Advertisement

Large Mammal Evidence for the Paleoenvironment of the Upper Laetolil and Upper Ndolanya Beds of Laetoli, Tanzania

  • Denise F. SuEmail author
Chapter
Part of the Vertebrate Paleobiology and Paleoanthropology Series book series (VERT)

Abstract

There has been much debate on the environment of Pliocene Laetoli. These disagreements reflect the complexity of the paleoenvironment and the difficulties in reconciling contradictory evidence. In this paper, the community structure of the large mammal fauna at Laetoli is compared to that of modern faunal communities and the relative abundances of bovid tribes are examined. The results of these analyses are interpreted within the context of other lines of evidence, including those based on rodents, gastropods, phytoliths, stable isotopes and mesowear. The balance of evidence suggests that the ecology of the Upper Laetolil Beds was a mosaic of grassland-shrubland-open woodland habitats with extensive woody vegetation in the form of shrubs, thickets, and bush. There was also a significant presence of dense woodland and possibly riverine forest habitats. The results also indicate that the ecological conditions in the Upper Laetolil Beds became progressively drier and less wooded through time. There is no clear consensus as to the paleoenvironment of the Upper Ndolanya Beds. While there is evidence to suggest that it was drier and more open than the Upper Laetolil Beds, there is contrary evidence indicating that it was at least as humid and wooded as the Upper Laetolil Beds.

Keywords

Community analysis Pliocene Bovidae Indicator species Relative abundances. 

Notes

Acknowledgments

I am grateful to Terry Harrison for inviting me to contribute to this volume and for the numerous discussions on Laetoli and paleoecology (in general and of Laetoli in particular) over the years, which have been invaluable in the development of this paper. I thank all team members who participated in the expeditions to Laetoli that contributed to the recovery of the material discussed here and Terry Harrison for leading the expeditions. I am grateful to the Tanzania Commission for Science and Technology, the Unit of Antiquities in Dar es Salaam, and the National Museum of Tanzania for permission to conduct research in Tanzania. Special thanks to the curators and staff at the National Museum of Tanzania for their support and assistance throughout the years of research at the museum and in the field. I thank A. Gentry, Y. Haile-Selassie, J. Kingston, and W. Sanders for discussions during the formulation of this paper and two anonymous reviewers for their comments. These discussions and comments greatly improved the quality and clarity of the paper.

