Skip to main content

Abstract

Historical climate records gathered in our study area have been researched, checked and statistically examined. The mountainous climate has been characterized, and trends in the evolution of temperature and precipitation since 1931 have been outlined. There is objective evidence for an increasing annual mean temperature, longer vegetative periods and local droughts in spring and autumn. The research suggests that these climate changes could have long-term effects on the region’s eco-systems.

Glacierets and their surroundings, used as archives in eastern and southeastern Europe, provide instructive information about climatic and environmental properties of the past. Ice cores from the glacieret Snezhnika in the Pirin Mountains – currently the southernmost in Europe – have been drilled. Small glacier features such as this respond quickly to climatic extremes. However, despite the trend toward warmer years since the late 1970s, some glacier patches still survive – even after some of the hottest summers on record.

Coniferous trees at the subalpine forest and timberline are excellent archives for climate proxies. The results on dendroclimatology and dendroecology provide an initial insight into the potential of the Pinus heldreichii and its high mountains chronology in the northern Pirin Mountains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AG Boden (1996) Bodenkundliche Kartieranleitung, 4th edn. E. Schweizerbart’sche Verlagsbuchhandlung, Hannover

    Google Scholar 

  • Alexandrov V, Genev M (2003) Climate variability and change impact on water resources in Bulgaria. European Water, e-bulletin of EWRA, pp 20–25

    Google Scholar 

  • Andreeva T, Martinov M, Momcheva S (2003) Mild winters and the precipitation in the mountain regions in Bulgaria. ICAM/MAP. http://www.map.meteoswiss.ch. Accessed 15 Jan 2007

  • Anonymous (1977) Blagoevgradski Okrag – Geografska karakteristika (Geographical characteristic of the Blagoevgrad district). 3rd Congress of Geographers, Blagoevgrad.

    Google Scholar 

  • Anonymous (1997) Bulgaria climate change country study. Energoproject, National Institute of Meteorology and Hydrology, Forest Research Institute and Institute for Nuclear Research and Nuclear Energy at the Bulgarian Academy of Science, Sofia, Contractor: U.S. Department of Energy. http://yosemite.epa.gov/OAR. Accessed 5 May 2007

  • Anonymous (2003) National Park Pirin Management Plan 2004–2013. Ministry of Environment and Water, NP Direction, Bansko

    Google Scholar 

  • Antoine F (1864) Pinus leucodermis. Österr Bot Zeitschr 14:366–388

    Google Scholar 

  • Auer I, Böhm R, Schöner W (2001) Austrian long-term climate 1767–2000. Multiple instrumental climate time series from Central Europe. Österr. Beiträge zu Meteorologie und Geophysik, 25

    Google Scholar 

  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Change 59:5–31

    Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311

    Google Scholar 

  • Böhm R (2004) Systematische Rekonstruktion von zweieinhalb Jahrhundert instrumentellem Klima in der größeren Alpenregion – ein Statusbericht. In: Gamerith W, Messerli P, Meusburger P, Wanner H (Hrsg.): Alpenwelt – Gebirgswelten. 54. Dt. Geographentag Bern 2003, Heidelberg, Bern:123–132

    Google Scholar 

  • Böhm R, Auer I, Korus E (2006) Das Klima der letzten beiden Jahrhunderte in Flattach. http://www.zamg.ac.at. Accessed 10 Oct 2008

  • Boscherini G, Morgante M, Rossi P, Vendramin G (1994) Allozyme and chloroplast DNA variation in Italian and Greek populations of Pinus leucodermis. Heredity 73:284–290

    CAS  Google Scholar 

  • Brandes R (2007) Waldgrenzen griechischer Hochgebirge. Erlanger Geogr. Arbeiten No. 36

    Google Scholar 

  • Briffa KR, Osborn TJ (1999) Seeing the wood from the trees. Science 284:926–927

    CAS  Google Scholar 

  • Briffa KR, Jones PD, Schweingruber FH, Osborn TJ (1998) Influence of volcanic eruptions on Northern Hemisphere summer temperature over the last 600 years. Nature 393:450–455

    CAS  Google Scholar 

  • Büdel J (1949) Die räumliche und zeitliche Gliederung des Eiszeitklimas. Naturwissenschaften 36(4):105–112. doi:10.1007/BF00591440

    Google Scholar 

  • Büntgen U, Esper J, Frank DC (2008) Wie reagieren Bäume auf Klimaveränderung? Ergebnisse dendroklimatologischer Untersuchungen. In: Dujesiefken D, Kockerbeck P (eds), Jahrbuch der Baumpflege 2008:26–39

    Google Scholar 

  • Burckle L, Grissino-Mayer HD (2003) Stradivari, violins, treerings, and the Maunder Minimum: a hypothesis. Dendrochronologia 21(1):41–45

    Google Scholar 

  • Burga CA, Klötzli F, Grabherr G (2004) Gebirge der Erde. Ulmer Verlag, Stuttgart

    Google Scholar 

  • Chen J, Ohmura A (1990) Estimation of Alpine glacier water resources and their change since the 1870s. Hydrology in mountainous regions. I – Hydrological measurements; the water cycle. Proceedings of two Lausanne Symposia, August 1990. Int Assoc Hydrol Sci 193:127–135

    Google Scholar 

  • Christ H (1867) Beiträge zur Kenntnis europäischer Pinus-Arten. Flora 50:81–84

    Google Scholar 

  • Chueca J, Julián A, López-Moreno JI (2007) Recent evolution (1981–2005) of the Maladeta glaciers, Pyrenees, Spain: extent and volume losses and their relation with climatic and topographic factors. J Glaciol 53(183):547–557

    Google Scholar 

  • Citterio M, Diolaiuti G, Smiraglia C, D’Agata C, Carnielli T, Stella G, Siletto GB (2007) The fluctuations of Italian glaciers during the last century: a contribution to knowledge about Alpine glacier change. Geogr Ann 89:167–184

    Google Scholar 

  • Conifer Specialist Group (1998) Pinus heldreichii. IUCN Red List of Threatened Species. IUCN 2006. www.iucnredlist.org. Retrieved on 12 May 2006

  • Cook ER (1985) A time series analysis approach to tree-ring standardization. Dissertation. University of Arizona, Tucson, 171

    Google Scholar 

  • Cook ER, Kairiukstis LA (1992) Methods of dendrochronology – applications in the environmental sciences. Kluwer, Dordrecht/Boston/London

    Google Scholar 

  • Creer KM (2001) Natural climate variability inferred from cosmogenic isotopes and other geophysical data and its impact on human activity. J Radioanal Nucl Chem 247(3):705–722

    CAS  Google Scholar 

  • D’Alessandro L, D’Orefice M, Pecci M, Smiraglia C, Ventura R (2001) The strong reduction phase of the Calderone Glacier during the last two centuries: reconstruction of the variation and of the possibile scenarios with GIS technologies. In: Visconti G (Hrsg.), Global Change and Protected Areas:425–433

    Google Scholar 

  • D’Orefice M, Pecci M, Smiraglia C, Ventura R (2000) Retreat of Mediterranean glaciers since the Little Ice Age: case study of Ghiacciaio del Calderone, Central Apennines, Italy. Arct Antarct Alpine Res 32:197–201

    Google Scholar 

  • D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the “divergence problem” in northern forests: a review of tree-ring evidence and possible causes. Glob Planet Change 60:289–305

    Google Scholar 

  • Di Paola A (2007) The Calderone Glacier. http://nuke.ilcalderone.biz/Default.aspx?tabid=86. Accessed 6 Sep 2009

  • Dimitrov D (1996) Klimatitshna podalba v Bulgaria (Climate distribution of Bulgaria. Physical Geography 1. Bulgarian Academy of Science, Sofia

    Google Scholar 

  • Eggenberg S (2002) Die Waldgrenzvegetation in unterschiedlichen Klimaregionen der Alpen. Dissertationes Botanicae, Band 360

    Google Scholar 

  • Eichler A, Schwikowski M, Gäggeler HW (2001) Meltwater-induced relocation of chemical species in Alpine firn. Tellus Ser B 53:192–203

    Google Scholar 

  • Esper J, Treydte K, Frank DC, Gärtner H, Büntgen U (2004) Temperaturvariationen und Jahrringe. Schweiz Z Forstwes 155(6):213–221

    Google Scholar 

  • Esper J, Niederer R, Bebi P, Frank D (2008) Climate signal age effects – evidence from young and old trees in the Swiss Engadin. For Ecol Manage 255:3783–3789

    Google Scholar 

  • Gabrovec M (1998) The Triglav Glacier between 1986 and 1998. Geografski zbornik 38:89–105

    Google Scholar 

  • Gadek B, Kotyrba A (2003) Struktura wewnetrzna Lodowczyka Mieguszowieckiego (Tatry) w świetle wynikow badań georadarowych. Przeglad Geologiczny 51(12):1044–1047

    Google Scholar 

  • Gams I (1994) Changes of the Triglav Glacier in the 1955–94 period in the light of climatic indicators. Geografski zbornik 34:81–117

