Advertisement

Feeding Ecology and Niche Partitioning of the Laetoli Ungulate Faunas

  • Thomas M. KaiserEmail author
Chapter
Part of the Vertebrate Paleobiology and Paleoanthropology Series book series (VERT)

Abstract

The Pliocene ungulate fauna from the ­hominid-bearing Laetolil succession (Southern Serengeti, Tanzania) is investigated with regard to dietary adaptation, niche segregation and change over time. The fossiliferous Upper Laetolil Beds (ULB) (3.63–3.85 Ma) are unconformably overlain by the Upper Ndolanya Beds (UNB) (2.66 Ma). Both stratigraphic units contain a rich mammalian fauna, with ungulates predominating. Analysis of dental mesowear is applied to 23 ungulate taxa from both units, including Equidae, Bovidae and Giraffidae, and the results are compared to extant species. The equids at Laetoli represent the only specialized grazers throughout the succession. All Upper Laetolil Alcelaphini and Hippotragini have mesowear signatures that indicate intermediate feeding strategies, different from their modern counterparts that are mostly specialized grazers. This indicates a dietary shift in these lineages, a finding that is also supported by isotope studies. Mesowear data of ungulates from the ULB also suggest that extant ungulates representing closely related lineages in the same genus or even tribe may not serve as actualistic model taxa in faunal reconstructions using taxonomic uniformitarianism. The three species of giraffids and the remaining bovid taxa were either browsers or intermediate feeders, but not grazers. The almost complete absence of grazing guilds, and the heavy reliance on browse by most fossil herbivores, do not support the inference that the Laetoli environment was dominated by grassland. Within the Laetoli succession it appears that fundamental feeding niches converged over time, with grazers increasingly engaged in feeding on less abrasive components and intermediate-feeders closing the dietary gap by exploiting more abrasive feeding niches. Niche partitioning in the Laetoli ungulates appears to reflect environmental change and evolutionary trajectories in the major lineages. This distribution of feeding niches may serve as an overall indicator of niche diversity. Within the succession it appears that the diversity of feeding niches generally decreased. A decrease in feeding niches would suggest that the diverse habitat structure, which was typical of the ULB environment, no longer existed after the faunal and environmental transition that occurred after deposition of the ULB. After a hiatus of 1.0 million years, the UNB environment was more or less free of forest and woodland patches and can be characterized as more or less open grassland.

Keywords

Ruminantia Bovidae Giraffidae Equidae Paleodiet Mesowear Tooth wear Pliocene Paleoecology 

Notes

Acknowledgements

I thank the Tanzania Commission for Science and Technology (COSTECH) and the Department of Antiquities in Dar es Salaam for permission to conduct research in Tanzania. Thanks also to the curators and staff at the National Museum of Tanzania (Dar es Salaam) and for their hospitality during the related museum work. Alan Gentry is most sincerely acknowledged for sharing his new Laetoli bovid taxonomy and database. Without Alan’s tremendous contribution concerning the clarification of taxonomic assignments of bovid specimens, this manuscript would probably not have been possible. Thanks to Christoph Zahn for laboratory assistance in sampling, labeling, databasing and molding specimens. Regina Mertins did the 3-D scan of dental specimens at the 3-D morphometry lab of the Mammalogy Section of the Zoological Museum Hamburg. I thank two anonymous reviewers for their very constructive comments and suggestions, that improved the manuscript and I sincerely thank Terry Harrison for his invitation to conduct this study and contribute to this volume. Fieldwork at Laetoli was supported by grants to Terry Harrison from the National Geographic Society, the Leakey Foundation, and the National Science Foundation (Grants BCS-0216683 and BCS-0309513). This contribution further benefited from grants to TMK from the German Research Foundation KA 1525/4-1/4-2, KA 1525/6-1.

References

  1. Alemseged, Z. (2003). An integrated approach to taphonomy and faunal change in the Shungura Formation (Ethiopia) and its implication for hominid evolution. Journal of Human Evolution, 44, 451–478.Google Scholar
  2. Andrews, P. J. (1989). Palaeoecology of Laetoli. Journal of Human Evolution, 18, 173–181.Google Scholar
  3. Andrews, P. J., & Humphrey, L. (1999). African Miocene environments and the transition to early hominines. In T. Bromage & F. Schrenk (Eds.), African biogeography, climate change, and human evolution (pp. 282–300). Oxford: Oxford University Press.Google Scholar
  4. Archer, D., & Sanson, G. (2002). Form and function of the selenodont molar in southern African ruminants in relation to their feeding habits. Journal of Zoology, 257, 13–26.Google Scholar
  5. Armour-Chelu, M., & Bernor, R. L. (2011). Equidae. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Fossil hominins and the associated fauna, vol. 2, pp. 295–326). Dordrecht: Springer.Google Scholar
  6. Baker, G., Jones, L. H. P., & Wardrop, I. D. (1959). Cause of wear in sheep’s teeth. Nature, 184, 1583–1584.Google Scholar
  7. Bamford, M. K., & Harrison, T. (2004). Pliocene vegetation and palaeoenvironment of Laetoli, Tanzania evidence from fossil woods. PaleoAnthropology Selected Issue: PAS 2004 Abstracts: A02.Google Scholar
  8. Beden, M. (1987). Fossil Elephantidae from Laetoli. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 259–294). Oxford: Clarendon.Google Scholar
  9. Bernor, R. L., & Armour-Chelu, M. (1999). Toward an evolutionary history of African hipparionine horses. In T. Bromage & F. Schrenk (Eds.), African biogeography and human evolution (pp. 189–215). Oxford: Oxford University Press.Google Scholar
  10. Bernor, R. L., & Harris, J. M. (2003). Systematics and evolutionary biology of the late Miocene and early Pliocene hipparionine equids from Lothagam, Kenya. In M. G. Leakey & J. M. Harris (Eds.), Lothagam: The dawn of humanity in eastern Africa (pp. 387–438). New York: Columbia University Press.Google Scholar
  11. Bernor, R. L., & Kaiser, T. M. (2006). Systematics and paleoecology of the earliest Pliocene equid, Eurygnathohippus hooijeri n. sp. from Langebaanweg, South Africa. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 103, 149–186.Google Scholar
  12. Bernor, R. L., Kaiser, T. M., Kordos, L., & Scott, R. S. (1999). Stratigraphic context, systematic position and paleoecology of Hippotherium sumegense Kretzoi, 1984 from MN 10 (Late Vallesian of the Pannonian basin). Mitteilung der Bayerischen Staatssammlung für Paläontologie und historische Geologie, 39, 1–35.Google Scholar
  13. Bernor, R. L., Kaiser, T. M., & Nelson, S.V. (2004). The oldest Ethiopian Hipparion (Equinae, Perissodactyla) from Chorora: Systematics, paleodiet and paleoclimate. Courier Forschungsinstitut Senckenberg, 246, 213–226.Google Scholar
  14. Bobe, R., & Eck, G. G. (2001). Responses of African bovids to Pliocene climatic change. Paleobiology, 27, 1–47.Google Scholar
  15. Bocherens, H., Koch, P. L., Mariotti, A., Geraads, D., & Jaeger, J. (1996). Isotopic biogeochemistry (13C, 18O) of mammalian enamel from African Pleistocene hominid sites. Palaios, 11, 306–318.Google Scholar
  16. Cerling, T. E. (1992). Development of grasslands and savannas in east Africa during the Neogene. Palaeogeography, Palaeoclimatology, Palaeoecology, 97, 241–247.Google Scholar
  17. Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., & Ehleringer, J. R. (1997). Global vegetation through the Miocene/Pliocene boundary. Nature, 389, 153–158.Google Scholar
  18. Cerling, T. E., Ehleringer, J. R., & Harris, J. M. (1998). Carbon dioxide starvation, the development of C4 ecosystems, and mammalian evolution. Philosophical Transactions of the Royal Society of London, 353, 159–171.Google Scholar