References

  1. Alemseged, Z. (2003). An integrated approach to taphonomy and faunal change in the Shungura Formation (Ethiopia) and its implication for hominid evolution. Journal of Human Evolution, 44, 451–478.CrossRefGoogle Scholar
  2. Andrews, P., Lord, J. M., & Nesbit Evans, E. M. (1979). Patterns of ecological diversity in fossil and modern mammalian faunas. Biological Journal of the Linnean Society, 11, 177–205.CrossRefGoogle Scholar
  3. Ansell, W. F. H. (1960). Mammals of northern Rhodesia. Lukasa: Government Printer.Google Scholar
  4. Ansell, W. F. H. (1978). The mammals of Zambia. Chilanga, Zambia: National Park and Wildlife Service.Google Scholar
  5. Behrensmeyer, A. K. (1993). The bones of Amboseli. National Geographic Research and Exploration, 9, 402–421.Google Scholar
  6. Behrensmeyer, A. K., & Dechant-Boaz, D. E. (1980). The recent bones of Amboseli National Park, Kenya, in relation to East African paleoecology. In A. K. Behrensmeyer & A. P. Hill (Eds.), Fossils in the making: Vertebrate taphonomy and paleoecology (pp. 72–92). Chicago: University of Chicago Press.Google Scholar
  7. Behrensmeyer, A. K., Western, D., & Dechant Boaz, D. E. (1979). New perspectives in vertebrate paleoecology from a recent bone assemblage. Paleobiology, 5, 12–21.Google Scholar
  8. Bishop, L. (1999). Suid paleoecology and habitat preferences at African Pliocene and Pleistocene hominid localities. In T. G. Bromage & F. Schrenk (Eds.), African biogeography, climate change, and human evolution (pp. 216–225). Oxford: Oxford University Press.Google Scholar
  9. Bobe, R. (1997). Hominid environments in the Pliocene: An analysis of fossil mammals from the Omo Valley, Ethiopia. Ph.D. dissertation, University of Washington, Seattle.Google Scholar
  10. Bobe, R., & Eck, G. G. (2001). Responses of African bovids to Pliocene climatic change. Paleobiology, 27, 1–47.CrossRefGoogle Scholar
  11. Bobe, R., Behrensmeyer, A. K., & Chapman, R. (2002). Faunal change, environmental variability and late Pliocene hominin evolution. Journal of Human Evolution, 42, 475–497.CrossRefGoogle Scholar
  12. Bonnefille, R., & DeChamps, R. (1983). Data on fossil flora. In: de Heinzelin, J. (Ed.), The Omo Group: Archives of the International Omo Research Expedition, Annales, S. 8, Sciences Geologiques Musée de l’Afrique Centrale, Tervuren, pp. 191–207.Google Scholar
  13. Bonnefille, R., Potts, R., Chalié, F., Jolly, D., & Peyron, O. (2004). High-resolution vegetation and climate change associated with Pliocene Australopithecus afarensis. Proceedings of the National Academy of Sciences of the United States of America, 101, 12125–12129.CrossRefGoogle Scholar
  14. Campisano, C. J., & Feibel, C. S. (2007). Connecting local environmental sequences to global climate patterns: Evidence from the hominin-bearing Hadar Formation, Ethiopia. Journal of Human Evolution, 53, 515–527.CrossRefGoogle Scholar
  15. Cerling, T. E., Harris, J. M., & Leakey, M. G. (1999). Browsing and grazing in elephants: The isotope record of modern and fossil proboscideans. Oecologia, 120, 364–374.CrossRefGoogle Scholar
  16. Coe, M., McWilliam, N., Stone, G., & Packer, M. (1999). Mkomazi: The ecology, biodiversity and conservation of a Tanzanian savanna. London: Royal Geographical Society (with The Institute of British Geographers).Google Scholar
  17. Denys, C. (1985). Paleoenvironmental and paleobiogeographical significance of the fossil rodent assemblages of Laetoli (Pliocene, Tanzania). Palaeogeography, Palaeoclimatology, Palaeoecology, 52, 77–97.CrossRefGoogle Scholar
  18. Denys, C. (1999). Of mice and men. Evolution in East and South Africa during Plio-Pleistocene times. In T. Bromage & F. Schrenk (Eds.), African biogeography, climate change and human evolution (pp. 226–252). Oxford: Oxford University Press.Google Scholar
  19. Denys, C. (2011). Rodents. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Fossil hominins and the associated fauna, vol. 2, pp. 15–53). Dordrecht: Springer.Google Scholar