    Google Scholar 

  • Geiger R, Aron RH, Todhunter P (2003) The climate near the ground. Rowman & Littlefield, Lanham

    Google Scholar 

  • Giddings L, Soto M, Rutherford BM, Maarouf A (2005) Standardized precipitation index zones for Mexico. Atmosfera 18(1):33–56

    Google Scholar 

  • González Trueba JJ, Martín Moreno R, Martínez de Pisón E, Serrano E (2008) ‘Little Ice Age’ glaciation and current glaciers in the Iberian Peninsula. Holocene 18:551–568

    Google Scholar 

  • Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res 75(2):205–221

    Google Scholar 

  • Grunewald K, Scheithauer J (2008a) Untersuchungen an der alpinen Waldgrenze im Piringebirge (Bulgarien). Geo-Öko 29:1–32

    Google Scholar 

  • Grunewald K, Scheithauer J (2008b) Klima- und Landschaftsgeschichte Südosteuropas. Rekonstruktion anhand von Geoarchiven im Piringebirge (Bulgarien). Beiträge zur Landschaftsforschung, Band 6. Rhombos Verlag, Berlin

    Google Scholar 

  • Grunewald K, Scheithauer J (2008c) Bohrung in einen Mikrogletscher. Zeitschrift für. Gletscherkunde und Glazialgeologie 42(1):3–18

    Google Scholar 

  • Grunewald K, Scheithauer J (2010) Europe’s southernmost glaciers: response and adaptation to climate change. J Glaciol 56(195):129–142

    Google Scholar 

  • Grunewald K, Stoilov D (1998) Natur- und Kulturlandschaften Bulgariens. Landschaftsökologische Bestandsaufnahme, Entwicklungs- und Schutzpotenzial. Bd. 3. Bulgarische Bibliothek, Neue Folge, Biblion Verlag, Marburg

    Google Scholar 

  • Grunewald K, Haubold F, Gebel M (1999) Ökosystemforschung Südwest-Bulgarien. Untersuchungen zur Struktur, Funktion und Dynamik der Landschaften im nördlichen Pirin und im Becken von Razlog. Dresdener Geographische Beiträge, Heft 5, Im Selbstverlag der TU Dresden, Institut für Geographie, Dresden

    Google Scholar 

  • Grunewald K, Läßiger M, Scheithauer J (2005) Bodeneigenschaften in den Höhenstufen des nördlichen Piringebirges in Bulgarien. GEOÖKO, Band/Vol. 26:53–65

    Google Scholar 

  • Grunewald K, Weber C, Scheithauer J, Haubold F (2006) Mikrogletscher im Piringebirge (Bulgarien). Z Gletscherk Glazialgeol 39(2003/2004):99–114

    Google Scholar 

  • Grunewald K, Scheithauer J, Monget J-M, Nikolova N (2007) Mountain water tower and ecological risk estimation of the Mesta-Nestos transboundary river basin (Bulgaria-Greece). J Mt Sci 4(3): 209–220

    Google Scholar 

  • Hagg W (2006) Digitale Aufbereitung historischer Gletscherkarten in Bayern. Mitteilungen der Geographischen Gesellschaft in München 88:67–78

    Google Scholar 

  • Hansen-Bristow KJ, Ives J, Wilson J (1988) Climatic variability and tree response within the forest-alpine tundra ecotone. Ann Assoc Am Geogr 78(3):505–519

    Google Scholar 

  • Helle G, Schleser GH (2004) Interpreting climate proxies from tree-rings. In: Fischer H, Floeser G, Kumke T, Lohmann G, Miller H, Negendank JFW, von Storch H (eds) Towards a synthesis of Holocene proxy data and climate models. Springer Verlag, Berlin, pp 129–148

    Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78

    Google Scholar 

  • Holtmeier FK (2003) Mountain timberlines. Ecology, patchiness, and dynamics. Kluwer, Dordrecht

    Google Scholar 

  • Holtmeier FK, Broll G (2007) Treeline advance – driving processes and adverse factors. Landscape online. http://www.landscapeonline.de/archiv.html. Accessed 24 Feb 2008

  • Hughes PD (2007) Recent behaviour of the Debeli Namet glacier, Durmitor, Montenegro. Earth Surf Process Landforms 32:1593–1602

    Google Scholar 

  • Hughes PD (2008) Response of a Montenegro glacier to extreme summer heatwaves in, 2003 and, 2007. Geogr Ann 90A(4):259–267

