Advertisement

Lossless Multi-Mode Interband Image Compression and Its Hardware Architecture

  • Xiaolin Chen
  • Nishan Canagarajah
  • Jose L. Nunez-Yanez
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 73)

Abstract

This paper presents a novel Lossless Multi-Mode Interband image Compression (LMMIC) scheme and its hardware architecture. Our approach detects the local features of the image and uses different modes to encode regions with different features adaptively. Run-mode is used in homogeneous regions, while ternary-mode and regular-mode are used on edges and other regions, respectively. In regular mode, we propose a simple band shifting technique as interband prediction and a gradient-based switching strategy to select between intraband or interband prediction. We also enable intraband and interband adaptation in the run-mode and ternary-mode. The advantage of LMMIC is to adaptively “segment” the image and use suitable methods to encode different regions. The simplicity of our scheme enables the hardware amenability. Experimental results show that LMMIC achieves superior compression ratios, with the benefits of enabling encoding any number of bands and easy access to any band. We also describe the hardware architecture for this scheme.

Keywords

Compression Ratio Image Compression Hyperspectral Image Multispectral Image Hardware Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank the support from EPSRC under grant EP/D011639/1.

References

  1. 1.
    Barequet R, Feder M (1999) SICLIC: a simple inter-color lossless image coder. In: Proc data compression conf, pp 501–510 Google Scholar
  2. 2.
    Benazza-Benyahia A, Pesquet J-C, Hamdi M (2002) Vector-lifting schemes for lossless coding and progressive archival of multispectral images. IEEE Trans Geosci Remote Sens 40(9):2011–2024 CrossRefGoogle Scholar
  3. 3.
    Chen X, Canagarajah N, Nunez-Yanez JL, Vitulli R (2007) Hardware architecture for lossless image compression based on context-based modelling and arithmetic coding. In: Proc IEEE int system on chip conf, pp 251–254 Google Scholar
  4. 4.
    Dragotti PL, Poggi G, Ragozini ARP (2000) Compression of multispectral images by three-dimensional SPIHT algorithm. IEEE Trans Geosci Remote Sens 38(1):416–428 CrossRefGoogle Scholar
  5. 5.
    Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181 CrossRefGoogle Scholar
  6. 6.
    Hu J-H, Wang Y, Cahill, PT (1997) Multispectral code excited linear prediction coding and its application in magnetic resonance images. IEEE Trans Image Process 6(11):1555–1566 CrossRefGoogle Scholar
  7. 7.
    Jet Propulsion Laboratory, California Institute of Technology. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). http://aviris.jpl.nasa.gov/
  8. 8.
    Kayyali MSE multispectral technology applications. http://www.articlealley.com/article_1604_11.html
  9. 9.
    Kim J, Fisher JW, Yezzi A, Cetin M, Willsky AS (2005) A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Trans Image Process 14(10):1486–1502 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Langdon GG, Rissanen JJ (1981) Compression of black–white images with arithmetic coding. IEEE Trans Commun 29(6):858–867 CrossRefGoogle Scholar
  11. 11.
    Meyer B, Tischer PE (1997) TMW – a new method for lossless image compression. In: Proc int picture coding symp Google Scholar
  12. 12.
    Mielikainen J, Toivanen P (2002) Improved vector quantization for lossless compression of AVIRIS images. In: Proc XI European signal processing conf Google Scholar
  13. 13.
    Moffat A, Neal R, Witten IH (1998) Arithmetic coding revisited. ACM Trans Inf Sys 16(3):256–294 CrossRefGoogle Scholar
  14. 14.
    Motta G, Rizzo F, Storer JA (2003) Compression of hyperspectral imagery. In: Proc data compression conf, pp 333–342 Google Scholar
  15. 15.
    National Aeronautics Space Administration (NASA): the Landsat program. http://landsat.gsfc.nasa.gov/
  16. 16.
    National gallery: visual arts system for archiving and retrieval of images. http://users.ecs.soton.ac.uk/km/projs/vasari/
  17. 17.
    Nunez-Yanez JL, Chouliaras VA (2005) A configurable statistical lossless compression core based on variable order Markov modeling and arithmetic coding. IEEE Trans Comput 54(11):1345–1359 CrossRefGoogle Scholar
  18. 18.
    Nunez-Yanez JL, Chouliaras VA (2005) Design and implementation of a high-performance and silicon efficient arithmetic coding accelerator for the H.264 advanced video codec. In: Proc IEEE int conf on application-specific systems, architecture processors, pp 411–416 Google Scholar
  19. 19.
    Nunez-Yanez JL, Chen X, Canagarajah N, Vitulli R (2007) Dynamic reconfigurable hardware for lossless compression of image, video and general data content. In: Proc XXII conf on design of circuits and integrated systems. Invited paper Google Scholar
  20. 20.
    Ratakonda K, Ahuja N (2002) Lossless image compression with multiscale segmentation. IEEE Trans Image Process 11(11):1228–1237 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ryan MJ, Arnold JF (1997) The lossless compression of AVIRIS images by vector quantization. IEEE Trans Geosci Remote Sens 35(3):546–550 CrossRefGoogle Scholar
  22. 22.
    Said A (2004) Introduction to arithmetic coding – theory and practice. Imaging Systems Laboratory, HP Laboratories Palo Alto Google Scholar
  23. 23.
    Saunders D, Cupitt J (2003) Image processing at the national gallery: the VASARI project. The National Gallery, Technical Bulletin 14(1):72–85. London, UK Google Scholar
  24. 24.
    Shen L, Rangayyan RM (1997) A segmentation based lossless image coding methods for high-resolution medical image compression. IEEE Trans Med Imaging 16(3):301–307 CrossRefGoogle Scholar
  25. 25.
    Tang X, Pearlman WA, Modestino JW (2003) Hyperspectral image compression using three-dimensional wavelet coding. Proc SPIE, vol. 5022. SPIE, Bellingham, pp 1037–1047 Google Scholar
  26. 26.
    Tate SR (1997) Band ordering in lossless compression of multispectral images. IEEE Trans Comput 46(4):477–483 MathSciNetCrossRefGoogle Scholar
  27. 27.
    Taubman DS, Marcellin MW (1996) JPEG2000 image compression fundamentals, standards and practice. Kluwer, Norwell Google Scholar
  28. 28.
    Weinberger MJ, Seroussi G, Sapiro G (1996) LOCO-I: a low complexity, context-based, lossless image compression algorithm. In: Proc data compression conf, pp 140–149 Google Scholar
  29. 29.
    Wu X, Memon N (1997) Context-based adaptive, lossless image coding. IEEE Trans Commun 45(4):437–444 CrossRefGoogle Scholar
  30. 30.
    Wu X, Memon N (2000) Context-based lossless interband compression – extending CALIC. IEEE Trans Image Process 9(6):994–1001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Xiaolin Chen
    • 1
  • Nishan Canagarajah
    • 1
  • Jose L. Nunez-Yanez
    • 1
  1. 1.University of BristolBristolUK

Personalised recommendations