Serengeti Micromammal Communities and the Paleoecology of Laetoli, Tanzania

  • Denné N. ReedEmail author
Part of the Vertebrate Paleobiology and Paleoanthropology Series book series (VERT)


The fossil deposits at Laetoli provide critical paleoanthropological insights that can be better understood in light of the modern Serengeti ecosystem. Earlier paleoenvironmental reconstructions of the site depicted it as a semi-arid grassland, similar to the modern Serengeti plains. Subsequent analyses, however, have converged around an interpretation emphasizing a greater wooded component in a more humid climate, suggesting that the adaptations of A. afarensis remain linked to a more closed and wooded biome. The range of proposed paleoenvironments encompasses the range seen in the modern Serengeti-Masai Mara ecosystem today and thus the Serengeti serves as a natural analogy for comparisons with Laetoli. Our understanding of past environments is informed by the study of modern mammalian communities where it is possible to observe species distributions, adaptations and community composition. As paleoenvironmental indicators, micromammals provide a signal of local paleoenvironments at a smaller spatial grain than large mammals and thus may prove critical to resolving some of the ambiguities of paleoenvironmental interpretations at Laetoli. This chapter presents findings on the modern rodent biodiversity in Serengeti based on material recovered from owl roosting sites distributed throughout the ecosystem. The Serengeti experiences strong ecological gradients, which influence vegetation patterns and the distribution of rodent genera. Examining the interplay between habitats and rodent community composition provides the necessary baseline perspective for interpreting Laetoli paleoenvironments.


Rodents Paleoenvironment Grassland Woodland Owl pellets Bubo Tyto Australopithecus afarensis 


  1. Anderson, G. D. (1963). Some weakly developed soils of the eastern Serengeti plains, Tanganyika. African Soils, 8, 339–347.Google Scholar
  2. Anderson, G. D., & Talbot, L. M. (1965). Soil factors affecting the distribution of the grassland types and their utilization by wild animals on the Serengeti plains, Tanganyika. Journal of Ecology, 53, 33–56.CrossRefGoogle Scholar
  3. Anderson, T. M., Dempewolf, J., Metzger, K. M., Reed, D., & Serneels, S. (2007). Generation and maintenance of heterogeneity in the Serengeti ecosystem. In A. R. E. Sinclair, C. Packer, S. A. R. Mduma, & J. M. Fryxell (Eds.), Serengeti III: Human impacts on ecosystem dynamics. Chicago: Chicago University Press.Google Scholar
  4. Andrews, P. (1990). Owls, Caves and Fossils. Chicago: University of Chicago Press.Google Scholar
  5. Andrews, P. (2006). Taphonomic effects of faunal impoverishment and faunal mixing. Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 572–589.CrossRefGoogle Scholar
  6. Avery, D. M. (1982). Micromammals as palaeoenvironmental indicators and an interpretation of the late Quaternary in the southern Cape Province, South Africa. Annals of the South African Museum, 85, 183–374.Google Scholar
  7. Avery, D. M. (1992). Ecological data on micromammals collected by barn owls Tyto alba in the West Coast National Park, South Africa. Israel Journal of Zoology, 38, 385–397.Google Scholar
  8. Avery, D. M. (2002). Taphonomy of micromammals from cave deposits at Kabwe (Broken Hill) and Twin rivers in central Zambia. Journal of Archaeological Science, 29, 537–544.CrossRefGoogle Scholar
  9. Avery, D. M., Avery, G., & Palmer, N. G. (2005). Micromammalian distribution and abundance in the Western cape province, South Africa as evidenced by barn owls Tyto alba (Scopoli). Journal of Natural History, 39, 2047–2071.CrossRefGoogle Scholar
  10. Barr, A., & Reed, D. (2009). Coping with taxonomic ambiguity and inter-observer variation in paleontological and paleoanthropological analyses. American Journal of Physical Anthropology Supplement, 48, 83.Google Scholar
  11. Behrensmeyer, A. K., & Hook, R. W. (1992). Paleoenvironmental contexts and taphonomic modes. In A. K. Behrensmeyer, J. D. Damuth, W. A. DiMichele, R. Potts, H.-D. Sues, & S. L. Wing (Eds.), Terrestrial ecosystems through time; evolutionary paleoecology of terrestrial plants and animals (pp. 15–136). Chicago: University of Chicago Press.Google Scholar
  12. Belsky, J. (1985). Long-term vegetation monitoring in the Serengeti National Park, Tanzania. African Journal of Ecology, 22, 449–460.Google Scholar
  13. Belsky, J. (1990). Tree/grass ratios in East African savannas: A comparison of existing models. Journal of Biogeography, 17, 483–489.CrossRefGoogle Scholar
  14. Belsky, A. J. (1992). Effects of grazing, competition, disturbance, and fire on species composition and diversity of grassland communities. Journal of Vegetation Science, 3, 187–200.CrossRefGoogle Scholar
  15. Bonnefille, R., Potts, R., Chalie, F., Jolly, D., & Peyron, O. (2004). High-resolution vegetation and climate change associated with Pliocene Australopithecus afarensis. Proceedings of the National Academies of Science USA, 101, 12125–12129.CrossRefGoogle Scholar
  16. Campisano, C., & Feibel, C. (2007). Connecting local environmental sequences to global climate patterns: Evidence from the hominin-bearing Hadar Formation, Ethiopia. Journal of Human Evolution, 54, 743–768.Google Scholar
  17. Chevret, P., & Dobigny, G. (2005). Systematics and evolution of the subfamily Gerbillinae (Mammalia, Rodentia, Muridae). Molecular Phylogenetics and Evolution, 35, 674–688.CrossRefGoogle Scholar
  18. Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Austral Ecology, 18, 117–143.CrossRefGoogle Scholar
  19. Coetzee, C. G. (1972). The identification of southern African small mammal remains in owl pellets. Cimbebasia, 2, 54–62.Google Scholar
  20. Cole, M. (1986). The savannas, biogeography and geobotany. New York: Academic.Google Scholar
  21. Crawley, M. (2007). The R Book. New York: Wiley.CrossRefGoogle Scholar
  22. Dauphin, Y., Kowalski, C., & Denys, C. (1994). Assemblage data and bone and teeth modifications as an aid to paleoenvironmental interpretations of the open-air Pleistocene site of Tighenif (Algeria). Quaternary Research, 42, 340–349.CrossRefGoogle Scholar
  23. Davis, D. H. S. (1965). Classification problems with the African Muridae. Zoologica Africana, 1, 121–145.Google Scholar
  24. Delany, M. J. (1975). Rodents of Uganda. London: Trustees of the British Museum.Google Scholar
  25. Dempewolf, J., Trigg, S., DeFries, R., & Eby, S. (2007). Burned-area mapping of the Serengeti-Mara region using modis reflectance data. IEEE Geoscience and Remote Sensing Letters, 4, 312–316.Google Scholar
  26. Denys, C. (1987). Fossil rodents (other than Pedetidae) from Laetoli. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene Site in northern Tanzania (pp. 118–170). Oxford: Clarendon.Google Scholar
  27. Denys, C. (2011). Rodents. In: T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Fossil hominins and the associated fauna, vol. 2, pp. 15–53). Springer, Dordrecht.Google Scholar
  28. de Witt, H. A., & Jeronimus, O. D. (1977). Soil map of the Serengeti plain. Wageningen: Wageningen Agricultural University.Google Scholar
  29. de Wit, H. A. (1978). Soils and grassland types of the Serengeti plain (Tanzania). Their distribution and interrelations. Ph.D. dissertation, University of Wageningen, Wageningen.Google Scholar
  30. Dublin, H. T., & Douglas-Hamilton, I. (1987). Status and trends of elephants in the Serengeti-Mara ecosystem. African Journal of Ecology, 25, 19–23.CrossRefGoogle Scholar
  31. Dublin, H. T., Sinclair, A. R. E., & McGlade, J. (1990). Elephants and fire as causes of multiple stable states in the Serengeti-Mara woodlands. Journal of Animal Ecology, 59, 1147–1164.CrossRefGoogle Scholar
  32. Ducroz, J. F., Volobouev, V., & Granjon, L. (2001). An assessment of the systematics of arvicanthine rodents using mitochondrial DNA sequences: Evolutionary and biogeographical implications. Journal of Mammalian Evolution, 8, 173–206.CrossRefGoogle Scholar