  19. Cerling, T. E., Harris, J. M., Leakey, M. G., & Mudida, N. (2003a). Stable isotope ecology of northern Kenya, with emphasis on the Turkana basin. In M. G. Leakey & J. M. Harris (Eds.), Lothagam: The dawn of humanity in eastern Africa (pp. 583–603). New York: Columbia University Press.Google Scholar
  20. Cerling, T. E., Harris, J. M., & Passey, B. H. (2003b). Diets of east African Bovidae based on stable isotope analysis. Journal of Mammalogy, 84, 456–470.Google Scholar
  21. Churcher, C. S. (1978). Giraffidae. In V. J. Maglio & H. B. S. Cooke (Eds.), Evolution of African mammals (pp. 509–535). Cambridge: Harvard University Press.Google Scholar
  22. Clauss, M., Franz-Odendaal, T., Brasch, J., Castell, J., & Kaiser, T. M. (2007a). Tooth wear in captive giraffes (Giraffa camelopardalis): Mesowear analysis classifies free-ranging specimens as browsers but captive ones as grazers. Journal of Zoo and Wildlife Medicine, 38, 433–435.Google Scholar
  23. Clauss, M., Kaiser, T. M., & Hummel, J. (2007b). The morphophysiological adaptations of browsing and grazing mammals. In I. J. Gordon & H. H. T. Prins (Eds.), The ecology of browsing and grazing (pp. 47–88). Heidelberg: Springer.Google Scholar
  24. Deino, A. (2011). 40Ar/39Ar dating of Laetoli, Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology, and paleoenvironment, vol. 1, pp. 77–97). Dordrecht: Springer.Google Scholar
  25. Dietrich, W. O. (1950). Fossile antilopen und rinder aquatorialafrikas. Palaeontographica, 99, 1–62.Google Scholar
  26. Drake, R., & Curtis, G. H. (1987). K–Ar geochronology of the Laetoli fossil localities. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 48–52). Oxford: Clarendon.Google Scholar
  27. Estes, R. D. (1991). The behavior guide to African mammals, including hoofed mammals, carnivores, primates. Berkeley: University of California Press.Google Scholar
  28. Feer, F. (1989). Comparison des régimes alimentaires de Cephalophus callipygus et Cephalophus dorsalis, Bovidés sympatriques de la forêt sempervirente africaine. Mammalia, 53, 563–604.Google Scholar
  29. Fortelius, M., & Solounias, N. (2000). Functional characterization of ungulate molars using the Abrasion-Attrition wear gradient: A new method for reconstructing paleodiets. American Museum of Natural History Novitates, 3302, 1–36.Google Scholar
  30. Fortelius, M., Eronen, J., Jernvall, J., Liu, L., Pushkina, D., Rinne, J., Tesakov, A., Vislobokowa, I., Zhang, Z., & Zhou, L. (2002). Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evolutionary Ecology Research, 4, 1005–1016.Google Scholar
  31. Franz-Odendaal, T. A., & Kaiser, T. M. (2003). Differential mesowear in the maxillary and mandibular cheek dentition of some ruminants (Artiodactyla). Annales Zoologici Fennici, 40, 395–410.Google Scholar
  32. Franz-Odendaal, T. A., & Solounias, N. (2004). Comparative dietary evaluations of an extinct giraffid (Sivatherium hendeyi) (Mammalia, Giraffidae, Sivatheriinae) from Langebaanweg, South Africa (early Pliocene). Geodiversitas, 26, 675–685.Google Scholar
  33. Franz-Odendaal, T. A., Lee-Thorp, J. A., & Chinsamy, A. (2002). New evidence for the lack of C4 grassland and expansions during the early Pliocene at Langebaanweg, South Africa. Paleobiology, 28, 378–388.Google Scholar
  34. Franz-Odendaal, T. A., Kaiser, T. M., & Bernor, R. L. (2003). Systematics and dietary evaluation of a fossil equid from South Africa. South African Journal of Science, 99, 453–459.Google Scholar
  35. Gagnon, M., & Chew, A. E. (2000). Dietary preferences in extant African Bovidae. Journal of Mammalogy, 81, 490–511.Google Scholar
  36. Gautier-Hion, A., Emmons, L. H., & Dubost, G. (1980). A comparison of the diets of three major groups of primary consumers of Gabon (primates, squirrels, and ruminants). Oecologia, 45, 182–199.Google Scholar
  37. Gentry, A. W. (1987). Pliocene Bovidae from Laetoli. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 378–407). Oxford: Clarendon.Google Scholar
  38. Gentry, A. W. (2011). Bovidae. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Fossil hominins and the associated fauna, Vol. 2, pp. 363–465). Dordrecht: Springer.Google Scholar
  39. Geraads, D. (1985). Sivatherium maurusium (Pomel) (Giraffidae, Mammalia) du Pléistocène de la République de Djibouti. Paläontologische Zeitschrift, 59, 311–321.Google Scholar
  40. Greenacre, M. J., & Vrba, E. S. (1984). Graphical display and interpretation of antelope census data in African wildlife areas, using correspondence analysis. Ecology, 65, 984–997.Google Scholar
  41. Gruvaeus, G., & Weiner, H. (1972). Two additions to hierarchical cluster analysis. The British Journal of Mathematical and Statistical Psychology, 25, 200–206.Google Scholar
  42. Guerin, C. (1987). Fossil Rhinocerotidae (Mammalia, Perissodactyla) from Laetoli. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 320–348). Oxford: Clarendon.Google Scholar
  43. Hamilton, W. R. (1973). The lower Miocene ruminants of Gebel Zelten, Libya. Bulletin of the British Museum (Natural History) Geology Series, 21, 73–150.Google Scholar
  44. Harris, J. M. (1987a). Summary. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 524–531). Oxford: Clarendon.Google Scholar
  45. Harris, J. M. (1987b). Fossil Giraffidae and Camelidae from Laetoli. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 358–377). Oxford: Clarendon.Google Scholar
  46. Harris, J. M. (1991). Family Giraffidae. In J. M. Harris (Ed.), Koobi Fora research project (Vol. 3, pp. 93–138). Oxford: Clarendon.Google Scholar
  47. Harris, J. M., & Cerling, T. E. (1998). Isotopic changes in the diet of giraffids. Journal of Vertebrate Paleontology, 18, 49A.Google Scholar
  48. Harrison, T. (2005). Fossil bird eggs from the Pliocene of Laetoli, Tanzania: Their taxonomic and paleoecological relationships. Journal of African Earth Sciences, 41, 289–302.Google Scholar
  49. Harrison, T., & Su, D. F. (2004). Laetoli paleoecology reconsidered: Implications for early hominin habitats. PaleoAnthropology Selected Issue: PAS 2004 Abstracts: A33.Google Scholar
  50. Hartigan, J. A. (1975). Clustering algorithms. New York: Wiley.Google Scholar
  51. Hay, R. L. (1981). Paleoenvironment of the Laetolil beds, northern Tanzania. In G. Rapp Jr. & C. F. Vondra (Eds.), Hominid sites: Their geological settings (AAAS Selected Symposia Series, Vol. 63, pp. 7–24). Boulder: Westview.Google Scholar
  52. Hay, R. L. (1987). Geology of the Laetoli area. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 23–47). Oxford: Clarendon.Google Scholar
  53. Hernesniemi, E., Giaourtsakis, I. X., Evans, A. R., & Fortelius, M. (2011). Rhinocerotidae In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Fossil hominins and the associated fauna, vol. 2, pp. 275–293). Dordrecht: Springer.Google Scholar
  54. Hicks, M. M. (1999). Paleoenvironmental interpretation of the Upper Laetolil Beds, Laetoli archaeological site, Tanzania. Abstracts, Geological Society of America. Boulder: Geological Society of America (GSA), p. 401.Google Scholar
  55. Hofmann, R. R. (1989). Evolutionary steps of ecophysiological adaptation and diversification of ruminants: A comparative view of their digestive system. Oecologia, 78, 443–457.Google Scholar
  56. Hooijer, D. A. (1987a). Hipparions of the Laetolil beds, Tanzania.In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 301–312). Oxford: Clarendon.Google Scholar
  57. Hooijer, D. A. (1987b). Hipparion teeth from the Ndolanya Beds. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 312–315). Oxford: Clarendon.Google Scholar