    Google Scholar 

  • Hughes PD (2009) Twenty-first century glaciers and climate in the Prokletije Mountains, Albania. Arct Antarct Alpine Res 41(4):455–459

    Google Scholar 

  • Hughes MK, Funkhouser G (2003) Frequency-dependent climate signal in upper and lower forest border tree rings in the mountains of the Great Basin. Clim Change 59:233–244

    Google Scholar 

  • Hughes PD, Woodward JC (2009) Chapter 12: glacial and periglacial environments. In: Woodward JC (ed) The physical geography of the Mediterranean Basin. Oxford University Press, pp 353–383

    Google Scholar 

  • Hughes MK, Kuniholm PI, Eischeid JK, Garfin G, Griggs CB, Latini C (2001) Aegean tree-ring signature years explained. Tree-Ring Res 57(1):67–73

    Google Scholar 

  • Hughes PD, Woodward JC, Gibbard PL (2006) Quaternary glacial history of the Mediterranean mountains. Prog Phys Geogr 30(3):334–364

    Google Scholar 

  • Ingvarsson PK, Garcia MV, Hall D, Luquez V, Jansson S (2006) Clinal variation in phyB2, a candidate gene for day-length-induced growth cessation and bud set, across a latitudinal gradient in European aspen (Populus tremula). Genetics 172:1845–1853

    CAS  Google Scholar 

  • Jania J (1997) The problem of Holocene glacier and snow patches fluctuations in the Tatra Mountains: a short report. In: Frenzel B et al (ed) Glacier fluctuations during the Holocene. Paläoklimaforschung 24:85–93

    Google Scholar 

  • Johnsen SJ, Clausen HB, Dansgaard W, Gundestrup NS, Hammer CU, Andersen U, Andersen KK, Hvidberg CS, Dahl-Jensen D, Steffensen JP, Shoji H, Sveinbjoernsdottir AE, White JWC, Jouzel J, Fisher D (1997) The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. J Geophys Res 102:26397–26410

    CAS  Google Scholar 

  • Kaser G (2001) Glacier-climate interactions in low latitudes. J Glaciol 47(157):195–204

    Google Scholar 

  • Katsoulis BD, Kambezidis HD (1989) Analysis of the long-term precipitation series at Athens. Greece. Clim Change 14:263–290

    Google Scholar 

  • Kempes CP, Myers OB, Breshears DD, Ebersole JJ (2008) Comparing response of Pinus edulis tree-ring growth to five alternate moisture indices using historic meteorological data. J Arid Environ 72:350–357

    Google Scholar 

  • Koleva E (2003) Klimatishna Karakteristika na NP Pirin (Climate characteristic of National Park Pirin. In: National Park Pirin Management Plan 2004–2013. Ministry of Environment and Water, NP Direction, Bansko

    Google Scholar 

  • Koleva-Lizama I, Rivas BL (2003) Climatological conditions and their effect on the vegetation in Bulgarian alpine region. ICAM/MAP. http://www.map.meteoswiss.ch/map-doc/icam2003/Programme.pdf. Accessed 15 Jan 2007

  • König J, Günther B, Bues CT (2005) New multivariate cross-correlation analysis. TRACE – Tree Rings Archaeol Climatol Ecol 53(3):159–166

    Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459

    Google Scholar 

  • Körner C (2002) Treelines in a changing world. Austrian J For Sci 119, Jg., H. 3/4:307–308

    Google Scholar 

  • Koutavas A (2008) Late 20th century growth acceleration in greek firs (Abies cephalonica) from Cephalonia Island, Greece: a CO2 fertilization effect? Dendrochronologia, Vol. 26, Issue 1: 13-19, doi:10.1016/j.dendro.2007.06.001

    Google Scholar 

  • Kuhn M (1993) Der Mieminger Schneeferner, ein Beispiel eines lawinenernährten Kargletschers. Z Gletscherk Glazialgeol 29(2):153–171

    Google Scholar 

  • Kuhn M (1995) The mass balance of very small glaciers. Z Gletscherk Glazialgeol 31:171–179

    Google Scholar 

  • Laroque CP, Smith DJ (2003) Radial-growth forecasts for five high elevation conifer species on Vancouver Island, British Columbia. For Ecol Manage 183:313–325

    Google Scholar 

  • Leuenberger M (2005) Stabile Isotope in polaren Eisbohrkernen enthalten klimarelevante Information. In: Auf Spurensuche in der Natur: Stabile Isotope in der ökologischen Forschung (Rundgespräche der Kommission für Ökologie der Bayerischen Akademie der Wissenschaften), Band 30:29–44

    Google Scholar 

  • Litwin L (1997) A study of perennial snow patches in the Slovak High Tatras – preliminary results. Geograficky casops 49(2):79–90

    Google Scholar 

  • Lloyd AH, Fastie CL (2002) Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Clim Change 52:481–509

    Google Scholar 

  • López-Moreno I, Nogués-Bravo D, Chueca-Cía J, Julián-Andrés A (2006) Glacier development and topographic context. Earth Surf Process Landforms 31:1585–1594

    Google Scholar 

  • Louis H (1933) Die eiszeitliche Schneegrenze auf der Balkanhalbinsel. Mitt. Bulgar. Geogr. Ges. Sofia, Bd. 1

    Google Scholar 

  • Loukas A, Vasiliades L (2004) Probabilistic analysis of drought spatiotemporal characteristics in Thessaly region, Greece. Nat Hazards Earth Syst Sci 4:719–731

    Google Scholar 

  • Lyubenova M, Asenova A, Mihov E (2004) Dendroecological investigations of Balkans pines in the National Park “Pirin”. Annuaire de L’Universite de Sofia, Vol 96, Livre 4:1–7

    Google Scholar 

  • Maisch M, Haeberli W, Hoelzle M, Wenzel J (1999a) Occurrence of rocky and sedimentary glacier beds in the Swiss Alps as estimated from glacier-inventory data. Ann Glaciol 28:231–235

    Google Scholar 

  • Maisch M, Wipf A, Denneler B, Battaglia J Benz C (1999b) Die Gletscher der Schweizer Alpen. Gletscherhochstand 1850, Aktuelle Vergletscherung, Gletscherschwund Szenarien, Schlussbericht NFP 31. Second ed. Zurich, VdF Hochschulverlag

    Google Scholar 

  • Martin-Benito D, Cherubini P, del Rio M, Canellas I (2008) Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees 22:363–373

    Google Scholar 

  • Mayr S, Charra-Vaskou K (2007) Winter at the alpine timberline causes complex within-tree patterns of water potential and embolism in Picea abies. Physiol Plant 131(1):131–139

    CAS  Google Scholar 

  • Meier MF, Dyurgerov MB, McCabe GJ (2003) The health of glaciers: recent changes in glacier regime. Clim Change 59:123–135

    Google Scholar 

  • Messerli B (1967) Die eiszeitliche und die gegenwärtige Vergletscherung im Mittelmeerraum. Geogr Helv 22:105–228

    Google Scholar 

  • Messerli B (1980) Mountain glaciers in the Mediterranean area and in Africa. World Glacier Inventory, IAHS-AISH Publication, 126:197–211

    Google Scholar 

  • Meyer FD, Schweingruber FH (2000) Waldentwicklung im subalpinen Waldgrenzökoton bei Grindelwald. Bull Vegetatio Helvetica 3:6–8

    Google Scholar 

  • Milivojevič M, Menkovič L, Čalič J (2008) Pleistocene glacial relief of the central part of Mt.Prokletije (Albanian Alps). Quatern Int 190:112–122

    Google Scholar 

  • Morgante M, Vendramin GG (1990) Analyse von Genressourcen von Pinus leucodermis ANT., einer Art mit kleinem Verbreitungsgebiet. In: Hattemer HH (ed) Erhaltung forstlicher Genressourcen. J.D. Sauerländer’s Verlag, Frankfurt

    Google Scholar 

  • Morgante M, Vendramin GG (1998) Pinus leucodermis. In: Schütt P, Weisgerber H, Lang J, Roloff A, Stimm B (eds) Enzyklopädie der Holzgewächse. Ecomed Verlagsgesellschaft, Landsberg, 12. Erg.Lfg. 6/98:1–7

    Google Scholar 

  • Morgante M, Vendramin GG, Olivieri AM (1991) Mating system-analysis in Pinus leucodermis ant – detection of self-fertilization in natural-populations. Heredity 67:197–203

    Google Scholar 

  • Morgante M, Vendramin GG, Rossi P, Olivieri AM (1993) Selection against inbreds in early life-cycle phases in Pinus leucodermis Ant. Heredity 70:622–627

    Google Scholar 

  • Morgante M, Rossi P, Vendramin GG, Boscherini G (1994) Low-levels of outcrossing in Pinus leucodermis – further evidence in a Artificial stands. Can J Bot 72:1289–1293

    Google Scholar 

  • Moser H, Rauert W (1980) Isotopenmethoden in der Hydrologie. Gebr Borntraeger, Berlin, Stuttgart