  33. Duplantier, J., & Ba, K. (2001). Swimming ability in six West-African rodent species under laboratory conditions. In C. Denys, L. Granjon, & A. Poulet (Eds.), Small African Mammals (pp. 331–342). Paris: Collection Colloques et Seminaires. IRD Editions.Google Scholar
  34. Earl, Z., & Nel, J. A. J. (1976). Climbing behaviour in three African rodent species. Zoologica Africana, 11, 183–192.Google Scholar
  35. Flaig, R.-M. (2008). Bioinformatics programming in Python: A practical course for beginners. Weinheim: Wiley.Google Scholar
  36. Foster, J. B., & Duff-Mackay, A. (1966). Keys to the genera of Insectivora, Chiroptera and Rodentia of East Africa. Journal of the East African Natural History Society, 15, 189–204.Google Scholar
  37. Glue, D. (1971). Avian predator pellet analysis and the mammalogist. Mammalogy, 1, 53–62.Google Scholar
  38. Grayson, D. K. (1991). Quantitative zooarchaeology. New York: Academic.Google Scholar
  39. Grunblatt, J., Ottichilo, W. K., & Sinange, R. K. (1989). A hierarchical approach to vegetation classification in Kenya. African Journal of Ecology, 27, 45–51.CrossRefGoogle Scholar
  40. Grzimek, M., & Grzimek, B. (1960). Census of plains animals in the Serengeti National Park, Tanganyika. Journal of Wildlife Management, 24, 27–37.CrossRefGoogle Scholar
  41. Hay, R. L. (1987). Geology of the Laetoli area. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 23–47). Oxford: Clarendon.Google Scholar
  42. Hendrichs, H. (1969). Schatzungen der huftierbiomasse in der dornbuschsavanne nordlich und westlich der serengetisteppe in ostafrika nach einem neuen verfahren un bemerkungen zur biomasse der anderen pflanzenfressenden tierarten. Saugetierkundliche Mitteilungen, 18, 237–255.Google Scholar
  43. House, J. I., Archer, S., Breshears, D. D., & Scholes, R. J. (2003). Conundrums in mixed woody-herbaceous plant systems. Journal of Biogeography, 30, 1763–1777.CrossRefGoogle Scholar
  44. Hubbard, C. A. (1972). Observations on the life histories and behaviour of some small rodents from Tanzania. Zoologica Africana, 7, 419–449.Google Scholar
  45. Ilany, A., & Eilam, D. (2008). Wait before running for your life: Defensive tactics of spiny mice (Acomys cahirinus) in evading barn owl (Tyto alba) attack. Behavioral Ecology and Sociobiology, 62, 923–933.CrossRefGoogle Scholar
  46. Jaeger, J. J. (1976). Les rongeurs (Mammalia, Rodentia) du Pléistocène Inférieur d’Olduvai Bed I (Tanzanie). In R. J. G. Savage & S. C. Coryndon (Eds.), Fossil Vertebrates of Africa (Vol. 4, pp. 57–120). London: Academic.Google Scholar
  47. Jager, T. (1982). Soils of the Serengeti woodlands, Tanzania. Ph.D. dissertation, Agricultural University, Wageningen.Google Scholar
  48. Johanson, D. C., White, T. D., & Coppens, Y. (1978). A new species of the genus Australopithecus (Primates: Hominidae) from the Pliocene of eastern Africa. Kirtlandia, 28, 1–14.Google Scholar
  49. Kingdon, J. (1974). East African Mammals (Vol. 2). Chicago: University of Chicago Press.Google Scholar
  50. Kingston, J. (2007). Shifting adaptive landscapes: Progress and challenges in reconstructing early hominid environments. Yearbook of Physical Anthropology, 50, 20–58.CrossRefGoogle Scholar
  51. Laurie, W. A. (1971). The food of the barn owl in the Serengeti National Park, Tanzania. Journal of the East African Natural History Society, 28, 1–4.Google Scholar
  52. Leakey, M. D. (1987). Introduction. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 1–22). Oxford: Clarendon.Google Scholar
  53. Leakey, M. D., & Harris, J. M. (Eds.). (1987). Laetoli: A Pliocene site in northern Tanzania. Oxford: Clarendon.Google Scholar
  54. Leakey, M., & Hay, R. (1979). Pliocene footprints in the Laetolil Beds at Laetoli, northern Tanzania. Nature, 278, 317–323.CrossRefGoogle Scholar
  55. Leakey, M. D., Hay, R. L., Curtis, G. H., Drake, R. E., Jackes, M. K., & White, T. D. (1976). Fossil hominids from the Laetolil Beds. Nature, 262, 460–466.CrossRefGoogle Scholar