  58. Janis, C. M. (1988). An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preference. In D. E. Russell, J. P. Santoro, & D. Sigogneau-Russell, (Eds.), Teeth Revisited. Proceedings of the 7th International Symposium Dental Morphology (pp. 367–387), Paris 1986. Mémoires Museum Nationale d’Histoire Naturelle, Série C, Paris.Google Scholar
  59. Janis, C. M. (1990a). Correlation of cranial and dental variables with body size in ungulates and macropodoids. In J. Damuth & B. J. MacFadden (Eds.), Body size in mammalian paleobiology (pp. 255–300). Cambridge: Cambridge University Press.Google Scholar
  60. Janis, C. M. (1990b). The correlation between diet and dental wear in herbivorous mammals, and its relationship to the determination of diets of extinct species. In J. Boucot (Ed.), Evolutionary paleobiology of behaviour and coevolution (pp. 241–260). Amsterdam: Elsevier.Google Scholar
  61. Janis, C. M., & Ehrhardt, D. (1988). Correlation of relative muzzle width and relative incisor width with dietary preference in ungulates. Zoological Journal of the Linnean Society, 92, 267–284.Google Scholar
  62. Kaiser, T. M. (2003). The dietary regimes of two contemporaneous populations of Hippotherium primigenium (Perissodactyla, Equidae) from the Vallesian (upper Miocene) of Southern Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 198, 381–402.Google Scholar
  63. Kaiser, T. M., & Rössner, G. E. (2007). Dietary resource partitioning in ruminant communities of Miocene wetland and karst palaeoenvironments in southern Germany. Palaeogeography, Palaeo­-cli­matology, Palaeoecology, 252, 424–439.Google Scholar
  64. Kaiser, T. M., & Schulz, E. (2006). Tooth wear gradients in zebras as an environmental proxy – a pilot study. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 103, 187–210.Google Scholar
  65. Kaiser, T. M., & Solounias, N. (2003). Extending the tooth mesowear method to extinct and extant equids. Geodiversitas, 25, 321–345.Google Scholar
  66. Kaiser, T., Bromage, T. G., & Schrenk, F. (1995). Hominid corridor research project update: New Pliocene fossil localities at Lake Manyara and putative oldest early stone age occurrences at Laetoli (Upper Ndolanya Beds), northern Tanzania. Journal of Human Evolution, 28, 117–120.Google Scholar
  67. Kaiser, T. M., Solounias, N., Fortelius, M., Bernor, R. L., & Schrenk, F. (2000). Tooth mesowear analysis on Hippotherium primigenium from the Vallesian Dinotheriensande (Germany) – a blind test study. Carolinea, 58, 103–114.Google Scholar
  68. Kaiser, T. M., Brasch, J., Castell, J., & Clauss, M. (2009). Tooth wear in captive wild ruminant species differs from that of free-ranging conspecifics. Mammalian Biology, 74, 425–437.Google Scholar
  69. Kappelman, J., Plummer, T., Bishop, L., Duncan, A., & Appleton, S. (1997). Bovids as indicators of Plio-Pleistocene paleoenvironments in East Africa. Journal of Human Evolution, 32, 229–256.Google Scholar
  70. Kay, R. F., & Covert, H. H. (1983). True grit: A microwear experiment. American Journal of Physical Anthropology, 61, 33–38.Google Scholar
  71. Kingdon, J. (1979). East African mammals: An atlas of evolution in Africa (Vol. III (B)). London: Academic.Google Scholar
  72. Kingdon, J. (1982). East African mammals: An atlas of evolution in Africa (Vol. III. Parts C and D (Bovids)). London: Academic.Google Scholar
  73. Kingdon, J. (1997). The Kingdon field guide to African mammals. San Diego: Academic.Google Scholar
  74. Kingston, J. D. (1999). Environmental determinants in early hominid evolution: Issues and evidence from the Tugen hills, Kenya. In P. Andrews & P. Banham (Eds.), Late Cenozoic environments and hominid evolution: A tribute to Bill Bishop (pp. 69–84). London: Geological Society.Google Scholar
  75. Kingston, J. D., & Harrison, T. (2001). High-resolution middle Pliocene landscape reconstructions at Laetoli, Tanzania. Journal of Human Evolution, 38, A11.Google Scholar
  76. Kingston, J. D., & Harrison, T. (2002). Isotopically based reconstructions of early to middle Pliocene paleohabitats at Laetoli, Tanzania. American Journal of Physical Anthropology, 119(S35), 95–96.Google Scholar
  77. Kingston, J. D., & Harrison, T. (2005). Ostrich eggshells as paleoenvironmental indicators in the Pliocene Laetoli succession, N. Tanzania. PaleoAnthropology A37 (PAS 2005 Abstracts).Google Scholar
  78. Kingston, J. D., & Harrison, T. (2007). Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: Implications for hominin paleoecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 243, 272–306.Google Scholar
  79. Köhler, M. (1993). Skeleton and habitat of recent and fossil ruminants. Münchner Geowissenschaftliche Abhandlungen A, 25, 1–88.Google Scholar
  80. Kovarovic, K., Andrews, P., & Aiello, L. (2002). The palaeoecology of the Upper Ndolanya Beds at Laetoli, Tanzania. Journal of Human Evolution, 43, 395–418.Google Scholar
  81. Kovarovic, K., Andrews, P., & Aiello, L. (2005). Palaeoenvironmental reconstruction of Laetoli, Tanzania using a bovid community ecomorphological survey. PaleoAnthropology A50 (PAS 2005 Abstracts).Google Scholar
  82. Leakey, M. D. (1987). Introduction. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 1–21). Oxford: Clarendon.Google Scholar
  83. Leakey, M. D., & Harris, J. M. (1987). Laetoli: A Pliocene site in northern Tanzania. Oxford: Clarendon.Google Scholar
  84. Lee-Thorp, J. A. (1989). Stable carbon isotopes in deep time: The diets of fossil fauna and hominids. Ph.D. dissertation, University of Cape Town, Cape Town.Google Scholar
  85. Lumpkin, S., & Kranz, K. R. (1984). Cephalophus sylvicultor. Mammalian Species, 225, 1–7.Google Scholar
  86. MacLeod, S. B., Kerley, G. I. H., & Gaylard, A. (1996). Habitat and diet of bushbuck Tragelaphus scriptus in the woody cape nature reserve: Observations from faecal analysis. South African Journal of Wildlife Research, 26, 19–25.Google Scholar
  87. Manega, P. C. (1993). Geochronology, geochemistry and isotopic study of the Plio-Pleistocene hominid sites and the Ngorongoro volcanic highlands in northern Tanzania. Ph.D. dissertation, University of Colorado, Boulder.Google Scholar
  88. McNaughton, S. J., Tarrants, J. L., McNaughton, M. M., & Davis, R. H. (1985). Silica as a defense against herbivory and a growth promotor in African grasses. Ecology, 66, 528–535.Google Scholar
  89. Meladze, G. K. (1964). About the paleobiological study of Sivatheriinae. Soobshcheniia Akademii nauk Gruzinskoi SSR, 33, 567–600.Google Scholar
  90. Mihlbachler, M. C., & Solounias, N. (2006). Coevolution of tooth crown height and diet in oreodonts (Merycoidodontidae, Artiodactyla) examined with phylogenetically independent contrasts. Journal of Mammalian Evolution, 13, 11–36.Google Scholar
  91. Morgan, M. E., Kingston, J. D., & Marino, B. D. (1994). Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya. Nature, 367, 162–165.Google Scholar
  92. Morris, S. C. (1998). The evolution of diversity in ancient ecosystem. Philosophical Transactions: Biological Sciences, 353(1366), 327–345.Google Scholar
  93. Musiba, C.M. (1999). Laetoli Pliocene paleoecology: A reanalysis via morphological and behavioral approaches. Ph.D. dissertation, University of Chicago, Chicago.Google Scholar
  94. Musiba, C. M., Vogt, M., & Branting, S. (2002). Laetoli Pliocene landscape reconsidered: A reanalysis via functional morphology and taphonomic data. Journal of Human Evolution, 42, A25.Google Scholar
