Fossil Leaves, Fruits and Seeds

  • Marion K. BamfordEmail author
Part of the Vertebrate Paleobiology and Paleoanthropology Series book series (VERT)


Macroscopic fossil plants from the Upper Laetolil Beds, Laetoli, Tanzania, are described and where possible identified. Leaf impressions were recovered from the top of Tuff 8 at Locality 16 and show only primary and secondary venation. While many cannot be identified, some appear to belong to the Euphorbiaceae. Casts of fruits and seeds occur in almost all localities but exhibit only external features. The most common seed is probably that of Boscia coriacea (Capparaceae). Others have been tentatively identified as Papilionaceae, Ximenia species (Olacaceae), Lauraceae and Celtis africana (Celtidaceae). Monocot leaves, thorns of Rosaceae or Papilionaceae and a large sedge rhizome with basal culms are also described. The macrofossils represent a diverse flora with forest elements (Lauraceae, Celtidaceae) and dry open woodland elements (Capparaceae, Leguminosae) during 3.8–3.5 Ma. The sedge culm implies a wetland or springs at some time in the Upper Laetolil period.


Dicots Monocots Thorns Capparaceae Euphorbiaceae Leguminosae 



Macroplant fossils have been collected over many field seasons by field teams and their assistance is appreciated. Research Permits were granted by the Tanzanian Commission for Science and Technology (COSTECH), Tanzanian Department of Antiquities and the Ngorongoro Conservation Area Authority. The financial assistance of the NSF grants to Terry Harrison (BCS-9903434 and BCS-0308513) and from PAST (the South African Palaeontological Scientific Trust) to the author are gratefully acknowledged.