  56. Lecompte, E., Aplin, K., Denys, C., Catzeflis, F., Chades, M., & Chevret, P. (2008). Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily. BMC Evolutionary Biology, 8, 199–220.CrossRefGoogle Scholar
  57. Linzey, A. V., & Kesner, M. H. (1997). Small mammals of a woodland-savannah ecosystem in Zimbabwe. I. density and habitat occupancy patterns. Journal of the Zoological Society, London, 243, 137–152.CrossRefGoogle Scholar
  58. Lutz, M. (2006). Programming Python (3rd ed.). Sebastopol: O’Reilly.Google Scholar
  59. Lyman, R. L., & Power, E. (2003). Quantification and sampling of faunal remains in owl pellets. Journal of Taphonomy, 1, 3–14.Google Scholar
  60. McCune, B., & Grace, J. B. (2002). Analysis of ecological communities. Gleneden Beach: MjM.Google Scholar
  61. Milne, G. (1935). Some suggested units of classification and mapping, particularly for East African soils. Soil Research, 4, 183–198.Google Scholar
  62. Misonne, X., & Verschuren, J. (1966). Les rongeurs et lagomorphes de la region du parc national du Serengeti (Tanzanie). Mammalia, 30, 517–537.CrossRefGoogle Scholar
  63. Mullin, S., Pillay, N., & Taylor, P. (2005). The distribution of the water rat Dasymys (Muridae) in Africa: A review. South African Journal of Science, 101, 117–124.Google Scholar
  64. Musser, G., & Carleton, M. D. (2005). Superfamily Muroidea. In D. Wilson & D. Reeder (Eds.), Mammal Species of the World: A taxonomic and geographic reference (3rd ed., Vol. 2, pp. 894–1531). Baltimore: Johns Hopkins University Press.Google Scholar
  65. Norton-Griffiths, M., Herlocker, D., & Pennycuick, L. (1975). The patterns of rainfall in the Serengeti ecosystem, Tanzania. East African Wildlife Journal, 13, 347–374.CrossRefGoogle Scholar
  66. Oksanen, J., Kindt, R., & O’Hara, B. (2005). Vegan: Community ecology package. CRAN, Technical Report.Google Scholar
  67. Pavlinov, I. (2001). Current concepts of gerbillid phylogeny and classification. In C. Denys, L. Granjon, & A. Poulet (Eds.), African small mammals (pp. 141–149). Paris: Collection Colloques et seminaires. IRD Éditions.Google Scholar
  68. Peters, C., Blumenschine, R., Hay, R., Livingstone, D., Marean, C., Harrison, T., Armour-Chelu, M., Andrews, D., Bonnefille, R., & Werdelin, L. (2008). Paleoecology of the Serengeti-Mara ecosystem. In A. R. E. Sinclair, C. Packer, S. A. R. Mduma, & J. M. Fryxell (Eds.), Serengeti III: Human impacts on ecosystem dynamics (pp. 47–94). Chicago: University of Chicago Press.CrossRefGoogle Scholar
  69. Reed, D. N. (2003). Micromammal paleoecology: Past and present relationships between East African small mammals and their habitats. Ph.D. dissertation, Stony Brook University, Stony Brook.Google Scholar
  70. Reed, D. N. (2005). Taphonomic implications of roosting behavior and trophic habits in two species of African owl. Journal of Archaeological Science, 32, 1669–1676.CrossRefGoogle Scholar
  71. Reed, D. N. (2007). Serengeti micromammals and their implications for Olduvai paleoenvironments. In R. Bobe, Z. Alemseged, & A. K. Behrenesmeyer (Eds.), Hominin environments in the East African Pliocene: An assessment of the faunal evidence (pp. 217–255). Dordrecht: Springer.CrossRefGoogle Scholar
  72. Reed, K. E. (2008). Paleoecological patterns at the Hadar hominin site, Afar Regional State, Ethiopia. Journal of Human Evolution, 54, 743–768.CrossRefGoogle Scholar
  73. Reed, D. N., Anderson, T. M., Dempewolf, J., Metzger, K. M., & Serneels, S. (2009). The spatial distribution of vegetation types in the Serengeti ecosystem: The influence of rainfall and topographic relief on vegetation patch characteristics. Journal of Biogeography, 36, 770–782.CrossRefGoogle Scholar
  74. Richmond, B., & Jungers, W. (2008). Orrorin tugenensis femoral morpho­logy and the evolution of hominin bipedalism. Science, 319, 1662–1664.CrossRefGoogle Scholar
  75. Rogers, M., & Stanley, W. (2003). Tanzania Mammal Key. World Wide Web