    Google Scholar 

  • Nadbath M (1999) Triglavski Lednik in Spremembe Podnebja (The Triglav Glacier and Climate Variations), UJMA 13, Ljubljana:24–29

    Google Scholar 

  • Nagy L (2006) European high mountain (alpine) vegetation and its suitability for indicating climate change impacts. Biol Environ 106B(3):335–341

    Google Scholar 

  • Naurzbaev MM, Hughes MK, Vaganov EA (2004) Tree-ring growth curves as sources of climatic information. Quatern Res 62:126–133

    Google Scholar 

  • Nicolussi K, Lumasegger G, Patzelt G, Schießling P (2001) Aufbau einer holozänen Hochlagen-Jahrring-Chronologie für die zentralen Ostalpen – Möglichkeiten und erste Ergebnisse. Innsbrucker Jahresbericht:114–136

    Google Scholar 

  • Naydenov KD, Tremblay FM, Bergeron Y, Alexandrov A, Fenton N (2005) Dissimilar patterns of Pinus heldreichii Christ. Populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis. Biochemical Systematics and Ecology 33:133–148.

    Google Scholar 

  • Nikolova V, Jordanova M (1997) Planinite v Bulgaria (Mountains in Bulgaria). Academic Publisher Prof Drinov, Sofia

    Google Scholar 

  • Oberhuber W, Kofler W, Pfeifer K, Seeber A, Gruber A, Wieser G (2008) Long-term changes in tree-ring-climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid 1980s. Trees 22:31–40

    Google Scholar 

  • Ohmura A, Kasser P, Funk M (1992) Climate at the equilibrium line of glaciers. J Glaciol 38:397–411

    Google Scholar 

  • Panayotov M, Bebi P, Trouet V, Yurukov S (2010) Climate signal in tree-ring chronologies of Pinus peuce and Pinus heldreichii from the Pirin Mountains in Bulgaria. Trees. doi:10.1007/s00468-010-0416-y

    Google Scholar 

  • Paschinger H (1955) Die würmeiszeitliche Schneegrenze im Mittelmeergebiet. R. v. Klebelsberg-Festschrift der Geologischen Gesellschaft in Wien, Band 48 der Mitteilungen:201–205

    Google Scholar 

  • Paterson WSB (1994) The physics of glaciers, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Pavšek M (2004) The Skuta glacier. Geografski zbornik 51:11–17

    Google Scholar 

  • Pecci M, De Sisti G, Marino A, Smiraglia C (2001) New radar surveys in monitoring the evolution of the Calderone Glacier (Central Apennines, Italy). Suppl Geogr Fis Dinam Quat V:145–150

    Google Scholar 

  • Petkova N, Koleva E, Alexandrov V (2004) Snow cover variability and change in mountaineous regions of Bulgaria, 1931–2000. Meteorol Z 13(1):19–23

    Google Scholar 

  • Pohjola VA, Cole-Dai J, Rosqvist G, Stroeven AP, Thompson LG (2005) Potential to recover climatic information from Scandinavian Ice Cores: an example from the small ice cap Riukojitna. Geogr Ann 87 A(1):259–270

    Google Scholar 

  • Popov V (1962) Morphologija na Zirkusa Golemija Kasan v Pirin Planina. (Morphology of the cirque ‘Golemija Kasan’, Pirin Mountains). Publications of Institute of Geography, Bulgarian Academy of Science 6:85–100

    Google Scholar 

  • Popov V (1964) Nabljudenia virchu Snezhnika v Zirkusa Golemija Kasan Pirin Planina. (Conditions of the cirque ‘Golemija Kasan’, Pirin Mountains). Publications of Institute of Geography, Bulgarian Academy of Science 8:198–205

    Google Scholar 

  • Rashev G, Dinkov K (2003) Srednisemnomorski Sherti na Klimata na Sandansko-Petrishkia Raion. (Signs of mediterannean climate around Sandanski und Petritsch). Ann. of Sofia university, Faculty of Geol. and Geogr., Vol. 2(2):69–82

    Google Scholar 

  • Rebetez M, Saurer M, Cherubini P (2003) To what extent can oxygen isotopes in tree rings and precipitation be used to reconstruct past atmospheric temperature? A case study. Clim Change 61:237–248

    CAS  Google Scholar 

  • Repapis CC, Philandras CM (1988) A note on the air temperature trends of the last 100 years as evidenced in the Eastern Mediterranean time series. Theor Appl Climatol 39:93–97