  95. Ndessokia, P. N. S. (1990). The mammalian fauna and archaeology of the Ndolanya and Olpiro Beds, Laetoli. Tanzania. Ph.D. dissertation, University of California, Berkeley.Google Scholar
  96. Pellow, R. A. (1983). The feeding ecology of a selective browser, the giraffe (Giraffa camelopardalis tippelskirchi). Journal of Zoology, 202, 57–81.Google Scholar
  97. Pickford, M., & Senut, B. (2001). The geological and faunal context of Late Miocene hominid remains from Lukeino, Kenya. Comptes Rendus de l’Académie des Sciences Paris. Série 2a 332, 145–152.Google Scholar
  98. Piperno, D. R., Holst, I., Wessel-Beaver, L., & Andres, T. C. (2002). Evidence for the control of phytolith formation in cucurbita fruits by the hard rind (Hr) genetic locus: Archaeological and ecological implications. Proceedings of the National Academy of Sciences of the United States of America, 99, 10923–10928.Google Scholar
  99. Plummer, T. W., & Bishop, L. C. (1994). Hominid paleoecology at Olduvai Gorge, Tanzania, as indicated by antelope remains. Journal of Human Evolution, 27, 47–75.Google Scholar
  100. Reed, K. E. (1997). Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution, 32, 289–322.Google Scholar
  101. Rivals, F., & Semprebon, G. (2006). A comparison of the dietary habits of a large sample of the Pleistocene pronghorn Stockoceros onusrosagris from the Papago Springs Cave in Arizona to the modern Antilocapra americana. Journal of Vertebrate Paleontology, 26, 495–500.Google Scholar
  102. Rivals, F., Mihlbachler, M. C., & Solounias, N. (2007). Effect of ontogenetic-age distribution in fossil and modern samples on the interpretation of ungulate paleodiets using the mesowear method. Journal of Vertebrate Paleontology, 27, 763–767.Google Scholar
  103. Robinson, C. (2011). Giraffidae. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Fossil hominins and the associated fauna, vol. 2, pp. 339–362). Dordrecht: Springer.Google Scholar
  104. Sanson, G. D., Kerr, S. A., & Gross, K. A. (2007). Do silica phytoliths really wear mammalian teeth? Journal of Archaeological Science, 34, 526–531.Google Scholar
  105. Scott, K. M. (1979). Adaptation and allometry in bovid postcranial proportions. Ph.D. dissertation, Yale University, New Haven.Google Scholar
  106. Semaw, S., Simpson, S. W., Quade, J., Renne, P. R., Butler, R. F., McIntosh, W. C., Levin, N., Dominguez-Rodrigo, M., & Rogers, M. J. (2005). Early Pliocene hominids from Gona, Ethiopia. Nature, 433, 301–305.Google Scholar
  107. Semprebon, G., & Rivals, F. (2007). Was grass more prevalent in the pronghorn past? An assessment of the dietary adaptations of Miocene to recent Antilocapridae (Mammalia: Artiodactyla). Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 332–347.Google Scholar
  108. Shipman, P., & Harris, J. M. (1988). Habitat preference and paleoecology of Australopithecus boisei in eastern Africa. In F. Grine (Ed.), The evolutionary history of the “robust” australopithecines (pp. 343–381). New York: Aldine de Gruyter.Google Scholar
  109. Simbotwe, M. P., & Sichone, P. W. (1989). Aspects of behavior of bushbuck in Kafue national park, Zambia. South African Journal of Wildlife Research, 19, 38–41.Google Scholar
  110. Simpson, C. D. (1974). Food studies on the Chobe bushbuck, Tragelaphus scriptus arnatus Pocock 1900. Arnoldia, 6(32), 1–9.Google Scholar
  111. Solounias, N., Teaford, M., & Walker, A. (1988). Interpreting the diet of extinct ruminants: The case of a non-browsing giraffid. Paleobiology, 14, 287–300.Google Scholar
  112. Sponheimer, M., & Lee-Thorp, J. A. (2003). Using carbon isotope data of fossil bovid communities for palaeoenvironmental reconstruction. South African Journal of Science, 99, 273–275.Google Scholar
