaterieUniversität KarlsruheKarlsruheGermany

Personalised recommendations