    Google Scholar 

  • Rinn F (2005) Time series analysis and presentation software (TSAP-Win). User reference (Version 0.55). RinnTech, Heidelberg

    Google Scholar 

  • Roloff A, Bonn S, Gillner S (2008) Konsequenzen des Klimawandels – Vorstellung der Klima-Arten-Matrix (KLAM) zur Auswahl geeigneter Baumarten. Stadt und Grün 57:53–61

    Google Scholar 

  • Roth von Telegd K (1923) Das albanisch-montenegrinische Grenzgebiet bei Plav (Mit besonderer Berücksichtigung der Glazialspuren). In: Nowack E (ed) Beiträge zur Geologie von Albanien, Stuttgart, E. Schweizerbart. (Neues Jahrbuch für Mineralogie, Geologie und Paläontologie 1): 422–494

    Google Scholar 

  • Savolainen O, Bokma F, Garcia-Gil R, Komulainen P, Repo T (2004) Genetic variation in cessation of growth and frost hardiness and consequences for adaptation of Pinus sylvestris to climatic changes. Forest Ecol Manag 197:79–89

    Google Scholar 

  • Scheithauer J, Grunewald K, Helle G, Günther B, König J, Gikov A (2009) Dendroecological studies on Bosnian Pine (Pirin Mtns., Bulgaria). Trace 7:142–150

    Google Scholar 

  • Schönwiese CD (2000) Praktische Statistik für Meteorologen und Geowissenschaftler. Gebrüder Bornträger, Berlin, Stuttgart

    Google Scholar 

  • Schütt P, Schuck HJ, Aas G, Lang M (1994) Handbuch und Atlas der Dendrologie. Augsburg

    Google Scholar 

  • Schweingruber F (1993) Jahrringe und Umwelt – Dendroökologie. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, Birmensdorf

    Google Scholar 

  • Sharov V, Koleva E, Alexandrov V (2000) climate variability and Change. In: Staneva M, Knight G, Hristov T, Mishev D (eds). Global Change and Bulgaria, University Park, Pennsylvania, USA and Sofia, pp. 55–96.

    Google Scholar 

  • Solomon S and 7 others (eds) (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, etc., Cambridge University Press

    Google Scholar 

  • Stahr A, Hartmann T (1999) Landschaftsformen und Landschaftselemente im Hochgebirge. Springer Verlag, Berlin, Heidelberg

    Google Scholar 

  • Stamenov JN, Carbonnel JP, Vachev BI (2001) First Results of the OM2 Project for monitoring and management of mountain environment. www.om2.inrne.bas.bg/om2web/om2r0.htm. Accessed 8 June 2001

  • Stauffer B, Schotterer U (1985) Untersuchungen an Eisbohrkernen von Alpengletschern. Geographica Helvetica 4:223–229

    Google Scholar 

  • Stoffel M, Bollschweiler M (2008) Tree-ring analysis in natural hazards research – an overview. Nat Hazards Earth Syst 8:187–202

    Google Scholar 

  • Tidow S (2002) Auswirkungen menschlicher Einflüsse auf die Stabilität eines subalpinen Borstgrasrasens. Beiträge zur geobotanischen Landesaufnahme der Schweiz. Geobotanica Helvetica 75

    Google Scholar 

  • Todaro L, Andreu L, D’Alessandro CM, Gutirrez E, Cherubinic P, Saracino A (2007) Response of Pinus leucodermis to climate and anthropogenic activity in the National Park of Pollino (Basilicata, Southern Italy). Biol Conserv 137:507–519

    Google Scholar 

  • Topliiski D (2004) The global warming and the chronological structure of the climate of Bulgaria during XX centure. Proceedings of the “First International Conference Human Dimension of Global Change in Bulgaria,” Sofia, 22–24 April 2004:117–123

    Google Scholar 

  • Touchan R, Funkhouser G, Hughes MK, Erkan N (2005) Standardized precipitation index reconstructed from Turkish tree-ring widths. Clim Change 72:339–353

    Google Scholar 

  • Treydte K, Esper J, Gärtner H (2004) Stabile Isotope in der Dendroklimatologie. Schweiz Z Forstwes 155(6):222–232

    Google Scholar 

  • Triglav M, Fras MK, Gvazdanovič T (2000) Monitoring of glacier surfaces with photogrammetry, a case study of the Triglav Glacier. Geografski Zbornik 40:7–30

    Google Scholar 

  • UNESCO/IAHS (1970) Perennial ice and snow masses: a guide for compilation and assemblage of data for a world inventory. Unesco/IASH