  76. Sankaran, M. (2004). Tree-grass coexistence in savannas revisited– insights from an examination of assumptions and mechanisms invoked in existing models. Ecology Letters, 7, 480–490.CrossRefGoogle Scholar
  77. Sankaran, M., Hanan, N. P., Scholes, R. J., Ratnam, J., Augustine, D. J., Cade, B. S., Gignoux, J., Higgins, S. I., Roux, X. L., Ludwig, F., Ardo, J., Banyikwa, F., Bronn, A., Bucini, G., Caylor, K. K., Coughenour, M. B., Diouf, A., Ekaya, W., Feral, C. I., Februaiy, E. C., Frost, D. G. H., Hiernaux, P., Hrabar, H., Metzger, K. L., Prins, H. H. T., Ringrose, S., Seal, W., Worden, J. T. J., & Zambalis, N. (2005). Determinants of woody plant cover in African savannas. Nature, 438, 846–849.Google Scholar
  78. Scholes, R. J., & Archer, S. R. (1997). Tree-grass interactions in savannas. Annual Review of Ecology and Systematics, 28, 517–544.CrossRefGoogle Scholar
  79. Senzota, R. M. B. (1978). Some aspects of the ecology of two dominant rodents in the Serengeti ecosystem. M.Sc. thesis, University of Dar es Salaam, Dar es Salaam.Google Scholar
  80. Senzota, R. B. M. (1983). A case of rodent-ungulate resource partitioning. Journal of Mammalogy, 64, 326–329.CrossRefGoogle Scholar
  81. Senzota, R. B. M. (1990). Activity patterns and social behaviour of the grass rats [Arvicanthis niloticus (Desmarest)] in the Serengeti National Park, Tanzania. Tropical Ecology, 31, 35–40.Google Scholar
  82. Senzota, R. B. M. (1992). Rodent ectoparasites in the Serengeti National Park, Tanzania. Tropical Ecology, 33, 29–33.Google Scholar
  83. Serneels, S., & Lambin, E. (2001). Impact of land-use changes on the wildebeest migration in the northern part of the Serengeti-Mara ecosystem. Journal of Biogeography, 28, 391–407.CrossRefGoogle Scholar
  84. Sinclair, A. R. E. (1995). Serengeti past and present. In A. R. E. Sinclair & P. Arcese (Eds.), Serengeti II: Dynamics, management, and conservation of an ecosystem (pp. 3–30). Chicago: University of Chicago Press.Google Scholar
  85. Skinner, J. D. (1990). The mammals of the southern African subregion. Pretoria: University of Pretoria.Google Scholar
  86. Soligo, C., & Andrews, P. (2005). Taphonomic bias, taxonomic bias and historical non-equivalence of faunal structure in early hominin localities. Journal of Human Evolution, 49, 206–229.CrossRefGoogle Scholar
  87. Su, D., & Harrison, T. (2007). The paleoecology of the upper laetolil beds at Laetoli: A reconsideration of the large mammal evidence. In R. Bobe, Z. Alemseged, & A. Behrenesmeyer (Eds.), Hominin environments in the East African Pliocene (pp. 279–313). Dordrecht: Springer.CrossRefGoogle Scholar
  88. Su, D., & Harrison, T. (2008). Ecological implications of the relative rarity of fossil hominins at Laetoli. Journal of Human Evolution, 55, 672–681.CrossRefGoogle Scholar
  89. Swynnerton, G. (1958). Fauna of the Serengeti National Park. Mammalia, 22, 435–450.Google Scholar
  90. Talbot, L. M., & Stewart, D. R. M. (1974). First wildlife census of the entire Serengeti Mara region, East Africa. Journal of Wildlife Management, 28, 815–827.CrossRefGoogle Scholar
  91. Taylor, I. (1994). Barn Owls. Cambridge: Cambridge University Press.Google Scholar
  92. Vernon, C. J. (1972). An analysis of owl pellets collected in southern Africa. Ostrich, 43, 109–124.CrossRefGoogle Scholar
  93. Vesey-Fitzgerald, D. F. (1964). Mammals of the Rukwa Valley. Tanganyika Notes and Records, 62, 61–72.Google Scholar
  94. Vesey-Fitzgerald, D. (1966). The habits and habitats of small rodents in the Congo River catchment region of Zambia and Tanzania. Zoologica Africana, 2, 111–122.Google Scholar
  95. White, T. (1988). The comparative biology of “robust” Australopithecus: Clues from context. In F. Grine (Ed.), Evolutionary history of the “Robust” australopithecines. Foundations of human behavior (pp. 449–484). New York: Gruyter.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of AnthropologyUniversity of Texas at AustinAustinUSA

Personalised recommendations