  20. Estes, R. D. (1991). The behavior guide to African mammals. Berkeley: University of California Press.Google Scholar
  21. Ditchfield, P., & Harrison, T. (2011). Sedimentology, lithostratigraphy and depositional history of the Laetoli area. In: T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology, and paleoenvironment, vol. 1, pp. 47–76). Dordrecht: Springer.Google Scholar
  22. Feibel, C. S. (2003). Stratigraphic and depositional history of the Lothagam sequence. In M. G. Leakey & J. M. Harris (Eds.), Lothagam: The dawn of humanity in eastern Africa (pp. 17–30). New York: Columbia University Press.Google Scholar
  23. Gentry, A. W. (1970). Revised classification for Makapania broomi Wells and Cooke (Bovidae, Mammalia) from South Africa. Palaeontologia Africana, 13, 63–67.Google Scholar
  24. Gentry, A. W. (1978). Bovidae. In V. Maglio & H. S. B. Cooke (Eds.), Evolution of African mammals (pp. 540–572). Cambridge: Harvard University Press.Google Scholar
  25. Gentry, A. W. (2011). Bovidae. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Fossil hominins and the associated fauna, vol. 2, pp. 363–465). Dordrecht: Springer.Google Scholar
  26. Greenacre, M. J., & Vrba, E. S. (1984). Graphical display and interpretation of antelope census data in African wildlife areas, using correspondence analysis. Ecology, 65, 984–997.CrossRefGoogle Scholar
  27. Happold, D. C. D. (1987). The mammals of Nigeria. Oxford: Clarendon.Google Scholar
  28. Harris, J. M. (1987). Summary. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 524–531). Oxford: Clarendon.Google Scholar
  29. Harris, J. M. (1991). Koobi Fora research project (Vol. 3). Oxford: Clarendon.Google Scholar
  30. Harris, J. M., & Cerling, T. E. (2002). Dietary adaptations of extant and Neogene african suids. Journal of Zoology, London, 256, 45–54.CrossRefGoogle Scholar
  31. Harrison, T., & Kweka, A. (2011). Paleontological localities on the Eyasi Plateau, including Laetoli. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology, and paleoenvironment, vol. 1, pp. 17–45). Dordrecht: Springer.Google Scholar
  32. Hay, R. L. (1987). Geology of the Laetoli area. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 23–47). Oxford: Clarendon.Google Scholar
  33. Heckner-Bisping, U. (2001). Appendix E – The walking patterns of duikers in respect to their origin in evolution. In V. J. Wilson (Ed.), Duikers of Africa (pp. 743–752). Bulawayo: Chipangali Wildlife Trust.Google Scholar
  34. Joubert, S. C. J. (1976). The population ecology of the roan antelope, Hippotragus equinus equinus (Desmarest, 1804) in the Kruger National Park. Ph.D. dissertation, University of Pretoria, Pretoria.Google Scholar
  35. Kaiser, T. M. (2011). Feeding ecology and niche partitioning of the Laetoli ungulate faunas. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology and paleoenvironment, vol. 1, pp. 329–354). Dordrecht: Springer.Google Scholar
  36. Kingdon, J. (1982). East African mammals Volume IIIC: Bovidae. Chicago: University of Chicago Press.Google Scholar
  37. Kingdon, J. (1997). The Kingdon field guide to African mammals. San Diego: Academic.Google Scholar
  38. Kingston, J. (2011). Stable isotopic analyses of Laetoli fossil herbivores. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology and paleoenvironment, vol. 1, pp. 293–328). Dordrecht: Springer.Google Scholar
  39. Kingston, J., & Harrison, T. (2007). Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: Implications for early hominin paleoecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 243, 272–306.CrossRefGoogle Scholar
  40. Kovarovic, K., & Andrews, P. (2007). Bovid postcranial ecomorphological survey of the Laetoli paleoenvironment. Journal of Human Evolution, 52, 663–680.CrossRefGoogle Scholar
  41. Kovarovic, K., & Andrews, P. (2011). Environmental change within the Laetoli fossiliferous sequence: Vegetation catenas and bovid ecomorphology. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology and paleoenvironment, vol. 1, pp. 367–380). Dordrecht: Springer.Google Scholar
  42. Kovarovic, K., Andrews, P., & Aiello, L. (2002). An ecological diversity analysis of the Upper Ndolanya Beds, Laetoli, Tanzania. Journal of Human Evolution, 43, 395–418.CrossRefGoogle Scholar
  43. Lamprey, H. F. (1962). The Tarangire Game Reserve. Tanganyika Notes and Records, 60, 10–22.Google Scholar
  44. Leakey, M. D., & Harris, J. M. (Eds.). (1987). Laetoli: A Pliocene site in northern Tanzania. Oxford: Clarendon.Google Scholar
  45. Leakey, M. G., & Harris, J. M. (Eds.). (2001). Lothagam: The dawn of humanity in eastern Africa. New York: Columbia University Press.Google Scholar
  46. Leakey, M. G., & Harris, J. M. (2003). Lothagam: Its significance and contributions. In M. G. Leakey & J. M. Harris (Eds.), Lothagam: The dawn of humanity in eastern Africa (pp. 625–660). New York: Columbia University Press.Google Scholar
  47. Lewis, M. E. (1995). Plio-Pleistocene carnivoran guilds: Implications for hominid paleoecology. Ph.D. dissertation, State University of New York, Stony Brook.Google Scholar
  48. Lind, E. M., & Morrison, M. E. S. (1974). East African vegetation. Bristol: Longman.Google Scholar
  49. Newing, H. (2001). Bushmeat hunting and management: Implications of duiker ecology and interspecific competition. Biodiversity and Conservation, 10, 99–118.CrossRefGoogle Scholar
  50. Pratt, D. J., & Gwynne, M. D. (1977). Rangeland management and ecology in East Africa. London: Hodder and Stoughton.Google Scholar
  51. Rahm, U. (1966). Les mammifères de la forêt équatoriale de l’est du Congo. Musée Royal de l’Afrique Centrale Annales, Serie 8, 149, 9–121.Google Scholar
  52. Rautenbach, I. L. (1978a). A numerical re-appraisal of southern African biotic zones. Bulletin of the Carnegie Museum of Natural History, 6, 175–187.Google Scholar
  53. Rautenbach, I. L. (1978b). Ecological distribution of the mammals of the Transvaal (Vertebrata: Mammalia). Annals of the Transvaal Museum, 31, 131–153.Google Scholar
  54. Reed, K. E. (1997). Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution, 32, 289–322.CrossRefGoogle Scholar
  55. Reed, K. E. (2008). Paleoecological patterns at the Hadar hominin site, Afar Regional State, Ethiopia. Journal of Human Evolution, 54, 743–768.CrossRefGoogle Scholar
  56. Rossouw, L., & Scott, L. (2011). Phytoliths and pollen, the microscopic plant remains in Pliocene volcanic sediments around Laetoli, Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology and paleoenvironment, vol. 1, pp. 201–215). Dordrecht: Springer.Google Scholar
  57. Sheppe, W., & Osborne, T. (1971). Patterns of use of a flood plain by Zambian mammals. Ecological Monographs, 41, 179–205.CrossRefGoogle Scholar
  58. Shipman, P., & Harris, J. M. (1988). Habitat preference and paleoecology of Australopithecus boisei in eastern Africa. In F. E. Grine (Ed.), Evolutionary history of the “robust” australopithecines (pp. 343–382). New York: Aldine de Gruyter.Google Scholar
  59. Smithers, R. H. N. (1971). The mammals of Botswana. Museum Memoirs of the National Museums and Monuments of Rhodesia, 4, 1–340.Google Scholar
  60. Smithers, R. H. N. (1983). The mammals of the southern African subregion. Pretoria: University of Pretoria.Google Scholar
  61. Spencer, L. M. (1995). Antelopes and grasslands: Reconstructing African hominid environments. Ph.D. dissertation, State University of New York, Stony Brook.Google Scholar
  62. Sponheimer, M., & Lee-Thorp, J. A. (1999). Isotopic evidence for the diet of an early hominid, Australopithecus africanus. Science, 283, 368–370.CrossRefGoogle Scholar
  63. Sponheimer, M., Reed, K. E., & Lee-Thorp, J. A. (1999). Combining isotopic and ecomorphological data to refine bovid paleodietary reconstruction: A case study from the Makapansgat Limeworks hominin locality. Journal of Human Evolution, 36, 705–718.CrossRefGoogle Scholar
  64. Sponheimer, M., Lee-Thorp, J. A., DeRuiter, D. J., Smith, J. M., van der Merwe, N. J., Reed, K., Grant, C. C., Ayliffe, L. K., Robinson, T. F., Heidelberg, C., & Marcus, W. (2003). Diets of southern African Bovidae: Stable isotope evidence. Journal of Mammalogy, 84, 471–479.CrossRefGoogle Scholar