    Google Scholar 

  • USGS (2000) The sun and climate. USGS Fact Sheet FS-095-00

    Google Scholar 

  • Veit H (2002) Die Alpen – Geoökologie und Landschaftsentwicklung. UTB/Ulmer, Stuttgart

    Google Scholar 

  • Vekilska B (1995) Snow cover and character on winters in Sofia. Ann. of Sofia University, Faculty of Geol. and Geogr., vol. 85(2):121–130

    Google Scholar 

  • Velchev V, Rusakova V (1991) Ecological peculiarities and phytocoenological characteristics of Pinus peuce Griseb. in the Pirin and Rila Mountains (in Bulgarian with English summary). Annuaires del’ Universite So a, Faculte de Biologie 80(2):58–80

    Google Scholar 

  • Velchev V, Vassilev P (1987) Ecological and phytocoenological investigation of the greybark pine (Pinus heldreichii Christ.) in northern part of Pirin (in Bulgarian with English summary). Annuaires del’ Universite So. a, Faculte de Biologie 78(2):57–96

    Google Scholar 

  • Velev S (1990) Klimatat na Bulgaria (The climate of Bulgaria). Narodna Prosveta, Sofia (in Bulgarian)

    Google Scholar 

  • Vrebič T, Gabrovec M (2002) Georadarske Meritve na Triglavskem Ledeniku. Geografski vestnik 74(1):25–42

    Google Scholar 

  • Wang X-R, Tsumura Y, Yoshimaru H, Nagasaka K, Szmidt AE (1999) Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, MATK, RPL20-RPS18 spacer, and TRNV intron sequences. Am J Bot 86(12):1742–1753

    CAS  Google Scholar 

  • Weiler K, Fischer H, Fritzsche D, Ruth U, Wilhelms F, Miller H (2005) Glaciochemical reconnaissance of a new ice core from Severnaya Zemlya, Eurasian Arctic. J Glaciol 51(172):64–74

    CAS  Google Scholar 

  • Weischet W (2002) Einführung in die Allgemeine Klimatologie. Gebr. Borntraeger, Berlin, Stuttgart

    Google Scholar 

  • WGMS (2008) Flustuations of glaciers, 2000–2005. Vol. IX. In: Haeberli W, Zemp M, Kääb A, Paul F, Hoelzle M (eds) ICSU (FAGS)/IUGG (IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland

    Google Scholar 

  • Wieser G, Tausz M (2007) Current concepts for treelife limitation at the upper timberline. – In: Wieser G, Tausz M (eds), Trees at their Upper Limit. Treelife Limitation at the Alpine Timberline. Series: Plant Ecophysiology Vol. 5. Springer Verlag, Berlin, pp. 1–18, ISBN: 1-4020–5073-9

    Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series with applications in dendroclimatology and hydrometeorology. J Climate Appl Meteorol 23:201–213

    Google Scholar 

  • Wilson R, Frank D, Topham J, Nicolussi K, Esper J (2005) Spatial reconstruction of summer temperatures in Central Europe for the last 500 years using annually resolved proxy records: problems and opportunities. Boreas 34:490–497

    Google Scholar 

  • Woodward JC, Macklin MG, Smith GR (2004) Pleistocene glaciation in the mountains of Greece. Quaternary Glaciations – Extent and chronology (Ehlers, J. & Gibbard, P.L., eds). Dev Quaternary Sci 2:155–173

    Google Scholar 

  • WRB (2006) World reference base for soil. Micheli et al (eds). ftp://ftp.fao.org/agl/agll/docs/wsrr103e.pdf. Accessed 30 Apr 2007

  • Zemp M, Kääb A, Hoelzle M, Haeberli W (2005) GIS based modelling of glacial sediment balance. Zeitschrift für Geomorphologie, Supplementbände 138:113–129

    Google Scholar 

  • Zemp M, Haeberli W, Hoelzle M, Paul F (2006) Alpine glaciers to disappear within decades? Geophys Res Lett 33:L13504. doi:10.1029/2006GL 026319, www.agu.org/pubs/crossref/, 2006/2006 GL026319.shtml

    Google Scholar 

  • Zlatunova D, Slaveykov P (2005) Bulgaria in the context of the global change. Proceedings of the “First International Conference Human Dimension of Global Change in Bulgaria”, Sofia, 22–24 April 2004, pp 7–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Grunewald .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Grunewald, K., Scheithauer, J. (2011). Climate Data and Geo-Archives of the Recent Past. In: Landscape Development and Climate Change in Southwest Bulgaria (Pirin Mountains). Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9959-4_4

Download citation

Publish with us

Policies and ethics