  113. Sponheimer, M., Reed, K. E., & Lee-Thorp, J. A. (1999). Combining isotopic and ecomorphological data to refine bovid paleodietary reconstruction: A case study from the Makapansgat Limeworks hominin locality. Journal of Human Evolution, 36, 705–718.Google Scholar
  114. Sponheimer, M., Lee-Thorp, J. A., DeRuither, J. D. J., Smith, J. M., Van Der Merwe, N. J., Reed, K., Grant, C. C., Ayliffe, L. K., Robinson, T. F., Heidelberg, C., & Marcus, W. (2003). Diets of southern African Bovidae: Stable isotope evidence. Journal of Mammalogy, 84, 471–479.Google Scholar
  115. Su, D. F. (2005). The paleoecology of Laetoli, Tanzania: Evidence from the mammalian fauna of the Upper Laetolil Beds. Ph.D. dissertation, New York University, New York.Google Scholar
  116. Su, D. F., & Harrison, T. (2003). Faunal differences in the sequence at Laetoli: Implications for taphonomy and paleoecology. American Journal of Physical Anthropology, 120, 203.Google Scholar
  117. Su, D. F., & Harrison, T. (2005). Large mammal differences between fossil and modern communities: Implications for the reconstruction of hominin paleoenvironments PaleoAnthropology, PAS 2005 Abstracts: A22.Google Scholar
  118. Su, D., & Harrison, T. (2008). Ecological implications of the relative rarity of fossil hominins at Laetoli. Journal of Human Evolution, 55, 672–681.Google Scholar
  119. Van Wieren, S. E. (1996). Digestive strategies in ruminants and nonruminants. Den Haag: Landbouwuniversiteit Wageningen.Google Scholar
  120. Vignaud, P., Duringer, P., Mackaye, H. T., Likius, A., Blondel, C., Boisserie, J. R., de Bonis, L., Eisenmann, V., Etienne, M. E., Geraads, D., Guy, F., Lehmann, T., Lihoreau, F., Lopez-Martinez, N., Mourer-Chauvire, C., Otero, O., Raje, J. C., Schuster, M., Viriot, L., Zazzo, A., & Brunet, M. (2002). Geology and palaeontology of the Upper Miocene Toros–Menalla hominid locality, Chad. Nature, 418, 152–155.Google Scholar
  121. Vrba, E. S. (1975). Some evidence of chronology and palaeoecology of Sterkfontein, Swartkrans and Kromdraai from the fossil Bovidae. Nature, 254, 301–304.Google Scholar
  122. Vrba, E. S. (1980). The significance of bovid remains as indicators of environment and predation patterns. In A. K. Behrensmeyer & A. Hill (Eds.), Fossils in the making: Vertebrate taphonomy, and paleoecology (pp. 247–272). Chicago: Chicago University Press.Google Scholar
  123. Vrba, E. S. (1985). Ecological and adaptive changes associated with early hominid evolution. In E. Delson (Ed.), Ancestors: The hard evidence (pp. 63–71). New York: Alan R. Liss.Google Scholar
  124. Vrba, E. S. (1995). On the connections between paleoclimate and evolution. In E. S. Vrba, G. H. Denton, T. C. Patridge, & L. H. Burckle (Eds.), Paleoclimate and evolution, with emphasis on human origins (pp. 1–45). New Haven: Yale University Press.Google Scholar
  125. Wilkinsin, D. M. (2002). Ecology before ecology: Biogeography and ecology in Lyell’s ‘Principles’. Journal of Biogeography, 29, 1109–1115.Google Scholar
  126. WoldeGabriel, G., White, T. D., Suwa, G., Renne, P., de Heinzelin, J., Hart, W. K., & Heiken, G. (1994). Ecological and temporal placement of early Pliocene hominids at Aramis, Ethiopia. Nature, 371, 330–333.Google Scholar
  127. WoldeGabriel, G., Haile-Selassie, Y., Renne, P. R., Hart, W. K., Ambrose, S. H., Asfaw, B., Heiken, G., & White, T. (2001). Geology and palaeontology of the Late Miocene Middle Awash Valley, Afar Rift, Ethiopia. Nature, 412, 175–178.Google Scholar
  128. Zazzo, A., Bocherens, H., Brunet, M., Beauvilain, A., Billiou, D., Mackaye, H. T., et al. (2000). Herbivore paleodiet and paleoenvironmental changes in Chad during the Pliocene using stable isotope ratios of tooth enamel carbonate. Paleobiology, 26, 294–309.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Biozentrum Grindel und Zoologisches MuseumUniversität HamburgHamburgGermany

Personalised recommendations