  65. Struhsaker, T. T. (1997). Ecology of an African rain forest. Gainesville: University Press of Florida.Google Scholar
  66. Su, D. F., & Harrison, T. (2007). The paleoecology of the Upper Laetolil Beds at Laetoli: A reconsideration of the large mammal evidence. In R. Bobe, Z. Alemseged, & A. K. Behrensmeyer (Eds.), Hominin environments in the East African Pliocene: An assessment of the faunal evidence (pp. 279–313). Dordrecht: Springer.CrossRefGoogle Scholar
  67. Su, D. F., & Harrison, T. (2008). Ecological implications of the relative rarity of fossil hominins at Laetoli. Journal of Human Evolution, 55, 672–681.CrossRefGoogle Scholar
  68. Su, D. F., Ambrose, S. H., DeGusta, D., & Haile-Selassie, Y. (2009). Paleoenvironment. In Y. Haile-Selassie & G. WoldeGabriel (Eds.), Ardipithecus kadabba: Late Miocene evidence from the Middle Awash (pp. 521–547). Berkeley: University of California Press.Google Scholar
  69. Swynnerton, G. H. (1958). Fauna of the Serengeti National Park. Mammalia, 22, 435–450.Google Scholar
  70. Tattersfield, P. (2011). Gastropoda. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Fossil hominins and the associated fauna, vol. 2, pp. 567–587). Dordrecht: Springer.Google Scholar
  71. Thomas, H. (1980). Les bovidés du Miocène supérieur des couches de Mpesida et de la Formation de Lukeino (District de Baringo, Kenya). In: R. E. F. Leakey, & B. A. Ogot (Eds.), Proceedings of the 8th Pan-African Congress of Prehistory, Nairobi, 1977 (pp. 82–91).Google Scholar
  72. Vernon, C. J. (1999). Biogeography, endemism and diversity of animals in the Karoo. In W. R. J. Dean & S. J. Milton (Eds.), The Karoo: Ecological patterns and processes (pp. 57–85). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  73. Vesey-Fitzgerald, D. F. (1964). Mammals of the Rukwa Valley. Tanganyika Notes and Records, 62, 61–72.Google Scholar
  74. Vrba, E. S. (1980). The significance of bovid remains as indicators of environment and prediction patterns. In A. K. Behrensmeyer & A. P. Hill (Eds.), Fossils in the making (pp. 247–271). Chicago: University of Chicago Press.Google Scholar
  75. Werdelin, L., & Lewis, M. E. (2001). A revision of the genus Dinofelis (Mammalia, Felidae). Zoological Journal of the Linnean Society, 132, 47–258.CrossRefGoogle Scholar
  76. Wesselman, H. B. (1985). Fossil micromammals as indicators of climatic change about 2.4 Myr ago in the Omo Valley, Ethiopia. South African Journal of Science, 81, 260–261.Google Scholar
  77. Western, D. (1973). The structure, dynamics and changes of the Amboseli ecosystem. Ph.D. dissertation, University of Nairobi, Nairobi.Google Scholar
  78. White, F. (1983). The vegetation of Africa: A descriptive memoir to accompany UNESCO/AETFAT/UNSO vegetation maps of Africa. Paris: UNESCO.Google Scholar
  79. White, T. D., Ambrose, S. H., Suwa, G., Su, D. F., DeGusta, D., Bernor, R. L., Boisserie, J.-R., Brunet, M., Delson, E., Frost, S., Garcia, N., Giaourtsakis, I. X., Haile-Selassie, Y., Howell, F. C., Lehmann, T., Likius, A., Pehlevan, C., Saegusa, H., Semprebon, G., Teaford, M., &Vrba, E. (2009). Macrovertebrate paleontology and the Pliocene habitat of Ardipithecus ramidus. Science, 326, 87–93.Google Scholar
  80. WoldeGabriel, G., Ambrose, S. H., Barboni, D., Bonnefille, R., Bremond, L., Currie, B., DeGusta, D., Hart, W.K., Murray, A. M., Renne, P. R., Jolly-Saad, M. C., Stewart, K. M., &White, T. D. (2009). The geological, isotopic, botanical, invertebrate, and lower vertebrate surroundings of Ardipithecus ramidus. Science, 326, 65–70.CrossRefGoogle Scholar
  81. Zazzo, A., Bocherens, H., Brunet, M., Beauvilain, A., Biliou, D., Mackaye, H. T., Vignaud, I., & Mariotti, A. (2000). Herbivore paleodiet and paleoenvironmental changes in Chad during the Pliocene using stable isotope ratios of tooth enamel carbonate. Paleobiology, 26, 294–309.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of AnthropologyBryn Mawr CollegeBryn MawrUSA

Personalised recommendations