  1. Andrews, P., Bamford, M. K., Njau, E.-F., & Leliyo, G. (2011). The vegetation of the Endulen-Laetoli area in northern Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology and paleoenvironment, vol. 1, pp. 167–200). Dordrecht: Springer.Google Scholar
  2. Bamford, M. K. (2011). Fossil woods. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology and paleoenvironment, vol. 1, pp. 217–233). Dordrecht: Springer.Google Scholar
  3. Bamford, M. K., Stanistreet, I. R., Stollhofen, H., & Albert, R. M. (2008). Late Pliocene grassland from Olduvai Gorge, Tanzania. Palaeogeography, Palaeoclimatology, Palaeocology, 257, 280–293.CrossRefGoogle Scholar
  4. Bancroft, H. (1935). Some fossil dicotyledonous woods from Mount Elgon, East Africa. American Journal of Botany, 22, 164–183. 279–290.CrossRefGoogle Scholar
  5. Beentje, H. (1994). Kenya trees, shrubs and lianas. Nairobi: National Museums Kenya.Google Scholar
  6. Cerling, T. E., Quade, J., Ambrose, S. H., & Sikes, N. E. (1991). Fossil soils, grasses, and carbon isotopes from Fort Ternan, Kenya: Grassland or woodland? Journal of Human Evolution, 21, 295–306.CrossRefGoogle Scholar
  7. Chaney, R. W. (1933). A Tertiary flora from Uganda. Journal of Geology, 41, 702–709.CrossRefGoogle Scholar
  8. Chesters, K. I. M. (1957). The Miocene flora of Rusinga Island, Lake Victoria, Kenya. Palaeontographica Abt. B, 101, 30–71.Google Scholar
  9. Collinson, M. E. (1983). Revision of East African Miocene floras. A preliminary report. International Association of Angiosperm Palaeobotany Newsletter, 8, 4–10.Google Scholar
  10. Collinson, M. E., Andrews, P., & Bamford, M. K. (2009). Taphonomy of the early Miocene flora, Hiwegi Formation, Rusinga Island, Kenya. Journal of Human Evolution, 57, 149–162.CrossRefGoogle Scholar
  11. Deino, A. (2011). 40Ar/39Ar dating of Laetoli, Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology, and paleoenvironment, vol. 1, pp. 77–97). Dordrecht: Springer.Google Scholar
  12. Dorf, E. (1964). The use of fossil plants in palaeoclimate interpretations. In A. E. M. Nairn (Ed.), Problems in palaeoclimatology. Proceedings of the NATO palaeoclimates conference, University of Newcastle-upon-Tyne (pp. 13–31). London: Interscience.Google Scholar
  13. Drake, R., & Curtis, G. H. (1987). K–Ar geochronology of the Laetolil fossil localities. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 48–52). Oxford: Clarendon.Google Scholar
  14. Dugas, D. P., & Retallack, G. J. (1993). Middle Miocene fossil grasses from Fort Ternan, Kenya. Journal of Paleontology, 67, 113–128.Google Scholar
  15. Gibbs Russell, G. E., Watson, L., Koekemoer, M., Smook, L., Barker, N. P., Anderson, H. M., & Dallwitz, M. J. (1990). Grasses of southern Africa. Memoirs of the Botanical Survey of South Africa, 58, 1–437.Google Scholar
  16. Haines, R. W., & Lye, K. A. (1983). The sedges and rushes of East Africa. Nairobi: East African Natural History Society.Google Scholar
  17. Hamilton, A. C. (1968). Some plant fossils from Bukwa. Uganda Journal, 32, 157–164.Google Scholar
  18. Harrison, T., & Kweka, A. (2011). Paleontological localities on the Eyasi Plateau, including Laetoli. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology and paleoenvironment, vol. 1, pp. 17–45). Dordrecht: Springer.Google Scholar
  19. Harrison, T., Msuya, C. P., Murray, A. M., Fine Jacobs, B., Baez, A. M., Mundil, R., & Ludwig, K. R. (2001). Paleontological investigations at the Eocene locality of Mahenge in north-central Tanzania, East Africa. In G. Gunnell (Ed.), Eocene biodiversity: Unusual occurrences and rarely sampled habitats. Topics in geobiology (pp. 39–74). New York: Plenum.CrossRefGoogle Scholar
  20. Hay, R. L. (1987). Geology of the Laetolil Beds. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 23–47). Oxford: Clarendon.Google Scholar
  21. Herendeen, P. S., & Jacobs, B. F. (2000). Fossil legumes from the middle­ Eocene (46.0 Ma) Mahenge flora of Singida, Tanzania. American Journal of Botany, 87, 1358–1366.CrossRefGoogle Scholar
  22. Hickey, L. J. (1973). Classification of the architecture of dicotyledonous leaves. American Journal of Botany, 60, 17–33.CrossRefGoogle Scholar
  23. Hickey, L. J. (1974). A revised classification of the architecture of dicotyledonous leaves. In C. R. Metcalfe & L. Chalk (Eds.), Anatomy of the Dicotyledons (2nd ed., Vol. 1, pp. 25–39). Oxford: Clarendon.Google Scholar
  24. Hill, A., Drake, R., Tauxe, L., Monaghan, M., Barry, J. C., Behrensmeyer, A. K., Curtis, G., Jacobs, B. F., Jacobs, L., Johnson, N., & Pilbeam, D. (1985). Neogene palaeontology and geochronology of the Baringo Basin, Kenya. Journal of Human Evolution, 14, 759–773.CrossRefGoogle Scholar
  25. Jacobs, B. F. (2002). Estimation of low-latitude paleoclimates using fossil angiosperm leaves: Examples from the Miocene Tugen Hills, Kenya. Paleobiology, 28, 399–421.CrossRefGoogle Scholar
  26. Jacobs, B. F., & Herendeen, P. S. (2004). Eocene dry climate and woodland vegetation in tropical Africa reconstructed from fossil leaves from northern Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology, 213, 115–123.CrossRefGoogle Scholar
  27. Jacobs, B. F., & Kabuye, C. (1987). A Middle Miocene (12.2 my old) forest in East Africa Rift Valley, Kenya. Journal of Human Evolution, 16, 147–155.CrossRefGoogle Scholar
  28. Jacobs, B. F., & Winkler, D. A. (1992). Taphonomy of a middle Miocene autochthonous forest assemblage, Ngorora Formation, central Kenya. Palaeogeography, Palaeoclimatology, Palaeoecology, 99, 31–40.CrossRefGoogle Scholar
  29. Jacobs, B. F., Tabor, N., Feseha, M., Pan, A., Kappelman, J., Rasmussen, T., Sanders, W., Weimann, M., Crabaugh, J., & Massini, J. L. G. (2005). Oligocene terrestrial strata of northwestern Ethiopia: A preliminary report on paleoenvironments and paleontology. Palaeontologia Electronica, 8(25A), 1–19.Google Scholar
  30. Kingston, J. D., & Harrison, T. (2007). Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: Implications for early hominin ecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 243, 272–306.CrossRefGoogle Scholar
  31. Leaf Architecture Working Group (1999). Manual of Leaf Architecture. Washington: Smithsonian Institution.Google Scholar
  32. Pickford, M. (2002). Early Miocene grassland ecosystem at Bukwa, Mount Elgon, Uganda. Comptes Rendus Palevol, 1, 213–219.CrossRefGoogle Scholar
  33. Raunkiaer, C. (1934). The life forms of plants and statistical plant geography. Oxford: Clarendon.Google Scholar
  34. Retallack, G. J., Dugas, D. P., & Bestland, E. A. (1990). Fossil soils and grasses of a Middle Miocene East African grassland. Science, 247, 1325–1328.CrossRefGoogle Scholar
  35. Rossouw, L., & Scott, L. (2011). Phytoliths and pollen, the microscopic plant remains in Pliocene volcanic sediments around Laetoli, Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology and paleoenvironment, vol. 1, pp. 201–215). Dordrecht: Springer.Google Scholar
  36. Spicer, R. A. (1986). Comparative leaf architectural analysis of Cretaceous radiating angiosperms. In R. A. Spicer & B. A. Thomas (Eds.), Systematic and taxonomic approaches in palaeobotany. Systematics Association special vol. 31 (pp. 221–232). Oxford: Oxford University Press.Google Scholar
  37. Stollhofen, H., Stanistreet, I. G., McHenry, L., Hay, R. L., & Swisher, C. C. (2008). Fingerprinting facies of the Tuff IF marker with implications for hominin paleoecology, Olduvai Gorge, Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology, 259, 382–409.CrossRefGoogle Scholar
  38. Tiffney, B. H., Fleagle, J. G., & Bown, T. M. (1994). Early to Middle Miocene angiosperm fruits and seeds from Fejej, Ethiopia. Tertiary Research, 15, 25–42.Google Scholar
  39. Van Wyk, A., & van Wyk, B. (1997). Field guide to trees of southern Africa. Cape Town: Struik.Google Scholar
  40. Webb, L. J. (1959). A physiognomic classification of Australian rain forests. Journal of Ecology, 47, 551–570.CrossRefGoogle Scholar
  41. Wheeler, E. A., Weimann, M. C., & Fleagle, J. G. (2007). Woods from the Miocene Bakate Formation, Ethiopia. Anatomical characteristics, estimates of original specific gravity and ecological inferences. Review of Palaeobotany and Palynology, 146, 193–207.CrossRefGoogle Scholar
  42. Wolfe, J. A. (1978). A paleobotanical interpretation of Tertiary climates in the northern hemisphere. American Scientist, 66, 694–703.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Bernard Price Institute for Palaeontological Research, School of GeosciencesUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations